Abstract

A method to generate stable single longitudinal mode (SLM) radiation from a multi-interferometric cavity configuration that can be considered as the combination of one Michelson cavity and two Fox–Smith cavities is presented. A numerical model of the interferometric cavity is investigated to optimize the laser for mode selection, and experimental verification has been carried out in a tunable TEA CO2 laser. Pulse output energy of 300mJ at 10.6μm has been obtained at repetition rate of 20Hz, corresponding to a repetition of SLM operation of 100%. This result shows that this interferometric cavity gives better performance in mode selection than other cavities based on multibeam interference.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Binks, L. A. W. Gloster, T. A. King, and I. T. McKinnie, “Frequency locking of a pulsed single-longitudinal-mode laser in a coupled-cavity resonator,” Appl. Opt. 36, 9371-9377(1997).
    [CrossRef]
  2. C. T. Gross, J. Kiess, and F. Keilmann, “Pulsed high-power far-infrared gas lasers: Performance and spectral survey,” IEEE J. Quantum Electron. QE-23, 377-382 (1987).
    [CrossRef]
  3. O. A. Romanovskii, “Applicability of airborne lidars based on middle IR gas lasers for gas analysis of the atmosphere,” Proc. SPIE 6594, 65940C (2007).
    [CrossRef]
  4. G. Kovar, D. Larouche, M. Piche, and P. A. Belanger, “Single-longitudinal-mode operation of a TEA CO2 laser with a modified Fabry-Perot interferometer,” Appl. Opt. 24, 3584-3590(1985).
    [CrossRef] [PubMed]
  5. K. Silakhori, A. Behjat, F. Soltanmoradi, M. Montazerolghaem, and R. Sadr, “A compact injection locked single longitudinal mode TEA CO2 laser,” Proc. SPIE 5777, 433-437(2005).
    [CrossRef]
  6. A. K. Kar, D. M. Tratt, J. H. Mathew, N. R. Heckenberg, and R. G. Harrison, “Status and prospects of hybrid and injection-locked TEA CO2 lasers for lidar and nonlinear optics applications,” IEEE J. Quantum Electron. QE-21, 359-364 (1985).
    [CrossRef]
  7. N. P. Barnes and J. C. Barnes, “Injection seeding. I. Theory,” IEEE J. Quantum Electron. 29, 2670-2683 (1993).
    [CrossRef]
  8. A. Kumar, J. P. Nilaya, and D. J. Biswas, “Improved efficiency of a hybrid CO2 laser as a result of increased TEM000 mode filling factor,” Rev. Sci. Instrum. 75, 5203-5204(2004).
    [CrossRef]
  9. J. P. Nicholson and K. S. Lipton, “A tunable stabilized single-mode TEA CO2 laser,” Appl. Phys. Lett. 31, 430-432(1977).
    [CrossRef]
  10. S. Y. Tochitsky, R. Narang, C. Filip, C. E. Clayton, K. A. Marsh, and C. Joshi, “Generation of 160 ps terawatt-power CO2 laser pulses,” Opt. Lett. 24, 1717-1719 (1999).
    [CrossRef]
  11. Y. H. Wang, Y. C. Qu, W. J. Zhao, D. M. Ren, and X. Y. Hu, “Single longitudinal mode pulse from a TEA CO2 laser by using a three-mirror resonator with a Fabry-Pérot etalon,” Appl. Phys. B 92, 237-241 (2008).
    [CrossRef]
  12. P. W. Smith, “Mode selection in lasers,” Proc. IEEE 60, 422-440 (1972).
    [CrossRef]
  13. L. R. Botha, R. N. Campbell, E. Ronander, and M. M. Michaelis, “Numerical investigation of a three-mirror resonator for a TE CO2 laser,” Appl. Opt. 30, 2447-2452 (1991).
    [CrossRef] [PubMed]
  14. J. M. Boon-Engering, L. A. W. Gloster, W. E. van derVeer, I. T. McKinnie, T. A. King, and W. Hogervorst, “Highly efficient single-longitudinal-mode β-BaB2O4 optical parametric oscillator with a new cavity design,” Opt. Lett. 20, 2087-2089 (1995).
    [CrossRef] [PubMed]
  15. D. J. Binks, D. K. Ko, L. A. W. Gloster, and T. A. King, “Laser mode selection in multiarm grazing-incidence cavities,” J. Opt. Soc. Am. B 15, 2395-2403 (1998).
    [CrossRef]

