Abstract

Without interruption or affecting the transmission of ordinary payload channels, we propose a real time polarization mode dispersion (PMD) monitoring system for long-haul, multiple erbium-doped fiber amplifier (EDFA), dense wavelength division multiplexing (DWDM) optical fiber transmission using modulated amplified spontaneous emission (ASE) of one of the EDFAs as the supervisory (SV) signal source. An acousto-optic tunable filter (AOTF) at the receiver side is adopted to scan the spectrum of the transmitted ASE SV signal. Using the fixed-analyzer method, PMDs of different wavelength bands that range from 1545  to  1580nm of a DWDM fiber-optic communication system can be found by adaptively changing the radio frequency of the AOTF. The resolution and the measuring range of the proposed monitoring system can be significantly improved by cascading the AOTFs at the receiver side.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Moller and L. Buhl, “Method for PMD vector monitoring in picosecond pulse transmission systems,” J. Lightwave Technol. 19, 1125-1129 (2001).
    [CrossRef]
  2. P. B. Phua, J. M. Fini, and H. A. Haus, “Real-time first- and second-order PMD characterization using averaged state-of-polarization of filtered signal and polarization scrambling,” J. Lightwave Technol. 21, 982-989 (2003).
    [CrossRef]
  3. C. D. Poole and D. L. Favin, “Polarization-mode dispersion measurements based on transmission spectra through a polarizer,” J. Lightwave Technol. 12, 917-929 (1994).
    [CrossRef]
  4. R. Noe, D. Sandel, V. Mirvoda, F. Wust, and S. Hinz, “Polarization mode dispersion detected by arrival time measurement of polarization-scrambled light,” J. Lightwave Technol. 20, 229-235 (2002).
    [CrossRef]
  5. S. M. Nezam, J. E. McGeehan, and A. E. Willner, “Theoretical and experimental analysis of the dependence of a signal's degree of polarization on the optical data spectrum,” J. Lightwave Technol. 22, 763-771 (2004).
    [CrossRef]
  6. Y. Namihira, T. Kawazawa, and H. Wakabayashi, “Polarization mode dispersion measurements in 1520 km EDFA,” Electron. Lett. 28, 881-883 (1992).
    [CrossRef]
  7. Y. Namihira and J. Maeda, “Comparison of various polarization mode dispersion measurement methods in optical fiber,” Electron. Lett. 28, 2265-2266 (1992).
    [CrossRef]
  8. K. Shimizu, T. Mizuochi, and T. Kitayama, “Supervisory signal transmission experiments over 10000 km by modulated ASE of EDFAs,” Electron. Lett. 29, 1081-1083 (1993).
    [CrossRef]
  9. P. Wysocki and V. Mazurczyk, “Polarization dependent gain in erbium-doped fiber amplifiers: computer model and approximate formulas,” J. Lightwave Technol. 14, 572-584 (1996).
    [CrossRef]
  10. S. Novak and A. Moesle, “Analytic model for gain modulation in EDFAs,” J. Lightwave Technol. 20, 975-985 (2002).
    [CrossRef]
  11. M. Petersson, H. Sunnerud, M. Karlsson, and B. E. Olsson, “Performance monitoring in optical networks using Stokes parameters,” IEEE Photonics Technol. Lett. 16, 686-688(2004).
    [CrossRef]
  12. R. W. Dixon, “Acoustic diffraction of light in anisotropic media,” IEEE J. Quantum Electron. 3, 85-93 (1967).
    [CrossRef]
  13. P. P. Banerjee, D. Cao, and T. C. Poon, “Basic image processing operations using acousto-optics,” Appl. Opt. 36, 3086-3089(1997).
    [CrossRef] [PubMed]
  14. C. W. Tarn, P. P. Banerjee, and A. Korpel, “Two-dimensional strong, acoustooptic interaction between arbitrary light and sound profiles: a Fourier transform approach,” Opt. Commun. 104, 141-148 (1993).
    [CrossRef]
  15. A. Korpel, P. P. Banerjee, and C. W. Tarn, “A unified treatment of spectral formalism of light propagation and their application to acoustooptics,” Opt. Commun. 97, 250-258 (1993).
    [CrossRef]
  16. T. C. Poon and Y. Qi, “Novel real-time joint-transform correlation by use of acousto-optic heterodyning,” Appl. Opt. 42, 4663-4669 (2003).
    [CrossRef] [PubMed]
  17. C. W. Tarn, “Spatial Fourier transform approach to the study polarization changing and beam profile deformation of light during Bragg acousto-optic interaction with longitudinal and shear ultrasonic waves in isotropic media,” J. Opt. Soc. Am. A 14, 2231-2242 (1997).
    [CrossRef]
  18. C. W. Tarn, “Spatial coherence property of a laser beam during acousto-optic diffraction,” J. Opt. Soc. Am. A 16, 1395-1401(1999).
    [CrossRef]
  19. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984), Chap. 10.
  20. P. Hernday, “Dispersion measurements,” in Fiber Optic Test and Measurement, D. Derickson, ed. (Prentice Hall, 1998), Chap. 12.
  21. C. D. Poole and D. L. Favin, “Polarization-mode dispersion measurements based on transmission spectra through a polarizer,” J. Lightwave Technol. 12, 917-929 (1994).
    [CrossRef]

