Abstract

This work aims to advance understanding of the coupling between temperature and soot. The ability to image temperature using the two-line atomic fluorescence (TLAF) technique is demonstrated. Previous TLAF theory is extended from linear excitation into the nonlinear fluence regime. Nonlinear regime two-line atomic fluorescence (NTLAF) provides superior signal and reduces single-shot uncertainty from 250K for conventional TLAF down to 100K. NTLAF is shown to resolve the temperature profile across the stoichiometric envelope for hydrogen, ethylene, and natural gas flames, with deviation from thermocouple measurements not exceeding 100K, and typically 30K. Measurements in flames containing soot demonstrate good capacity of NTLAF to exclude interferences that hamper most two-dimensional thermometry techniques.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Delichatsios, J. De Ris, and L. Orloff, “An enhanced flame radiation burner,” Proc. Combust. Inst. 24, 1075-1082 (1992).
  2. C. R. Shaddix and T. C. Williams, “Soot: giver and taker of light,” Am. Sci. 95, 232-239 (2007).
  3. Z. A. Mansurov, “Soot formation in combustion processes,” Combust. Explos. Shock Waves (English translation) 41, 727-744 (2005).
    [CrossRef]
  4. D. W. Dockery and P. H. Stone, “Cardiovascular risks from fine particulate air pollution,” N. Engl. J. Med. 356, 511-513 (2007).
    [CrossRef] [PubMed]
  5. K. A. Miller, D. S. Siscovick, L. Sheppard, K. Shepherd, J. H. Sullivan, G. L. Anderson, and J. D. Kaufman, “Long-term exposure to air pollution and incidence of cardiovascular events in women,” N. Engl. J. Med. 356, 447-458 (2007).
    [CrossRef] [PubMed]
  6. R. M. Frinstrom and A. A. Westenberg, Flame Structure (McGraw-Hill, 1965).
  7. K. Kohse-Höinghaus and J. B. Jeffries, Applied Combustion Diagnostics (Taylor & Francis, 2002).
  8. A. T. Hartlieb, B. Atakan, and K. Kohse-Höinghaus, “Temperature measurement in fuel-rich non-sooting low pressure hydrocarbon flames,” Appl. Phys. B 70, 435-445 (2000).
    [CrossRef]
  9. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, 1996).
  10. D. Hoffman, K.-U. Münch, and A. Leipertz, “Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering,” Opt. Lett. 21, 525-527 (1996).
    [CrossRef] [PubMed]
  11. D. Hofmann and A. Leipertz, “Temperature field measurements in a sooting flame by filtered Rayleigh scattering (FRS),” Proc. Combust. Inst. 26, 945-950 (1996).
  12. S. P. Kearney, R. W. Schefer, S. J. Beresh, and T. W. Grasser, “Temperature imaging in nonpremixed flames by joint filtered Rayleigh and Raman scattering,” Appl. Opt. 44, 1548-1558(2005).
    [CrossRef] [PubMed]
  13. M. Afzelius, P.-E. Bengtsson, J. Bood, C. Brackmann, and A. Kurtz, “Development of multipoint vibrational coherent anti-Stokes Raman spectroscopy for flame applications,” Appl. Opt. 45, 1177-1186 (2006).
    [CrossRef] [PubMed]
  14. R. Cattolica, “OH rotational temperature from two-line laser-excited fluorescence,” Appl. Opt. 20, 1156-1166 (1981).
    [CrossRef] [PubMed]
  15. W. Qin, Y.-L. Chen, and J. W. L. Lewis, “Time-resolved temperature images of laser-ignition using OH two-line laser-induced fluorescence (LIF) thermometry,” Tech. Rep. Article Number 200508, IFRF Combustion Journal (2005).
  16. J. M. Seitzman, R. K. Hanson, P. A. DeBarber, and C. F. Hess, “Application of quantitative two-line OH planar laser-induced fluorescence for temporally resolved planar thermometry in reacting flows,” Appl. Opt. 33, 4000-4012 (1994).
    [CrossRef] [PubMed]
  17. J. Nygren, J. Engström, J. Walewski, C. F. Kaminski, and M. Aldén, “Applications and evaluation of two-line atomic LIF thermometry in sooting combustion environments,” Meas. Sci. Technol. 12, 1294-1303 (2001).
    [CrossRef]
  18. M. Haudiquert, A. Cessou, D. Stepowski, and A. Coppalle, “OH and soot concentration measurements in a high-temperature laminar diffusion flame,” Combust. Flame 111, 338-349 (1997).
    [CrossRef]
  19. M. Tamura, J. Luque, J. E. Harrington, P. A. Berg, G. P. Smith, J. B. Jeffries, and D. R. Crosley, “Laser-induced fluorescence of seeded nitric oxide as a flame thermometer,” Appl. Phys. B 66, 503-510 (1998).
    [CrossRef]
  20. W. G. Bessler, F. Hildenbrand, and C. Schulz, “Two-line laser-induced fluorescence imaging of vibrational temperatures in a NO-seeded flame,” Appl. Opt. 40, 748-756 (2001).
    [CrossRef]
  21. H. Kronemayer, P. Ifeacho, C. Hecht, T. Dreier, H. Wiggers, and C. Schulz, “Gas-temperature imaging in a low-pressure flame reactor for nano-particle synthesis with multi-line NO-LIF thermometry,” Appl. Phys. B 88, 373-377 (2007).
    [CrossRef]
  22. T. Lee, J. B. Jeffries, and R. K. Hanson, “Experimental evaluation of strategies for quantitative laser-induced fluorescence imaging of nitric oxide in high-pressure flames (1-60 bar),” Proc. Combust. Inst. 31, 757-764 (2007).
    [CrossRef]
  23. B. Atakan and A. T. Hartlieb, “Laser diagnostics of NO reburning in fuel-rich propene flames,” Appl. Phys. B 71, 697-702 (2000).
    [CrossRef]
  24. M. Aldén, P. Grafström, H. Lundberg, and S. Svanberg, “Spatially resolved temperature measurements in a flame using laser-excited two-line atomic fluorescence and diode-array detection,” Opt. Lett. 8, 241-243 (1983).
    [CrossRef] [PubMed]
  25. R. G. Joklik and J. W. Daily, “Two-line atomic fluorescence temperature measurement in flames: an experimental study,” Appl. Opt. 21, 4158-4162 (1982).
    [CrossRef] [PubMed]
  26. H. Haraguchi and J. D. Winefordner, “Flame diagnostics: local temperature profiles and atomic fluorescence intensity profiles in air-acetylene flames,” Appl. Spectrosc. 31, 195-200(1977).
    [CrossRef]
  27. J. Engström, J. Nygren, M. Aldén, and C. F. Kaminski, “Two-line atomic fluorescence as a temperature probe for highly sooting flames,” Opt. Lett. 25, 1469-1471 (2000).
    [CrossRef]
  28. H. Haraguchi, B. Smith, S. Weeks, D. J. Johnson, and J. D. Winefordner, “Measurement of small volume flame temperatures by the two-line atomic fluorescence method,” Appl. Spectrosc. 31, 156-163 (1977).
    [CrossRef]
  29. C. F. Kaminski, J. Engström, and M. Aldén, “Quasi-instantaneous two-dimensional temperature measurements in a spark ignition engine using 2-line atomic fluorescence,” Proc. Combust. Inst. 27, 85-93 (1998).
  30. C. T. J. Alkemade, “A theoretical discussion on some aspects of atomic fluorescence spectroscopy in flames,” Pure Appl. Chem. 23, 73-98 (1970).
    [CrossRef]
  31. J. E. Dec and J. O. Keller, “High speed thermometry using two-line atomic fluorescence,” Proc. Combust. Inst. 21, 1737-1745 (1986).
  32. J. Hult, I. S. Burns, and C. F. Kaminski, “Two-line atomic fluorescence flame thermometry using diode lasers,” Proc. Combust. Inst. 30, 1535-1543 (2005).
    [CrossRef]
  33. I. S. Burns, J. Hult, and C. F. Kaminski, “Spectroscopic use of a novel blue diode laser in a wavelength region around 450 nm,” Appl. Phys. B 79, 491-495 (2004).
    [CrossRef]
  34. I. S. Burns, J. Hult, G. Hartung, and C. F. Kaminski, “A thermometry technique based on atomic lineshapes using diode laser LIF in flames,” Proc. Combust. Inst. 31, 775-782(2007).
    [CrossRef]
  35. J. E. Sansonetti and W. C. Martin, “Handbook of basic atomic spectroscopic data,” J. Phys. Chem. Ref. Data 34, 1559-2259(2005).
    [CrossRef]
  36. R. K. Winge, V. A. Fassel, and R. N. Kniseley, “Direct nebulization of metal samples for flame atomic-emission and absorption spectroscopy,” Appl. Spectrosc. 25, 636-642(1971).
    [CrossRef]
  37. P. A. Bonczyk, “Effects of metal additives on soot precursors and particulates in a C2H4/O22/N2/Ar premixed flame,” Fuel 70, 1403-1411 (1991).
    [CrossRef]
  38. U. Wieschnowsky, H. Bockhorn, and F. Fetting, “Some new observations concerning the mass growth of soot in premixed hydrocarbons-oxygen flames,” Proc. Combust. Inst. 22, 343-352 (1988).
  39. B. S. Haynes, H. Jander, and H. G. Wagner, “The effect of metal additives on the formation of soot in premixed flames,” Proc. Combust. Inst. 17, 1365-1374 (1979).
  40. J. A. Dean and T. C. Rains, Flame Emission and Atomic Absorption Spectrometry (Marcel Dekker, 1969), Vol. 1.