2008 (1)

Y. H. Wang, Y. C. Qu, W. J. Zhao, D. M. Ren, and X. Y. Hu, “Single longitudinal mode pulse from a TEA CO2 laser by using a three-mirror resonator with a Fabry-Pérot etalon,” Appl. Phys. B 92, 237-241 (2008).
[CrossRef]

2007 (1)

O. A. Romanovskii, “Applicability of airborne lidars based on middle IR gas lasers for gas analysis of the atmosphere,” Proc. SPIE 6594, 65940C (2007).
[CrossRef]

2005 (1)

K. Silakhori, A. Behjat, F. Soltanmoradi, M. Montazerolghaem, and R. Sadr, “A compact injection locked single longitudinal mode TEA CO2 laser,” Proc. SPIE 5777, 433-437(2005).
[CrossRef]

2004 (1)

A. Kumar, J. P. Nilaya, and D. J. Biswas, “Improved efficiency of a hybrid CO2 laser as a result of increased TEM000 mode filling factor,” Rev. Sci. Instrum. 75, 5203-5204(2004).
[CrossRef]

1999 (1)

1998 (1)

1997 (1)

1995 (1)

1993 (1)

N. P. Barnes and J. C. Barnes, “Injection seeding. I. Theory,” IEEE J. Quantum Electron. 29, 2670-2683 (1993).
[CrossRef]

1991 (1)

1987 (1)

C. T. Gross, J. Kiess, and F. Keilmann, “Pulsed high-power far-infrared gas lasers: Performance and spectral survey,” IEEE J. Quantum Electron. QE-23, 377-382 (1987).
[CrossRef]

1985 (2)

A. K. Kar, D. M. Tratt, J. H. Mathew, N. R. Heckenberg, and R. G. Harrison, “Status and prospects of hybrid and injection-locked TEA CO2 lasers for lidar and nonlinear optics applications,” IEEE J. Quantum Electron. QE-21, 359-364 (1985).
[CrossRef]

G. Kovar, D. Larouche, M. Piche, and P. A. Belanger, “Single-longitudinal-mode operation of a TEA CO2 laser with a modified Fabry-Perot interferometer,” Appl. Opt. 24, 3584-3590(1985).
[CrossRef] [PubMed]

1977 (1)

J. P. Nicholson and K. S. Lipton, “A tunable stabilized single-mode TEA CO2 laser,” Appl. Phys. Lett. 31, 430-432(1977).
[CrossRef]

1972 (1)

P. W. Smith, “Mode selection in lasers,” Proc. IEEE 60, 422-440 (1972).
[CrossRef]

Barnes, J. C.

N. P. Barnes and J. C. Barnes, “Injection seeding. I. Theory,” IEEE J. Quantum Electron. 29, 2670-2683 (1993).
[CrossRef]

Barnes, N. P.

N. P. Barnes and J. C. Barnes, “Injection seeding. I. Theory,” IEEE J. Quantum Electron. 29, 2670-2683 (1993).
[CrossRef]

Behjat, A.

K. Silakhori, A. Behjat, F. Soltanmoradi, M. Montazerolghaem, and R. Sadr, “A compact injection locked single longitudinal mode TEA CO2 laser,” Proc. SPIE 5777, 433-437(2005).
[CrossRef]

Belanger, P. A.

Binks, D. J.

Biswas, D. J.

A. Kumar, J. P. Nilaya, and D. J. Biswas, “Improved efficiency of a hybrid CO2 laser as a result of increased TEM000 mode filling factor,” Rev. Sci. Instrum. 75, 5203-5204(2004).
[CrossRef]

Boon-Engering, J. M.

Botha, L. R.

Campbell, R. N.

Clayton, C. E.

Filip, C.

Gloster, L. A. W.

Gross, C. T.

C. T. Gross, J. Kiess, and F. Keilmann, “Pulsed high-power far-infrared gas lasers: Performance and spectral survey,” IEEE J. Quantum Electron. QE-23, 377-382 (1987).
[CrossRef]

Harrison, R. G.

A. K. Kar, D. M. Tratt, J. H. Mathew, N. R. Heckenberg, and R. G. Harrison, “Status and prospects of hybrid and injection-locked TEA CO2 lasers for lidar and nonlinear optics applications,” IEEE J. Quantum Electron. QE-21, 359-364 (1985).
[CrossRef]

Heckenberg, N. R.