2004 (2)

S. M. Nezam, J. E. McGeehan, and A. E. Willner, “Theoretical and experimental analysis of the dependence of a signal's degree of polarization on the optical data spectrum,” J. Lightwave Technol. 22, 763-771 (2004).
[CrossRef]

M. Petersson, H. Sunnerud, M. Karlsson, and B. E. Olsson, “Performance monitoring in optical networks using Stokes parameters,” IEEE Photonics Technol. Lett. 16, 686-688(2004).
[CrossRef]

2003 (2)

2002 (2)

2001 (1)

1999 (1)

1997 (2)

1996 (1)

P. Wysocki and V. Mazurczyk, “Polarization dependent gain in erbium-doped fiber amplifiers: computer model and approximate formulas,” J. Lightwave Technol. 14, 572-584 (1996).
[CrossRef]

1994 (2)

C. D. Poole and D. L. Favin, “Polarization-mode dispersion measurements based on transmission spectra through a polarizer,” J. Lightwave Technol. 12, 917-929 (1994).
[CrossRef]

C. D. Poole and D. L. Favin, “Polarization-mode dispersion measurements based on transmission spectra through a polarizer,” J. Lightwave Technol. 12, 917-929 (1994).
[CrossRef]

1993 (3)

C. W. Tarn, P. P. Banerjee, and A. Korpel, “Two-dimensional strong, acoustooptic interaction between arbitrary light and sound profiles: a Fourier transform approach,” Opt. Commun. 104, 141-148 (1993).
[CrossRef]

A. Korpel, P. P. Banerjee, and C. W. Tarn, “A unified treatment of spectral formalism of light propagation and their application to acoustooptics,” Opt. Commun. 97, 250-258 (1993).
[CrossRef]

K. Shimizu, T. Mizuochi, and T. Kitayama, “Supervisory signal transmission experiments over 10000 km by modulated ASE of EDFAs,” Electron. Lett. 29, 1081-1083 (1993).
[CrossRef]

1992 (2)

Y. Namihira, T. Kawazawa, and H. Wakabayashi, “Polarization mode dispersion measurements in 1520 km EDFA,” Electron. Lett. 28, 881-883 (1992).
[CrossRef]

Y. Namihira and J. Maeda, “Comparison of various polarization mode dispersion measurement methods in optical fiber,” Electron. Lett. 28, 2265-2266 (1992).
[CrossRef]

1967 (1)

R. W. Dixon, “Acoustic diffraction of light in anisotropic media,” IEEE J. Quantum Electron. 3, 85-93 (1967).
[CrossRef]

Banerjee, P. P.

P. P. Banerjee, D. Cao, and T. C. Poon, “Basic image processing operations using acousto-optics,” Appl. Opt. 36, 3086-3089(1997).
[CrossRef] [PubMed]

A. Korpel, P. P. Banerjee, and C. W. Tarn, “A unified treatment of spectral formalism of light propagation and their application to acoustooptics,” Opt. Commun. 97, 250-258 (1993).
[CrossRef]

C. W. Tarn, P. P. Banerjee, and A. Korpel, “Two-dimensional strong, acoustooptic interaction between arbitrary light and sound profiles: a Fourier transform approach,” Opt. Commun. 104, 141-148 (1993).
[CrossRef]

Buhl, L.

Cao, D.

Dixon, R. W.

R. W. Dixon, “Acoustic diffraction of light in anisotropic media,” IEEE J. Quantum Electron. 3, 85-93 (1967).
[CrossRef]

Favin, D. L.

C. D. Poole and D. L. Favin, “Polarization-mode dispersion measurements based on transmission spectra through a polarizer,” J. Lightwave Technol. 12, 917-929 (1994).
[CrossRef]

C. D. Poole and D. L. Favin, “Polarization-mode dispersion measurements based on transmission spectra through a polarizer,” J. Lightwave Technol. 12, 917-929 (1994).
[CrossRef]

Fini, J. M.

Haus, H. A.

Hernday, P.

P. Hernday, “Dispersion measurements,” in Fiber Optic Test and Measurement, D. Derickson, ed. (Prentice Hall, 1998), Chap. 12.

Hinz, S.

Karlsson, M.

M. Petersson, H. Sunnerud, M. Karlsson, and B. E. Olsson, “Performance monitoring in optical networks using Stokes parameters,” IEEE Photonics Technol. Lett. 16, 686-688(2004).
[CrossRef]

Kawazawa, T.

Y. Namihira, T. Kawazawa, and H. Wakabayashi, “Polarization mode dispersion measurements in 1520 km EDFA,” Electron. Lett. 28, 881-883 (1992).
[CrossRef]

Kitayama, T.

K. Shimizu, T. Mizuochi, and T. Kitayama, “Supervisory signal transmission experiments over 10000 km by modulated ASE of EDFAs,” Electron. Lett. 29, 1081-1083 (1993).
[CrossRef]

Korpel, A.

C. W. Tarn, P. P. Banerjee, and A. Korpel, “Two-dimensional strong, acoustooptic interaction between arbitrary light and sound profiles: a Fourier transform approach,” Opt. Commun. 104, 141-148 (1993).
[CrossRef]

A. Korpel, P. P. Banerjee, and C. W. Tarn, “A unified treatment of spectral formalism of light propagation and their application to acoustooptics,” Opt. Commun. 97, 250-258 (1993).
[CrossRef]

Maeda, J.

Y. Namihira and J. Maeda, “Comparison of various polarization mode dispersion measurement methods in optical fiber,” Electron. Lett. 28, 2265-2266 (1992).
[CrossRef]

Mazurczyk, V.

P. Wysocki and V. Mazurczyk, “Polarization dependent gain in erbium-doped fiber amplifiers: computer model and approximate formulas,” J. Lightwave Technol. 14, 572-584 (1996).
[CrossRef]

McGeehan, J. E.

Mirvoda, V.

Mizuochi, T.

K. Shimizu, T. Mizuochi, and T. Kitayama, “Supervisory signal transmission experiments over 10000 km by modulated ASE of EDFAs,” Electron. Lett. 29, 1081-1083 (1993).
[CrossRef]

Moesle, A.

Moller, L.

Namihira, Y.

Y. Namihira and J. Maeda, “Comparison of various polarization mode dispersion measurement methods in optical fiber,” Electron. Lett. 28, 2265-2266 (1992).
[CrossRef]

Y. Namihira, T. Kawazawa, and H. Wakabayashi, “Polarization mode dispersion measurements in 1520 km EDFA,” Electron. Lett. 28, 881-883 (1992).
[CrossRef]

Nezam, S. M.

Noe, R.

Novak, S.

Olsson, B. E.

M. Petersson, H. Sunnerud, M. Karlsson, and B. E. Olsson, “Performance monitoring in optical networks using Stokes parameters,” IEEE Photonics Technol. Lett. 16, 686-688(2004).
[CrossRef]

Petersson, M.

M. Petersson, H. Sunnerud, M. Karlsson, and B. E. Olsson, “Performance monitoring in optical networks using Stokes parameters,” IEEE Photonics Technol. Lett. 16, 686-688(2004).
[CrossRef]

Phua, P. B.

Poole, C. D.

C. D. Poole and D. L. Favin, “Polarization-mode dispersion measurements based on transmission spectra through a polarizer,” J. Lightwave Technol. 12, 917-929 (1994).
[CrossRef]

C. D. Poole and D. L. Favin, “Polarization-mode dispersion measurements based on transmission spectra through a polarizer,” J. Lightwave Technol. 12, 917-929 (1994).
[CrossRef]

Poon, T. C.

Qi, Y.

Sandel, D.

Shimizu, K.

K. Shimizu, T. Mizuochi, and T. Kitayama, “Supervisory signal transmission experiments over 10000 km by modulated ASE of EDFAs,” Electron. Lett. 29, 1081-1083 (1993).
[CrossRef]

Sunnerud, H.

M. Petersson, H. Sunnerud, M. Karlsson, and B. E. Olsson, “Performance monitoring in optical networks using Stokes parameters,” IEEE Photonics Technol. Lett. 16, 686-688(2004).
[CrossRef]

Tarn, C. W.

C. W. Tarn, “Spatial coherence property of a laser beam during acousto-optic diffraction,” J. Opt. Soc. Am. A 16, 1395-1401(1999).
[CrossRef]

C. W. Tarn, “Spatial Fourier transform approach to the study polarization changing and beam profile deformation of light during Bragg acousto-optic interaction with longitudinal and shear ultrasonic waves in isotropic media,” J. Opt. Soc. Am. A 14, 2231-2242 (1997).
[CrossRef]

A. Korpel, P. P. Banerjee, and C. W. Tarn, “A unified treatment of spectral formalism of light propagation and their application to acoustooptics,” Opt. Commun. 97, 250-258 (1993).
[CrossRef]

C. W. Tarn, P. P. Banerjee, and A. Korpel, “Two-dimensional strong, acoustooptic interaction between arbitrary light and sound profiles: a Fourier transform approach,” Opt. Commun. 104, 141-148 (1993).
[CrossRef]

Wakabayashi, H.

Y. Namihira, T. Kawazawa, and H. Wakabayashi, “Polarization mode dispersion measurements in 1520 km EDFA,” Electron. Lett. 28, 881-883 (1992).
[CrossRef]

Willner, A. E.

Wust, F.

Wysocki, P.

P. Wysocki and V. Mazurczyk, “Polarization dependent gain in erbium-doped fiber amplifiers: computer model and approximate formulas,” J. Lightwave Technol. 14, 572-584 (1996).
[CrossRef]

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984), Chap. 10.

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984), Chap. 10.

Electron. Lett. (1)

K. Shimizu, T. Mizuochi, and T. Kitayama, “Supervisory signal transmission experiments over 10000 km by modulated ASE of EDFAs,” Electron. Lett. 29, 1081-1083 (1993).
[CrossRef]

Appl. Opt. (2)

Electron. Lett. (2)

Y. Namihira, T. Kawazawa, and H. Wakabayashi, “Polarization mode dispersion measurements in 1520 km EDFA,” Electron. Lett. 28, 881-883 (1992).
[CrossRef]

Y. Namihira and J. Maeda, “Comparison of various polarization mode dispersion measurement methods in optical fiber,” Electron. Lett. 28, 2265-2266 (1992).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. W. Dixon, “Acoustic diffraction of light in anisotropic media,” IEEE J. Quantum Electron. 3, 85-93 (1967).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

M. Petersson, H. Sunnerud, M. Karlsson, and B. E. Olsson, “Performance monitoring in optical networks using Stokes parameters,” IEEE Photonics Technol. Lett. 16, 686-688(2004).
[CrossRef]

J. Lightwave Technol. (8)

P. Wysocki and V. Mazurczyk, “Polarization dependent gain in erbium-doped fiber amplifiers: computer model and approximate formulas,” J. Lightwave Technol. 14, 572-584 (1996).
[CrossRef]

S. Novak and A. Moesle, “Analytic model for gain modulation in EDFAs,” J. Lightwave Technol. 20, 975-985 (2002).
[CrossRef]

L. Moller and L. Buhl, “Method for PMD vector monitoring in picosecond pulse transmission systems,” J. Lightwave Technol. 19, 1125-1129 (2001).
[CrossRef]

P. B. Phua, J. M. Fini, and H. A. Haus, “Real-time first- and second-order PMD characterization using averaged state-of-polarization of filtered signal and polarization scrambling,” J. Lightwave Technol. 21, 982-989 (2003).
[CrossRef]

C. D. Poole and D. L. Favin, “Polarization-mode dispersion measurements based on transmission spectra through a polarizer,” J. Lightwave Technol. 12, 917-929 (1994).
[CrossRef]

R. Noe, D. Sandel, V. Mirvoda, F. Wust, and S. Hinz, “Polarization mode dispersion detected by arrival time measurement of polarization-scrambled light,” J. Lightwave Technol. 20, 229-235 (2002).
[CrossRef]

S. M. Nezam, J. E. McGeehan, and A. E. Willner, “Theoretical and experimental analysis of the dependence of a signal's degree of polarization on the optical data spectrum,” J. Lightwave Technol. 22, 763-771 (2004).
[CrossRef]

C. D. Poole and D. L. Favin, “Polarization-mode dispersion measurements based on transmission spectra through a polarizer,” J. Lightwave Technol. 12, 917-929 (1994).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Commun. (2)

C. W. Tarn, P. P. Banerjee, and A. Korpel, “Two-dimensional strong, acoustooptic interaction between arbitrary light and sound profiles: a Fourier transform approach,” Opt. Commun. 104, 141-148 (1993).
[CrossRef]

A. Korpel, P. P. Banerjee, and C. W. Tarn, “A unified treatment of spectral formalism of light propagation and their application to acoustooptics,” Opt. Commun. 97, 250-258 (1993).
[CrossRef]

Other (2)

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984), Chap. 10.

P. Hernday, “Dispersion measurements,” in Fiber Optic Test and Measurement, D. Derickson, ed. (Prentice Hall, 1998), Chap. 12.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Setup of the proposed method.

Fig. 2
Fig. 2

Twelve points of the Poincaré sphere for measurement.

Fig. 3
Fig. 3

Illustration of the effect of PDL, which attenuates ASE power.

Fig. 4
Fig. 4

Configuration of the experimental setup.

Fig. 5
Fig. 5

Power spectrum of the ASE with a SOP (a) orthogonal to the signal and (b) the same to the signal.

Fig. 6
Fig. 6

(a) Power of the ASE with a SOP orthogonal to the signal. (b) Power of the ASE with the same SOP to the signal. The measured wavelength is 1550 nm

Fig. 7
Fig. 7

ASE measurement results of (a) simulation, (b) experiment, (c) using an optical spectrum for 1 m PM fiber.

Tables (1)

Tables Icon

Table 1 Specifications of the System of Two Cascading AOTFs

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P sig + P ASE = const ,
ϕ ASE ( ϕ pump , p ¯ , ω c ) { A ( ϕ pump , ω c ) if ϕ pump < ϕ saturation A ( ϕ pump , ω c ) + δ ( ω c ) p ¯ o · p ¯ [ 1 + m a cos ( ω r t ) ] if ϕ pump > ϕ saturation ,
G ( ϕ pump , ω c ) { G ( ϕ pump , ω c ) [ 1 + m g cos ( ω r t ) ] if ϕ pump < ϕ saturation G ( ϕ pump , ω c ) if ϕ pump > ϕ saturation ,
T ( ω ) = P out P in = 1 2 [ 1 + s ¯ · p ¯ p ] ,
T ( ω ) = P fixed P max 1 2 { 1 + δ m cos ( ω r t ) [ T ¯ a ( ω ) p ¯ o ] · p ¯ fixed } ,
T AOTF = sin 2 [ 0.5 π α 1 + ( i Δ β L / π ) 2 ] 1 + ( Δ β L / π ) 2 ,
Δ β ( λ ) = 2 π λ ( n d sin ( θ d ) n i sin ( θ i ) ) - K = 2 π λ C - K ,
T AOTF ( λ , K 1 , K 2 ) = sin 2 [ 0.5 π α 1 + ( ( 2 π λ C - K 1 ) L / π ) 2 ] 1 + ( ( 2 π λ C - K 1 ) L / π ) 2 sin 2 [ 0.5 π α 1 + ( ( 2 π λ C - K 2 ) L / π ) 2 ] 1 + ( ( 2 π λ C - K 2 ) L / π ) 2 ,
Δ τ 0.824 π N e Δ ω ,

Metrics