2007 (6)

D. W. Dockery and P. H. Stone, “Cardiovascular risks from fine particulate air pollution,” N. Engl. J. Med. 356, 511-513 (2007).
[CrossRef] [PubMed]

K. A. Miller, D. S. Siscovick, L. Sheppard, K. Shepherd, J. H. Sullivan, G. L. Anderson, and J. D. Kaufman, “Long-term exposure to air pollution and incidence of cardiovascular events in women,” N. Engl. J. Med. 356, 447-458 (2007).
[CrossRef] [PubMed]

C. R. Shaddix and T. C. Williams, “Soot: giver and taker of light,” Am. Sci. 95, 232-239 (2007).

H. Kronemayer, P. Ifeacho, C. Hecht, T. Dreier, H. Wiggers, and C. Schulz, “Gas-temperature imaging in a low-pressure flame reactor for nano-particle synthesis with multi-line NO-LIF thermometry,” Appl. Phys. B 88, 373-377 (2007).
[CrossRef]

T. Lee, J. B. Jeffries, and R. K. Hanson, “Experimental evaluation of strategies for quantitative laser-induced fluorescence imaging of nitric oxide in high-pressure flames (1-60 bar),” Proc. Combust. Inst. 31, 757-764 (2007).
[CrossRef]

I. S. Burns, J. Hult, G. Hartung, and C. F. Kaminski, “A thermometry technique based on atomic lineshapes using diode laser LIF in flames,” Proc. Combust. Inst. 31, 775-782(2007).
[CrossRef]

2006 (1)

2005 (4)

Z. A. Mansurov, “Soot formation in combustion processes,” Combust. Explos. Shock Waves (English translation) 41, 727-744 (2005).
[CrossRef]

S. P. Kearney, R. W. Schefer, S. J. Beresh, and T. W. Grasser, “Temperature imaging in nonpremixed flames by joint filtered Rayleigh and Raman scattering,” Appl. Opt. 44, 1548-1558(2005).
[CrossRef] [PubMed]

J. E. Sansonetti and W. C. Martin, “Handbook of basic atomic spectroscopic data,” J. Phys. Chem. Ref. Data 34, 1559-2259(2005).
[CrossRef]

J. Hult, I. S. Burns, and C. F. Kaminski, “Two-line atomic fluorescence flame thermometry using diode lasers,” Proc. Combust. Inst. 30, 1535-1543 (2005).
[CrossRef]

2004 (1)

I. S. Burns, J. Hult, and C. F. Kaminski, “Spectroscopic use of a novel blue diode laser in a wavelength region around 450 nm,” Appl. Phys. B 79, 491-495 (2004).
[CrossRef]

2001 (2)

W. G. Bessler, F. Hildenbrand, and C. Schulz, “Two-line laser-induced fluorescence imaging of vibrational temperatures in a NO-seeded flame,” Appl. Opt. 40, 748-756 (2001).
[CrossRef]

J. Nygren, J. Engström, J. Walewski, C. F. Kaminski, and M. Aldén, “Applications and evaluation of two-line atomic LIF thermometry in sooting combustion environments,” Meas. Sci. Technol. 12, 1294-1303 (2001).
[CrossRef]

2000 (3)

B. Atakan and A. T. Hartlieb, “Laser diagnostics of NO reburning in fuel-rich propene flames,” Appl. Phys. B 71, 697-702 (2000).
[CrossRef]

A. T. Hartlieb, B. Atakan, and K. Kohse-Höinghaus, “Temperature measurement in fuel-rich non-sooting low pressure hydrocarbon flames,” Appl. Phys. B 70, 435-445 (2000).
[CrossRef]

J. Engström, J. Nygren, M. Aldén, and C. F. Kaminski, “Two-line atomic fluorescence as a temperature probe for highly sooting flames,” Opt. Lett. 25, 1469-1471 (2000).
[CrossRef]

1998 (2)

M. Tamura, J. Luque, J. E. Harrington, P. A. Berg, G. P. Smith, J. B. Jeffries, and D. R. Crosley, “Laser-induced fluorescence of seeded nitric oxide as a flame thermometer,” Appl. Phys. B 66, 503-510 (1998).
[CrossRef]

C. F. Kaminski, J. Engström, and M. Aldén, “Quasi-instantaneous two-dimensional temperature measurements in a spark ignition engine using 2-line atomic fluorescence,” Proc. Combust. Inst. 27, 85-93 (1998).

1997 (1)

M. Haudiquert, A. Cessou, D. Stepowski, and A. Coppalle, “OH and soot concentration measurements in a high-temperature laminar diffusion flame,” Combust. Flame 111, 338-349 (1997).
[CrossRef]

1996 (2)

D. Hoffman, K.-U. Münch, and A. Leipertz, “Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering,” Opt. Lett. 21, 525-527 (1996).
[CrossRef] [PubMed]

D. Hofmann and A. Leipertz, “Temperature field measurements in a sooting flame by filtered Rayleigh scattering (FRS),” Proc. Combust. Inst. 26, 945-950 (1996).

1994 (1)

1992 (1)

M. A. Delichatsios, J. De Ris, and L. Orloff, “An enhanced flame radiation burner,” Proc. Combust. Inst. 24, 1075-1082 (1992).

1991 (1)

P. A. Bonczyk, “Effects of metal additives on soot precursors and particulates in a C2H4/O22/N2/Ar premixed flame,” Fuel 70, 1403-1411 (1991).
[CrossRef]

1988 (1)

U. Wieschnowsky, H. Bockhorn, and F. Fetting, “Some new observations concerning the mass growth of soot in premixed hydrocarbons-oxygen flames,” Proc. Combust. Inst. 22, 343-352 (1988).

1986 (1)

J. E. Dec and J. O. Keller, “High speed thermometry using two-line atomic fluorescence,” Proc. Combust. Inst. 21, 1737-1745 (1986).

1983 (1)

1982 (1)

1981 (1)

1979 (1)

B. S. Haynes, H. Jander, and H. G. Wagner, “The effect of metal additives on the formation of soot in premixed flames,” Proc. Combust. Inst. 17, 1365-1374 (1979).

1977 (2)

1971 (1)

1970 (1)

C. T. J. Alkemade, “A theoretical discussion on some aspects of atomic fluorescence spectroscopy in flames,” Pure Appl. Chem. 23, 73-98 (1970).
[CrossRef]

Afzelius, M.

Aldén, M.

J. Nygren, J. Engström, J. Walewski, C. F. Kaminski, and M. Aldén, “Applications and evaluation of two-line atomic LIF thermometry in sooting combustion environments,” Meas. Sci. Technol. 12, 1294-1303 (2001).
[CrossRef]

J. Engström, J. Nygren, M. Aldén, and C. F. Kaminski, “Two-line atomic fluorescence as a temperature probe for highly sooting flames,” Opt. Lett. 25, 1469-1471 (2000).
[CrossRef]

C. F. Kaminski, J. Engström, and M. Aldén, “Quasi-instantaneous two-dimensional temperature measurements in a spark ignition engine using 2-line atomic fluorescence,” Proc. Combust. Inst. 27, 85-93 (1998).

M. Aldén, P. Grafström, H. Lundberg, and S. Svanberg, “Spatially resolved temperature measurements in a flame using laser-excited two-line atomic fluorescence and diode-array detection,” Opt. Lett. 8, 241-243 (1983).
[CrossRef] [PubMed]

Alkemade, C. T. J.

C. T. J. Alkemade, “A theoretical discussion on some aspects of atomic fluorescence spectroscopy in flames,” Pure Appl. Chem. 23, 73-98 (1970).
[CrossRef]

Anderson, G. L.

K. A. Miller, D. S. Siscovick, L. Sheppard, K. Shepherd, J. H. Sullivan, G. L. Anderson, and J. D. Kaufman, “Long-term exposure to air pollution and incidence of cardiovascular events in women,” N. Engl. J. Med. 356, 447-458 (2007).
[CrossRef] [PubMed]

Atakan, B.

A. T. Hartlieb, B. Atakan, and K. Kohse-Höinghaus, “Temperature measurement in fuel-rich non-sooting low pressure hydrocarbon flames,” Appl. Phys. B 70, 435-445 (2000).
[CrossRef]

B. Atakan and A. T. Hartlieb, “Laser diagnostics of NO reburning in fuel-rich propene flames,” Appl. Phys. B 71, 697-702 (2000).
[CrossRef]

Bengtsson, P.-E.

Beresh, S. J.

Berg, P. A.

M. Tamura, J. Luque, J. E. Harrington, P. A. Berg, G. P. Smith, J. B. Jeffries, and D. R. Crosley, “Laser-induced fluorescence of seeded nitric oxide as a flame thermometer,” Appl. Phys. B 66, 503-510 (1998).
[CrossRef]

Bessler, W. G.

Bockhorn, H.

U. Wieschnowsky, H. Bockhorn, and F. Fetting, “Some new observations concerning the mass growth of soot in premixed hydrocarbons-oxygen flames,” Proc. Combust. Inst. 22, 343-352 (1988).

Bonczyk, P. A.

P. A. Bonczyk, “Effects of metal additives on soot precursors and particulates in a C2H4/O22/N2/Ar premixed flame,” Fuel 70, 1403-1411 (1991).
[CrossRef]

Bood, J.

Brackmann, C.

Burns, I. S.

I. S. Burns, J. Hult, G. Hartung, and C. F. Kaminski, “A thermometry technique based on atomic lineshapes using diode laser LIF in flames,” Proc. Combust. Inst. 31, 775-782(2007).
[CrossRef]

J. Hult, I. S. Burns, and C. F. Kaminski, “Two-line atomic fluorescence flame thermometry using diode lasers,” Proc. Combust. Inst. 30, 1535-1543 (2005).
[CrossRef]

I. S. Burns, J. Hult, and C. F. Kaminski, “Spectroscopic use of a novel blue diode laser in a wavelength region around 450 nm,” Appl. Phys. B 79, 491-495 (2004).
[CrossRef]

Cattolica, R.

Cessou, A.

M. Haudiquert, A. Cessou, D. Stepowski, and A. Coppalle, “OH and soot concentration measurements in a high-temperature laminar diffusion flame,” Combust. Flame 111, 338-349 (1997).
[CrossRef]

Chen, Y.-L.

W. Qin, Y.-L. Chen, and J. W. L. Lewis, “Time-resolved temperature images of laser-ignition using OH two-line laser-induced fluorescence (LIF) thermometry,” Tech. Rep. Article Number 200508, IFRF Combustion Journal (2005).

Coppalle, A.

M. Haudiquert, A. Cessou, D. Stepowski, and A. Coppalle, “OH and soot concentration measurements in a high-temperature laminar diffusion flame,” Combust. Flame 111, 338-349 (1997).
[CrossRef]

Crosley, D. R.

M. Tamura, J. Luque, J. E. Harrington, P. A. Berg, G. P. Smith, J. B. Jeffries, and D. R. Crosley, “Laser-induced fluorescence of seeded nitric oxide as a flame thermometer,” Appl. Phys. B 66, 503-510 (1998).
[CrossRef]

Daily, J. W.

De Ris, J.

M. A. Delichatsios, J. De Ris, and L. Orloff, “An enhanced flame radiation burner,” Proc. Combust. Inst. 24, 1075-1082 (1992).

Dean, J. A.

J. A. Dean and T. C. Rains, Flame Emission and Atomic Absorption Spectrometry (Marcel Dekker, 1969), Vol. 1.

DeBarber, P. A.

Dec, J. E.

J. E. Dec and J. O. Keller, “High speed thermometry using two-line atomic fluorescence,” Proc. Combust. Inst. 21, 1737-1745 (1986).

Delichatsios, M. A.

M. A. Delichatsios, J. De Ris, and L. Orloff, “An enhanced flame radiation burner,” Proc. Combust. Inst. 24, 1075-1082 (1992).

Dockery, D. W.

D. W. Dockery and P. H. Stone, “Cardiovascular risks from fine particulate air pollution,” N. Engl. J. Med. 356, 511-513 (2007).
[CrossRef] [PubMed]

Dreier, T.

H. Kronemayer, P. Ifeacho, C. Hecht, T. Dreier, H. Wiggers, and C. Schulz, “Gas-temperature imaging in a low-pressure flame reactor for nano-particle synthesis with multi-line NO-LIF thermometry,” Appl. Phys. B 88, 373-377 (2007).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, 1996).

Engström, J.

J. Nygren, J. Engström, J. Walewski, C. F. Kaminski, and M. Aldén, “Applications and evaluation of two-line atomic LIF thermometry in sooting combustion environments,” Meas. Sci. Technol. 12, 1294-1303 (2001).
[CrossRef]

J. Engström, J. Nygren, M. Aldén, and C. F. Kaminski, “Two-line atomic fluorescence as a temperature probe for highly sooting flames,” Opt. Lett. 25, 1469-1471 (2000).
[CrossRef]

C. F. Kaminski, J. Engström, and M. Aldén, “Quasi-instantaneous two-dimensional temperature measurements in a spark ignition engine using 2-line atomic fluorescence,” Proc. Combust. Inst. 27, 85-93 (1998).

Fassel, V. A.

Fetting, F.

U. Wieschnowsky, H. Bockhorn, and F. Fetting, “Some new observations concerning the mass growth of soot in premixed hydrocarbons-oxygen flames,” Proc. Combust. Inst. 22, 343-352 (1988).

Frinstrom, R. M.

R. M. Frinstrom and A. A. Westenberg, Flame Structure (McGraw-Hill, 1965).

Grafström, P.

Grasser, T. W.

Hanson, R. K.

T. Lee, J. B. Jeffries, and R. K. Hanson, “Experimental evaluation of strategies for quantitative laser-induced fluorescence imaging of nitric oxide in high-pressure flames (1-60 bar),” Proc. Combust. Inst. 31, 757-764 (2007).
[CrossRef]

J. M. Seitzman, R. K. Hanson, P. A. DeBarber, and C. F. Hess, “Application of quantitative two-line OH planar laser-induced fluorescence for temporally resolved planar thermometry in reacting flows,” Appl. Opt. 33, 4000-4012 (1994).
[CrossRef] [PubMed]

Haraguchi, H.

Harrington, J. E.

M. Tamura, J. Luque, J. E. Harrington, P. A. Berg, G. P. Smith, J. B. Jeffries, and D. R. Crosley, “Laser-induced fluorescence of seeded nitric oxide as a flame thermometer,” Appl. Phys. B 66, 503-510 (1998).
[CrossRef]

Hartlieb, A. T.

A. T. Hartlieb, B. Atakan, and K. Kohse-Höinghaus, “Temperature measurement in fuel-rich non-sooting low pressure hydrocarbon flames,” Appl. Phys. B 70, 435-445 (2000).
[CrossRef]

B. Atakan and A. T. Hartlieb, “Laser diagnostics of NO reburning in fuel-rich propene flames,” Appl. Phys. B 71, 697-702 (2000).
[CrossRef]

Hartung, G.

I. S. Burns, J. Hult, G. Hartung, and C. F. Kaminski, “A thermometry technique based on atomic lineshapes using diode laser LIF in flames,” Proc. Combust. Inst. 31, 775-782(2007).
[CrossRef]

Haudiquert, M.

M. Haudiquert, A. Cessou, D. Stepowski, and A. Coppalle, “OH and soot concentration measurements in a high-temperature laminar diffusion flame,” Combust. Flame 111, 338-349 (1997).
[CrossRef]

Haynes, B. S.

B. S. Haynes, H. Jander, and H. G. Wagner, “The effect of metal additives on the formation of soot in premixed flames,” Proc. Combust. Inst. 17, 1365-1374 (1979).

Hecht, C.

H. Kronemayer, P. Ifeacho, C. Hecht, T. Dreier, H. Wiggers, and C. Schulz, “Gas-temperature imaging in a low-pressure flame reactor for nano-particle synthesis with multi-line NO-LIF thermometry,” Appl. Phys. B 88, 373-377 (2007).
[CrossRef]

Hess, C. F.

Hildenbrand, F.

Hoffman, D.

Hofmann, D.

D. Hofmann and A. Leipertz, “Temperature field measurements in a sooting flame by filtered Rayleigh scattering (FRS),” Proc. Combust. Inst. 26, 945-950 (1996).

Hult, J.

I. S. Burns, J. Hult, G. Hartung, and C. F. Kaminski, “A thermometry technique based on atomic lineshapes using diode laser LIF in flames,” Proc. Combust. Inst. 31, 775-782(2007).
[CrossRef]

J. Hult, I. S. Burns, and C. F. Kaminski, “Two-line atomic fluorescence flame thermometry using diode lasers,” Proc. Combust. Inst. 30, 1535-1543 (2005).
[CrossRef]

I. S. Burns, J. Hult, and C. F. Kaminski, “Spectroscopic use of a novel blue diode laser in a wavelength region around 450 nm,” Appl. Phys. B 79, 491-495 (2004).
[CrossRef]

Ifeacho, P.

H. Kronemayer, P. Ifeacho, C. Hecht, T. Dreier, H. Wiggers, and C. Schulz, “Gas-temperature imaging in a low-pressure flame reactor for nano-particle synthesis with multi-line NO-LIF thermometry,” Appl. Phys. B 88, 373-377 (2007).
[CrossRef]

Jander, H.

B. S. Haynes, H. Jander, and H. G. Wagner, “The effect of metal additives on the formation of soot in premixed flames,” Proc. Combust. Inst. 17, 1365-1374 (1979).

Jeffries, J. B.

T. Lee, J. B. Jeffries, and R. K. Hanson, “Experimental evaluation of strategies for quantitative laser-induced fluorescence imaging of nitric oxide in high-pressure flames (1-60 bar),” Proc. Combust. Inst. 31, 757-764 (2007).
[CrossRef]

M. Tamura, J. Luque, J. E. Harrington, P. A. Berg, G. P. Smith, J. B. Jeffries, and D. R. Crosley, “Laser-induced fluorescence of seeded nitric oxide as a flame thermometer,” Appl. Phys. B 66, 503-510 (1998).
[CrossRef]

K. Kohse-Höinghaus and J. B. Jeffries, Applied Combustion Diagnostics (Taylor & Francis, 2002).

Johnson, D. J.

Joklik, R. G.

Kaminski, C. F.

I. S. Burns, J. Hult, G. Hartung, and C. F. Kaminski, “A thermometry technique based on atomic lineshapes using diode laser LIF in flames,” Proc. Combust. Inst. 31, 775-782(2007).
[CrossRef]

J. Hult, I. S. Burns, and C. F. Kaminski, “Two-line atomic fluorescence flame thermometry using diode lasers,” Proc. Combust. Inst. 30, 1535-1543 (2005).
[CrossRef]

I. S. Burns, J. Hult, and C. F. Kaminski, “Spectroscopic use of a novel blue diode laser in a wavelength region around 450 nm,” Appl. Phys. B 79, 491-495 (2004).
[CrossRef]

J. Nygren, J. Engström, J. Walewski, C. F. Kaminski, and M. Aldén, “Applications and evaluation of two-line atomic LIF thermometry in sooting combustion environments,” Meas. Sci. Technol. 12, 1294-1303 (2001).
[CrossRef]

J. Engström, J. Nygren, M. Aldén, and C. F. Kaminski, “Two-line atomic fluorescence as a temperature probe for highly sooting flames,” Opt. Lett. 25, 1469-1471 (2000).
[CrossRef]

C. F. Kaminski, J. Engström, and M. Aldén, “Quasi-instantaneous two-dimensional temperature measurements in a spark ignition engine using 2-line atomic fluorescence,” Proc. Combust. Inst. 27, 85-93 (1998).

Kaufman, J. D.

K. A. Miller, D. S. Siscovick, L. Sheppard, K. Shepherd, J. H. Sullivan, G. L. Anderson, and J. D. Kaufman, “Long-term exposure to air pollution and incidence of cardiovascular events in women,” N. Engl. J. Med. 356, 447-458 (2007).
[CrossRef] [PubMed]

Kearney, S. P.

Keller, J. O.

J. E. Dec and J. O. Keller, “High speed thermometry using two-line atomic fluorescence,” Proc. Combust. Inst. 21, 1737-1745 (1986).

Kniseley, R. N.

Kohse-Höinghaus, K.

A. T. Hartlieb, B. Atakan, and K. Kohse-Höinghaus, “Temperature measurement in fuel-rich non-sooting low pressure hydrocarbon flames,” Appl. Phys. B 70, 435-445 (2000).
[CrossRef]

K. Kohse-Höinghaus and J. B. Jeffries, Applied Combustion Diagnostics (Taylor & Francis, 2002).

Kronemayer, H.

H. Kronemayer, P. Ifeacho, C. Hecht, T. Dreier, H. Wiggers, and C. Schulz, “Gas-temperature imaging in a low-pressure flame reactor for nano-particle synthesis with multi-line NO-LIF thermometry,” Appl. Phys. B 88, 373-377 (2007).
[CrossRef]

Kurtz, A.

Lee, T.

T. Lee, J. B. Jeffries, and R. K. Hanson, “Experimental evaluation of strategies for quantitative laser-induced fluorescence imaging of nitric oxide in high-pressure flames (1-60 bar),” Proc. Combust. Inst. 31, 757-764 (2007).
[CrossRef]

Leipertz, A.

D. Hofmann and A. Leipertz, “Temperature field measurements in a sooting flame by filtered Rayleigh scattering (FRS),” Proc. Combust. Inst. 26, 945-950 (1996).

D. Hoffman, K.-U. Münch, and A. Leipertz, “Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering,” Opt. Lett. 21, 525-527 (1996).
[CrossRef] [PubMed]

Lewis, J. W. L.

W. Qin, Y.-L. Chen, and J. W. L. Lewis, “Time-resolved temperature images of laser-ignition using OH two-line laser-induced fluorescence (LIF) thermometry,” Tech. Rep. Article Number 200508, IFRF Combustion Journal (2005).

Lundberg, H.

Luque, J.

M. Tamura, J. Luque, J. E. Harrington, P. A. Berg, G. P. Smith, J. B. Jeffries, and D. R. Crosley, “Laser-induced fluorescence of seeded nitric oxide as a flame thermometer,” Appl. Phys. B 66, 503-510 (1998).
[CrossRef]

Mansurov, Z. A.

Z. A. Mansurov, “Soot formation in combustion processes,” Combust. Explos. Shock Waves (English translation) 41, 727-744 (2005).
[CrossRef]

Martin, W. C.

J. E. Sansonetti and W. C. Martin, “Handbook of basic atomic spectroscopic data,” J. Phys. Chem. Ref. Data 34, 1559-2259(2005).
[CrossRef]

Miller, K. A.

K. A. Miller, D. S. Siscovick, L. Sheppard, K. Shepherd, J. H. Sullivan, G. L. Anderson, and J. D. Kaufman, “Long-term exposure to air pollution and incidence of cardiovascular events in women,” N. Engl. J. Med. 356, 447-458 (2007).
[CrossRef] [PubMed]

Münch, K.-U.

Nygren, J.

J. Nygren, J. Engström, J. Walewski, C. F. Kaminski, and M. Aldén, “Applications and evaluation of two-line atomic LIF thermometry in sooting combustion environments,” Meas. Sci. Technol. 12, 1294-1303 (2001).
[CrossRef]

J. Engström, J. Nygren, M. Aldén, and C. F. Kaminski, “Two-line atomic fluorescence as a temperature probe for highly sooting flames,” Opt. Lett. 25, 1469-1471 (2000).
[CrossRef]

Orloff, L.

M. A. Delichatsios, J. De Ris, and L. Orloff, “An enhanced flame radiation burner,” Proc. Combust. Inst. 24, 1075-1082 (1992).

Qin, W.

W. Qin, Y.-L. Chen, and J. W. L. Lewis, “Time-resolved temperature images of laser-ignition using OH two-line laser-induced fluorescence (LIF) thermometry,” Tech. Rep. Article Number 200508, IFRF Combustion Journal (2005).

Rains, T. C.

J. A. Dean and T. C. Rains, Flame Emission and Atomic Absorption Spectrometry (Marcel Dekker, 1969), Vol. 1.

Sansonetti, J. E.

J. E. Sansonetti and W. C. Martin, “Handbook of basic atomic spectroscopic data,” J. Phys. Chem. Ref. Data 34, 1559-2259(2005).
[CrossRef]

Schefer, R. W.

Schulz, C.

H. Kronemayer, P. Ifeacho, C. Hecht, T. Dreier, H. Wiggers, and C. Schulz, “Gas-temperature imaging in a low-pressure flame reactor for nano-particle synthesis with multi-line NO-LIF thermometry,” Appl. Phys. B 88, 373-377 (2007).
[CrossRef]

W. G. Bessler, F. Hildenbrand, and C. Schulz, “Two-line laser-induced fluorescence imaging of vibrational temperatures in a NO-seeded flame,” Appl. Opt. 40, 748-756 (2001).
[CrossRef]

Seitzman, J. M.

Shaddix, C. R.

C. R. Shaddix and T. C. Williams, “Soot: giver and taker of light,” Am. Sci. 95, 232-239 (2007).

Shepherd, K.

K. A. Miller, D. S. Siscovick, L. Sheppard, K. Shepherd, J. H. Sullivan, G. L. Anderson, and J. D. Kaufman, “Long-term exposure to air pollution and incidence of cardiovascular events in women,” N. Engl. J. Med. 356, 447-458 (2007).
[CrossRef] [PubMed]

Sheppard, L.

K. A. Miller, D. S. Siscovick, L. Sheppard, K. Shepherd, J. H. Sullivan, G. L. Anderson, and J. D. Kaufman, “Long-term exposure to air pollution and incidence of cardiovascular events in women,” N. Engl. J. Med. 356, 447-458 (2007).
[CrossRef] [PubMed]

Siscovick, D. S.

K. A. Miller, D. S. Siscovick, L. Sheppard, K. Shepherd, J. H. Sullivan, G. L. Anderson, and J. D. Kaufman, “Long-term exposure to air pollution and incidence of cardiovascular events in women,” N. Engl. J. Med. 356, 447-458 (2007).
[CrossRef] [PubMed]

Smith, B.

Smith, G. P.

M. Tamura, J. Luque, J. E. Harrington, P. A. Berg, G. P. Smith, J. B. Jeffries, and D. R. Crosley, “Laser-induced fluorescence of seeded nitric oxide as a flame thermometer,” Appl. Phys. B 66, 503-510 (1998).
[CrossRef]

Stepowski, D.

M. Haudiquert, A. Cessou, D. Stepowski, and A. Coppalle, “OH and soot concentration measurements in a high-temperature laminar diffusion flame,” Combust. Flame 111, 338-349 (1997).
[CrossRef]

Stone, P. H.

D. W. Dockery and P. H. Stone, “Cardiovascular risks from fine particulate air pollution,” N. Engl. J. Med. 356, 511-513 (2007).
[CrossRef] [PubMed]

Sullivan, J. H.

K. A. Miller, D. S. Siscovick, L. Sheppard, K. Shepherd, J. H. Sullivan, G. L. Anderson, and J. D. Kaufman, “Long-term exposure to air pollution and incidence of cardiovascular events in women,” N. Engl. J. Med. 356, 447-458 (2007).
[CrossRef] [PubMed]

Svanberg, S.

Tamura, M.

M. Tamura, J. Luque, J. E. Harrington, P. A. Berg, G. P. Smith, J. B. Jeffries, and D. R. Crosley, “Laser-induced fluorescence of seeded nitric oxide as a flame thermometer,” Appl. Phys. B 66, 503-510 (1998).
[CrossRef]

Wagner, H. G.

B. S. Haynes, H. Jander, and H. G. Wagner, “The effect of metal additives on the formation of soot in premixed flames,” Proc. Combust. Inst. 17, 1365-1374 (1979).

Walewski, J.

J. Nygren, J. Engström, J. Walewski, C. F. Kaminski, and M. Aldén, “Applications and evaluation of two-line atomic LIF thermometry in sooting combustion environments,” Meas. Sci. Technol. 12, 1294-1303 (2001).
[CrossRef]

Weeks, S.

Westenberg, A. A.

R. M. Frinstrom and A. A. Westenberg, Flame Structure (McGraw-Hill, 1965).

Wieschnowsky, U.

U. Wieschnowsky, H. Bockhorn, and F. Fetting, “Some new observations concerning the mass growth of soot in premixed hydrocarbons-oxygen flames,” Proc. Combust. Inst. 22, 343-352 (1988).

Wiggers, H.

H. Kronemayer, P. Ifeacho, C. Hecht, T. Dreier, H. Wiggers, and C. Schulz, “Gas-temperature imaging in a low-pressure flame reactor for nano-particle synthesis with multi-line NO-LIF thermometry,” Appl. Phys. B 88, 373-377 (2007).
[CrossRef]

Williams, T. C.

C. R. Shaddix and T. C. Williams, “Soot: giver and taker of light,” Am. Sci. 95, 232-239 (2007).

Winefordner, J. D.

Winge, R. K.

Am. Sci. (1)

C. R. Shaddix and T. C. Williams, “Soot: giver and taker of light,” Am. Sci. 95, 232-239 (2007).

Appl. Opt. (6)

Appl. Phys. B (5)

H. Kronemayer, P. Ifeacho, C. Hecht, T. Dreier, H. Wiggers, and C. Schulz, “Gas-temperature imaging in a low-pressure flame reactor for nano-particle synthesis with multi-line NO-LIF thermometry,” Appl. Phys. B 88, 373-377 (2007).
[CrossRef]

B. Atakan and A. T. Hartlieb, “Laser diagnostics of NO reburning in fuel-rich propene flames,” Appl. Phys. B 71, 697-702 (2000).
[CrossRef]

I. S. Burns, J. Hult, and C. F. Kaminski, “Spectroscopic use of a novel blue diode laser in a wavelength region around 450 nm,” Appl. Phys. B 79, 491-495 (2004).
[CrossRef]

A. T. Hartlieb, B. Atakan, and K. Kohse-Höinghaus, “Temperature measurement in fuel-rich non-sooting low pressure hydrocarbon flames,” Appl. Phys. B 70, 435-445 (2000).
[CrossRef]

M. Tamura, J. Luque, J. E. Harrington, P. A. Berg, G. P. Smith, J. B. Jeffries, and D. R. Crosley, “Laser-induced fluorescence of seeded nitric oxide as a flame thermometer,” Appl. Phys. B 66, 503-510 (1998).
[CrossRef]

Appl. Spectrosc. (3)

Combust. Explos. Shock Waves (1)

Z. A. Mansurov, “Soot formation in combustion processes,” Combust. Explos. Shock Waves (English translation) 41, 727-744 (2005).
[CrossRef]

Combust. Flame (1)

M. Haudiquert, A. Cessou, D. Stepowski, and A. Coppalle, “OH and soot concentration measurements in a high-temperature laminar diffusion flame,” Combust. Flame 111, 338-349 (1997).
[CrossRef]

Fuel (1)

P. A. Bonczyk, “Effects of metal additives on soot precursors and particulates in a C2H4/O22/N2/Ar premixed flame,” Fuel 70, 1403-1411 (1991).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

J. E. Sansonetti and W. C. Martin, “Handbook of basic atomic spectroscopic data,” J. Phys. Chem. Ref. Data 34, 1559-2259(2005).
[CrossRef]

Meas. Sci. Technol. (1)

J. Nygren, J. Engström, J. Walewski, C. F. Kaminski, and M. Aldén, “Applications and evaluation of two-line atomic LIF thermometry in sooting combustion environments,” Meas. Sci. Technol. 12, 1294-1303 (2001).
[CrossRef]

N. Engl. J. Med. (2)

D. W. Dockery and P. H. Stone, “Cardiovascular risks from fine particulate air pollution,” N. Engl. J. Med. 356, 511-513 (2007).
[CrossRef] [PubMed]

K. A. Miller, D. S. Siscovick, L. Sheppard, K. Shepherd, J. H. Sullivan, G. L. Anderson, and J. D. Kaufman, “Long-term exposure to air pollution and incidence of cardiovascular events in women,” N. Engl. J. Med. 356, 447-458 (2007).
[CrossRef] [PubMed]

Opt. Lett. (3)

Proc. Combust. Inst. (9)

T. Lee, J. B. Jeffries, and R. K. Hanson, “Experimental evaluation of strategies for quantitative laser-induced fluorescence imaging of nitric oxide in high-pressure flames (1-60 bar),” Proc. Combust. Inst. 31, 757-764 (2007).
[CrossRef]

C. F. Kaminski, J. Engström, and M. Aldén, “Quasi-instantaneous two-dimensional temperature measurements in a spark ignition engine using 2-line atomic fluorescence,” Proc. Combust. Inst. 27, 85-93 (1998).

U. Wieschnowsky, H. Bockhorn, and F. Fetting, “Some new observations concerning the mass growth of soot in premixed hydrocarbons-oxygen flames,” Proc. Combust. Inst. 22, 343-352 (1988).

B. S. Haynes, H. Jander, and H. G. Wagner, “The effect of metal additives on the formation of soot in premixed flames,” Proc. Combust. Inst. 17, 1365-1374 (1979).

I. S. Burns, J. Hult, G. Hartung, and C. F. Kaminski, “A thermometry technique based on atomic lineshapes using diode laser LIF in flames,” Proc. Combust. Inst. 31, 775-782(2007).
[CrossRef]

J. E. Dec and J. O. Keller, “High speed thermometry using two-line atomic fluorescence,” Proc. Combust. Inst. 21, 1737-1745 (1986).

J. Hult, I. S. Burns, and C. F. Kaminski, “Two-line atomic fluorescence flame thermometry using diode lasers,” Proc. Combust. Inst. 30, 1535-1543 (2005).
[CrossRef]

D. Hofmann and A. Leipertz, “Temperature field measurements in a sooting flame by filtered Rayleigh scattering (FRS),” Proc. Combust. Inst. 26, 945-950 (1996).

M. A. Delichatsios, J. De Ris, and L. Orloff, “An enhanced flame radiation burner,” Proc. Combust. Inst. 24, 1075-1082 (1992).

Pure Appl. Chem. (1)

C. T. J. Alkemade, “A theoretical discussion on some aspects of atomic fluorescence spectroscopy in flames,” Pure Appl. Chem. 23, 73-98 (1970).
[CrossRef]

Other (5)

J. A. Dean and T. C. Rains, Flame Emission and Atomic Absorption Spectrometry (Marcel Dekker, 1969), Vol. 1.

W. Qin, Y.-L. Chen, and J. W. L. Lewis, “Time-resolved temperature images of laser-ignition using OH two-line laser-induced fluorescence (LIF) thermometry,” Tech. Rep. Article Number 200508, IFRF Combustion Journal (2005).

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon & Breach, 1996).

R. M. Frinstrom and A. A. Westenberg, Flame Structure (McGraw-Hill, 1965).

K. Kohse-Höinghaus and J. B. Jeffries, Applied Combustion Diagnostics (Taylor & Francis, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

TLAF energy transitions.

Fig. 2
Fig. 2

Schematic of experimental layout.

Fig. 3
Fig. 3

Photograph of Flame 1 (Table 1) and burner. Burner face measures 50 mm × 50 mm .

Fig. 4
Fig. 4

Indium fluorescence as a function of spectral intensity in the linear fluence regime.

Fig. 5
Fig. 5

Indium fluorescence as a function of indium chloride concentration.

Fig. 6
Fig. 6

Typical instantaneous images of (a) Stokes and (b) anti-Stokes indium fluorescence and (c) deduced temperature in Flame 1 (Table 1). Linear fluence excitation ( 2500 W / cm 2 / cm 1 ). Image size approximately 20 mm × 50 mm . Laser propagation from left to right. HAB, height above burner.

Fig. 7
Fig. 7

Typical averaged images of (a) Stokes and (b) anti-Stokes indium fluorescence and (c) deduced temperature in Flame 1 (Table 1). Linear fluence excitation ( 2500 W / cm 2 / cm 1 ). Image size approximately 20 mm × 50 mm . Laser propagation from left to right. HAB, height above burner.

Fig. 8
Fig. 8

Typical deduced temperature image in Flame 2 (Table 1). Linear fluence excitation ( 2500 W / cm 2 / cm 1 ). Image size approximately 20 mm × 50 mm . Laser propagation from left to right. HAB, height above burner.

Fig. 9
Fig. 9

Indium fluorescence (Stokes) as a function of spectral intensity to the maximum achievable laser energy. Vertical red dashed line indicates limit of linearity ( 2500 W / cm 2 / cm 1 ).

Fig. 10
Fig. 10

Typical instantaneous images of (a) Stokes and (b) anti-Stokes indium fluorescence and (c) deduced temperature in Flame 1 (Table 1). Nonlinear fluence excitation ( 250 , 000 W / cm 2 / cm 1 ). Image size approximately 20 mm × 50 mm . Laser propagation from left to right. HAB, height above burner.

Fig. 11
Fig. 11

Temperature histograms from single instantaneous images of Flame 1 (Table 1) for (a) linear ( 2500 W / cm 2 / cm 1 ) and (b) nonlinear ( 250,000   W / cm 2 / cm 1 ) excitation regimes.

Fig. 12
Fig. 12

Fluorescence signal in Flame 3 (Table 1) as a function of stoichiometry (Φ).

Fig. 13
Fig. 13

Temperature of Flame 3 (Table 1) over a range of stoichiometry (Φ) for NTLAF and calibrated thermocouple measurements.

Fig. 14
Fig. 14

Temperature of Flame 4 (Table 1) over a range of stoichiometry (Φ) for NTLAF and calibrated thermocouple measurements.

Fig. 15
Fig. 15

Temperature of Flame 5 (Table 1) over a range of stoichiometry (Φ) for NTLAF and calibrated thermocouple measurements.

Fig. 16
Fig. 16

(a) Photograph of ethylene/air flame with Φ = 2.25 showing soot. Dashed area indicates approximate laser-imaging area. (b) Instantaneous NTLAF temperature image for this flame. Image size approximately 20 mm × 50 mm . Laser propagation from left to right. HAB, height above burner.

Tables (2)

Tables Icon

Table 1 Premixed Flat-Flame Conditions

Tables Icon

Table 2 Maximum Temperature Measurements and Calculation for a Premixed Natural Gas/Air Flame

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

T = Δ E 10 / k ln ( F 21 I 02 ) ln ( F 20 I 12 ) + 4 ln ( λ 21 λ 20 ) + C t .
T = Δ E 10 / k ln ( F 21 × ( 1 + C S I 20 ) ) ln ( F 20 × ( 1 + C A I 21 ) ) + C T ,
C S = Q + A B 20 ,
C A = Q + A B 21 ,
C T = ln ( ν 20 ν 21 ) + ln ( Ω 20 Ω 21 ) + ln ( ε 20 ε 21 ) + ln ( A 20 A 21 ) .
d N 2 d t = N i ( Q i 2 + B i 2 I i 2 ) N 2 ( B 2 i I 2 i + Q 20 + Q 21 + A 20 + A 21 ) .
F 2 i = h ν 2 i N 2 A 2 i Ω 4 π V ,
F 20 F 21 = h ν 20 Ω 20 ε 20 4 π N 1 B 12 I 12 A 20 B 21 I 21 + Q + A h ν 21 Ω 21 ε 21 4 π N 0 B 02 I 02 A 21 B 20 I 20 + Q + A ,
F 20 = h ν 20 Ω 20 ε 20 4 π N 1 A 20 B 12 B 21 1 1 + Q + A B 21 I 21 ,
g i B i j = g j B j i ,
F 20 = h ν 20 A 20 N 1 Ω 20 ε 20 4 π g 2 g 1 1 1 + Q + A B 21 I 21 .
F 20 F 21 = ν 20 Ω 20 ε 20 A 20 N 1 g 0 ν 21 Ω 21 ε 21 A 21 N 0 g 1 ( 1 + Q + A B 20 I 20 1 + Q + A B 21 I 21 ) .
F 20 F 21 = ν 20 Ω 20 ε 20 A 20 N 1 g 0 ν 21 Ω 21 ε 21 A 21 N 0 g 1 ( 1 + C S I 20 1 + C A I 21 ) .
F 20 F 21 = ν 20 Ω 20 ε 20 A 20 ν 21 Ω 21 ε 21 A 21 ( 1 + C S I 20 1 + C A I 21 ) e Δ E 10 / k T .
Δ E 10 k T = ln ( F 21 F 20 ) + C T + ln ( 1 + C S I 20 ) ln ( 1 + C A I 21 ) .
T = Δ E 10 / k ln ( F 21 × ( 1 + C S I 20 ) ) ln ( F 20 × ( 1 + C A I 21 ) ) + C T .

Metrics