A. K. Kar, D. M. Tratt, J. H. Mathew, N. R. Heckenberg, and R. G. Harrison, “Status and prospects of hybrid and injection-locked TEA CO2 lasers for lidar and nonlinear optics applications,” IEEE J. Quantum Electron. QE-21, 359-364 (1985).
[CrossRef]

Hogervorst, W.

Hu, X. Y.

Y. H. Wang, Y. C. Qu, W. J. Zhao, D. M. Ren, and X. Y. Hu, “Single longitudinal mode pulse from a TEA CO2 laser by using a three-mirror resonator with a Fabry-Pérot etalon,” Appl. Phys. B 92, 237-241 (2008).
[CrossRef]

Joshi, C.

Kar, A. K.

A. K. Kar, D. M. Tratt, J. H. Mathew, N. R. Heckenberg, and R. G. Harrison, “Status and prospects of hybrid and injection-locked TEA CO2 lasers for lidar and nonlinear optics applications,” IEEE J. Quantum Electron. QE-21, 359-364 (1985).
[CrossRef]

Keilmann, F.

C. T. Gross, J. Kiess, and F. Keilmann, “Pulsed high-power far-infrared gas lasers: Performance and spectral survey,” IEEE J. Quantum Electron. QE-23, 377-382 (1987).
[CrossRef]

Kiess, J.

C. T. Gross, J. Kiess, and F. Keilmann, “Pulsed high-power far-infrared gas lasers: Performance and spectral survey,” IEEE J. Quantum Electron. QE-23, 377-382 (1987).
[CrossRef]

King, T. A.

Ko, D. K.

Kovar, G.

Kumar, A.

A. Kumar, J. P. Nilaya, and D. J. Biswas, “Improved efficiency of a hybrid CO2 laser as a result of increased TEM000 mode filling factor,” Rev. Sci. Instrum. 75, 5203-5204(2004).
[CrossRef]

Larouche, D.

Lipton, K. S.

J. P. Nicholson and K. S. Lipton, “A tunable stabilized single-mode TEA CO2 laser,” Appl. Phys. Lett. 31, 430-432(1977).
[CrossRef]

Marsh, K. A.

Mathew, J. H.

A. K. Kar, D. M. Tratt, J. H. Mathew, N. R. Heckenberg, and R. G. Harrison, “Status and prospects of hybrid and injection-locked TEA CO2 lasers for lidar and nonlinear optics applications,” IEEE J. Quantum Electron. QE-21, 359-364 (1985).
[CrossRef]

McKinnie, I. T.

Michaelis, M. M.

Montazerolghaem, M.

K. Silakhori, A. Behjat, F. Soltanmoradi, M. Montazerolghaem, and R. Sadr, “A compact injection locked single longitudinal mode TEA CO2 laser,” Proc. SPIE 5777, 433-437(2005).
[CrossRef]

Narang, R.

Nicholson, J. P.

J. P. Nicholson and K. S. Lipton, “A tunable stabilized single-mode TEA CO2 laser,” Appl. Phys. Lett. 31, 430-432(1977).
[CrossRef]

Nilaya, J. P.

A. Kumar, J. P. Nilaya, and D. J. Biswas, “Improved efficiency of a hybrid CO2 laser as a result of increased TEM000 mode filling factor,” Rev. Sci. Instrum. 75, 5203-5204(2004).
[CrossRef]

Piche, M.

Qu, Y. C.

Y. H. Wang, Y. C. Qu, W. J. Zhao, D. M. Ren, and X. Y. Hu, “Single longitudinal mode pulse from a TEA CO2 laser by using a three-mirror resonator with a Fabry-Pérot etalon,” Appl. Phys. B 92, 237-241 (2008).
[CrossRef]

Ren, D. M.

Y. H. Wang, Y. C. Qu, W. J. Zhao, D. M. Ren, and X. Y. Hu, “Single longitudinal mode pulse from a TEA CO2 laser by using a three-mirror resonator with a Fabry-Pérot etalon,” Appl. Phys. B 92, 237-241 (2008).
[CrossRef]

Romanovskii, O. A.

O. A. Romanovskii, “Applicability of airborne lidars based on middle IR gas lasers for gas analysis of the atmosphere,” Proc. SPIE 6594, 65940C (2007).
[CrossRef]

Ronander, E.

Sadr, R.

K. Silakhori, A. Behjat, F. Soltanmoradi, M. Montazerolghaem, and R. Sadr, “A compact injection locked single longitudinal mode TEA CO2 laser,” Proc. SPIE 5777, 433-437(2005).
[CrossRef]

Silakhori, K.

K. Silakhori, A. Behjat, F. Soltanmoradi, M. Montazerolghaem, and R. Sadr, “A compact injection locked single longitudinal mode TEA CO2 laser,” Proc. SPIE 5777, 433-437(2005).
[CrossRef]

Smith, P. W.

P. W. Smith, “Mode selection in lasers,” Proc. IEEE 60, 422-440 (1972).
[CrossRef]

Soltanmoradi, F.

K. Silakhori, A. Behjat, F. Soltanmoradi, M. Montazerolghaem, and R. Sadr, “A compact injection locked single longitudinal mode TEA CO2 laser,” Proc. SPIE 5777, 433-437(2005).
[CrossRef]

Tochitsky, S. Y.

Tratt, D. M.

A. K. Kar, D. M. Tratt, J. H. Mathew, N. R. Heckenberg, and R. G. Harrison, “Status and prospects of hybrid and injection-locked TEA CO2 lasers for lidar and nonlinear optics applications,” IEEE J. Quantum Electron. QE-21, 359-364 (1985).
[CrossRef]

van derVeer, W. E.

Wang, Y. H.

Y. H. Wang, Y. C. Qu, W. J. Zhao, D. M. Ren, and X. Y. Hu, “Single longitudinal mode pulse from a TEA CO2 laser by using a three-mirror resonator with a Fabry-Pérot etalon,” Appl. Phys. B 92, 237-241 (2008).
[CrossRef]

Zhao, W. J.

Y. H. Wang, Y. C. Qu, W. J. Zhao, D. M. Ren, and X. Y. Hu, “Single longitudinal mode pulse from a TEA CO2 laser by using a three-mirror resonator with a Fabry-Pérot etalon,” Appl. Phys. B 92, 237-241 (2008).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (1)

Y. H. Wang, Y. C. Qu, W. J. Zhao, D. M. Ren, and X. Y. Hu, “Single longitudinal mode pulse from a TEA CO2 laser by using a three-mirror resonator with a Fabry-Pérot etalon,” Appl. Phys. B 92, 237-241 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

J. P. Nicholson and K. S. Lipton, “A tunable stabilized single-mode TEA CO2 laser,” Appl. Phys. Lett. 31, 430-432(1977).
[CrossRef]

IEEE J. Quantum Electron. (3)

C. T. Gross, J. Kiess, and F. Keilmann, “Pulsed high-power far-infrared gas lasers: Performance and spectral survey,” IEEE J. Quantum Electron. QE-23, 377-382 (1987).
[CrossRef]

A. K. Kar, D. M. Tratt, J. H. Mathew, N. R. Heckenberg, and R. G. Harrison, “Status and prospects of hybrid and injection-locked TEA CO2 lasers for lidar and nonlinear optics applications,” IEEE J. Quantum Electron. QE-21, 359-364 (1985).
[CrossRef]

N. P. Barnes and J. C. Barnes, “Injection seeding. I. Theory,” IEEE J. Quantum Electron. 29, 2670-2683 (1993).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Proc. IEEE (1)

P. W. Smith, “Mode selection in lasers,” Proc. IEEE 60, 422-440 (1972).
[CrossRef]

Proc. SPIE (2)

K. Silakhori, A. Behjat, F. Soltanmoradi, M. Montazerolghaem, and R. Sadr, “A compact injection locked single longitudinal mode TEA CO2 laser,” Proc. SPIE 5777, 433-437(2005).
[CrossRef]

O. A. Romanovskii, “Applicability of airborne lidars based on middle IR gas lasers for gas analysis of the atmosphere,” Proc. SPIE 6594, 65940C (2007).
[CrossRef]

Rev. Sci. Instrum. (1)

A. Kumar, J. P. Nilaya, and D. J. Biswas, “Improved efficiency of a hybrid CO2 laser as a result of increased TEM000 mode filling factor,” Rev. Sci. Instrum. 75, 5203-5204(2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the MIC. BS, beam splitter.

Fig. 2
Fig. 2

Calculated result of the resonator: (a) dashed and solid curves correspond to the intensity reflectivity of the MIC and circulating intensity of the laser in a range of ± 5 GHz , respectively. The dotted curve represents the bandwidth of the gain. (b) The dashed curve corresponds to the circulating intensity of the laser without mode selector in a range of ± 500 MHz ; the solid curve, the circulating intensity with the MIC; and the dotted curve, the intensity reflectivity of the MIC.

Fig. 3
Fig. 3

Typical pulse shape when the laser operated without the mode selector.

Fig. 4
Fig. 4

Pulse shape from the laser oscillation with a Michelson cavity.

Fig. 5
Fig. 5

Shape of a SLM laser pulse using the MIC.

Tables (1)

Tables Icon

Table 1 Parameters for MIC Calculation

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

E M = E 0 ( R BS r 2 r 4 δ 2 δ 4 + T BS r 1 r 4 δ 1 δ 4 ) .
r 1 = sin ( k a p b / 2 ) sin ( N k d p / 2 ) ( k a p b / 2 ) sin ( k d p / 2 )
E n = E 0 n = 0 m = 0 n n ! m ! ( n m ) ! ( R BS r 1 r 3 δ 1 δ 3 ) m ( T BS r 2 r 3 δ 2 δ 3 ) n - m .
E n = E 0 1 r 3 δ 3 ( R BS r 1 δ 1 + T BS r 2 δ 2 ) .
E F = E n ( R BS r 1 r 3 δ 1 δ 3 + T BS r 2 r 3 δ 2 δ 3 ) ( T BS r 1 r 4 δ 1 δ 4 + R BS r 2 r 4 δ 2 δ 4 ) .
E R = E M + E F = E 0 r 4 δ 4 [ T BS r 1 δ 1 + R BS r 2 δ 2 r 1 r 2 r 3 δ 1 δ 2 δ 3 ( R BS + T BS ) 2 ] 1 r 3 δ 3 ( R BS r 1 δ 1 + T BS r 2 δ 2 ) .
R = [ R 1 R 2 R 3 2 R BS R 2 R 1 R 3 cos ( δ 1 + δ 3 ) 2 T BS R 1 R 2 R 3 cos ( δ 2 + δ 3 ) + ( R BS R 2 + T BS R 1 ) 2 4 R BS T BS R 1 R 2 sin 2 δ 1 δ 2 2 ] × { 1 - 2 R BS R 1 R 3 cos ( δ 1 + δ 3 ) 2 T BS R 2 R 3 cos ( δ 2 + δ 3 ) + ( R BS R 1 R 3 + T BS R 2 R 3 ) 2 4 R BS T BS R 3 R 1 R 2 sin 2 δ 1 δ 2 2 } 1 ,
E z = E 0 r z 1 r 4 z 1 exp [ 4 π c L 4 i ( z 1 ) / ν ] .
S ( ν ) = E 0 { 1 [ r r 4 exp ( 4 π c L 4 i / ν ) ] z 1 } 1 - r r 4 exp ( 4 π c L 4 i / ν ) .
I ( ν ) = S ( ν ) S ( ν ) * .
π ω 01 2 λ = [ ( L 1 + L 4 ) ( ρ 4 L 1 L 4 ) ] 1 / 2 ,
π ω 02 2 λ = { ( L 2 + L 4 ) ( ρ 2 L 2 L 4 ) ( ρ 4 L 2 L 4 ) ( ρ 2 + ρ 4 L 2 L 4 ) [ 2 ( L 1 + L 4 ) ρ 2 ρ 4 ] 2 } 1 / 2 ,
π ω 03 2 λ = [ ( L 1 + L 3 ) ( ρ 3 L 1 L 3 ) ] 1 / 2 .
L ω = ( L 2 + L 4 ) ( L 2 + L 4 ρ 4 ) 2 ( L 2 + L 4 ) ρ 2 ρ 4 .
L ω = L 2 L 1 .
ρ 2 = L 2 L 1 + ( L 1 + L 4 ) ( ρ 4 L 1 L 4 ) L 2 L 1 ,
ρ 3 = L 1 + L 3 + ( L 1 + L 4 ) ( ρ 4 L 1 L 4 ) L 1 + L 3 .

Metrics