Abstract

The phenomenon of the fluorescence polarization of solutions has found numerous applications in biophysics, biochemistry, immunology, and diagnostic and clinical medicine. The current theory to explain the phenomenon of fluorescence polarization in solutions was developed by F. Perrin in 1926. Perrin based his theory on the belief that fluorescence polarization is a manifestation of rotational Brownian motion. Fluorescence polarization, however, is an electromagnetic radiation phenomenon. Using Maxwell’s equations, suitably modified to account for the quantum behavior of fluorescence, E. Collett developed a theory of fluorescence polarization (the electrodynamic theory) based on a model of dipole–dipole interactions. The electrodynamic theory is used to investigate protein–protein assays to determine the minimum and maximum binding distances between the proteins for (1) an estrogen receptor DNA bound to a fluorescein labeled estrogen response element and (2) a green fluorescent protein chimera of S-peptide (S65T-His6) bound to a free S-protein.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (67)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription