Abstract

We present results of the design and testing of a modified optical Šolc notch filter for use in the deep ultraviolet (DUV, 190300nm) spectral range. The filter was designed to block a specific wavelength in this region. In addition, a sequence of blocked wavelengths occurs at wavelengths both shorter and longer than the specified wavelength. For Raman applications utilizing tunable lasers, the provision of multiple blocked wavelengths by a single filter may be especially useful. The filter design presented here produces extinction ratios >240 with transmission minima 1nm full width at half-maximum. Specific results are shown for the Raman spectra of Teflon excited at 248.4nm.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Asher, “UV resonance Raman spectroscopy for analytical, physical and biophysical chemistry. Part 1,” Anal. Chem. 65, 59A-66A (1993).
    [CrossRef]
  2. S. A. Asher, “UV resonance Raman spectroscopy for analytical, physical and biophysical chemistry. Part 2,” Anal. Chem. 65, 201A-210A (1993).
    [CrossRef] [PubMed]
  3. J. Grun, C. K. Manka, S. Nikitin, D. Zabetakis, G. Comanescu, D. Gillis, and J. Bowles, “Identification of bacteria from two-dimensional resonant-Raman spectra,” Anal. Chem. 79, 5489-5493 (2007).
    [CrossRef] [PubMed]
  4. G. Comanescu, C. Manka, J. Grun, S. Nikitin, and D. Zabetakis, “Identification of explosives with two-dimensional, ultraviolet, resonance Raman spectroscopy,” Appl. Spectrosc. 62, 883-839(2008).
    [CrossRef]
  5. I. Šolc, “Birefringent chain filters,” J. Opt. Soc. Am. 55, 621-625 (1965).
    [CrossRef]
  6. R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. 31488-493 (1941).
    [CrossRef]
  7. A. Yariv and P. YehOptical Waves in Crystals (Wiley, 2003), pp 131-154.
  8. CVI Optical Components and Assemblies; http://www.cvilaser.com/Common/PDFs/Dispersion_Equations.pdf.
  9. J. R. Ferraro, K. Nakamoto, and C. W. Brown, Introductory Raman Spectroscopy, 2nd ed. (Academic, 2003), p. 137.

2008 (1)

G. Comanescu, C. Manka, J. Grun, S. Nikitin, and D. Zabetakis, “Identification of explosives with two-dimensional, ultraviolet, resonance Raman spectroscopy,” Appl. Spectrosc. 62, 883-839(2008).
[CrossRef]

2007 (1)

J. Grun, C. K. Manka, S. Nikitin, D. Zabetakis, G. Comanescu, D. Gillis, and J. Bowles, “Identification of bacteria from two-dimensional resonant-Raman spectra,” Anal. Chem. 79, 5489-5493 (2007).
[CrossRef] [PubMed]

1993 (2)

S. A. Asher, “UV resonance Raman spectroscopy for analytical, physical and biophysical chemistry. Part 1,” Anal. Chem. 65, 59A-66A (1993).
[CrossRef]

S. A. Asher, “UV resonance Raman spectroscopy for analytical, physical and biophysical chemistry. Part 2,” Anal. Chem. 65, 201A-210A (1993).
[CrossRef] [PubMed]

1965 (1)

1941 (1)

Asher, S. A.

S. A. Asher, “UV resonance Raman spectroscopy for analytical, physical and biophysical chemistry. Part 1,” Anal. Chem. 65, 59A-66A (1993).
[CrossRef]

S. A. Asher, “UV resonance Raman spectroscopy for analytical, physical and biophysical chemistry. Part 2,” Anal. Chem. 65, 201A-210A (1993).
[CrossRef] [PubMed]

Bowles, J.

J. Grun, C. K. Manka, S. Nikitin, D. Zabetakis, G. Comanescu, D. Gillis, and J. Bowles, “Identification of bacteria from two-dimensional resonant-Raman spectra,” Anal. Chem. 79, 5489-5493 (2007).
[CrossRef] [PubMed]

Brown, C. W.

J. R. Ferraro, K. Nakamoto, and C. W. Brown, Introductory Raman Spectroscopy, 2nd ed. (Academic, 2003), p. 137.

Comanescu, G.

G. Comanescu, C. Manka, J. Grun, S. Nikitin, and D. Zabetakis, “Identification of explosives with two-dimensional, ultraviolet, resonance Raman spectroscopy,” Appl. Spectrosc. 62, 883-839(2008).
[CrossRef]

J. Grun, C. K. Manka, S. Nikitin, D. Zabetakis, G. Comanescu, D. Gillis, and J. Bowles, “Identification of bacteria from two-dimensional resonant-Raman spectra,” Anal. Chem. 79, 5489-5493 (2007).
[CrossRef] [PubMed]

Ferraro, J. R.

J. R. Ferraro, K. Nakamoto, and C. W. Brown, Introductory Raman Spectroscopy, 2nd ed. (Academic, 2003), p. 137.

Gillis, D.

J. Grun, C. K. Manka, S. Nikitin, D. Zabetakis, G. Comanescu, D. Gillis, and J. Bowles, “Identification of bacteria from two-dimensional resonant-Raman spectra,” Anal. Chem. 79, 5489-5493 (2007).
[CrossRef] [PubMed]

Grun, J.

G. Comanescu, C. Manka, J. Grun, S. Nikitin, and D. Zabetakis, “Identification of explosives with two-dimensional, ultraviolet, resonance Raman spectroscopy,” Appl. Spectrosc. 62, 883-839(2008).
[CrossRef]

J. Grun, C. K. Manka, S. Nikitin, D. Zabetakis, G. Comanescu, D. Gillis, and J. Bowles, “Identification of bacteria from two-dimensional resonant-Raman spectra,” Anal. Chem. 79, 5489-5493 (2007).
[CrossRef] [PubMed]

Jones, R. C.

Manka, C.

G. Comanescu, C. Manka, J. Grun, S. Nikitin, and D. Zabetakis, “Identification of explosives with two-dimensional, ultraviolet, resonance Raman spectroscopy,” Appl. Spectrosc. 62, 883-839(2008).
[CrossRef]

Manka, C. K.

J. Grun, C. K. Manka, S. Nikitin, D. Zabetakis, G. Comanescu, D. Gillis, and J. Bowles, “Identification of bacteria from two-dimensional resonant-Raman spectra,” Anal. Chem. 79, 5489-5493 (2007).
[CrossRef] [PubMed]

Nakamoto, K.

J. R. Ferraro, K. Nakamoto, and C. W. Brown, Introductory Raman Spectroscopy, 2nd ed. (Academic, 2003), p. 137.

Nikitin, S.

G. Comanescu, C. Manka, J. Grun, S. Nikitin, and D. Zabetakis, “Identification of explosives with two-dimensional, ultraviolet, resonance Raman spectroscopy,” Appl. Spectrosc. 62, 883-839(2008).
[CrossRef]

J. Grun, C. K. Manka, S. Nikitin, D. Zabetakis, G. Comanescu, D. Gillis, and J. Bowles, “Identification of bacteria from two-dimensional resonant-Raman spectra,” Anal. Chem. 79, 5489-5493 (2007).
[CrossRef] [PubMed]

Šolc, I.

Yariv, A.

A. Yariv and P. YehOptical Waves in Crystals (Wiley, 2003), pp 131-154.

Yeh, P.

A. Yariv and P. YehOptical Waves in Crystals (Wiley, 2003), pp 131-154.

Zabetakis, D.

G. Comanescu, C. Manka, J. Grun, S. Nikitin, and D. Zabetakis, “Identification of explosives with two-dimensional, ultraviolet, resonance Raman spectroscopy,” Appl. Spectrosc. 62, 883-839(2008).
[CrossRef]

J. Grun, C. K. Manka, S. Nikitin, D. Zabetakis, G. Comanescu, D. Gillis, and J. Bowles, “Identification of bacteria from two-dimensional resonant-Raman spectra,” Anal. Chem. 79, 5489-5493 (2007).
[CrossRef] [PubMed]

Anal. Chem. (3)

S. A. Asher, “UV resonance Raman spectroscopy for analytical, physical and biophysical chemistry. Part 1,” Anal. Chem. 65, 59A-66A (1993).
[CrossRef]

S. A. Asher, “UV resonance Raman spectroscopy for analytical, physical and biophysical chemistry. Part 2,” Anal. Chem. 65, 201A-210A (1993).
[CrossRef] [PubMed]

J. Grun, C. K. Manka, S. Nikitin, D. Zabetakis, G. Comanescu, D. Gillis, and J. Bowles, “Identification of bacteria from two-dimensional resonant-Raman spectra,” Anal. Chem. 79, 5489-5493 (2007).
[CrossRef] [PubMed]

Appl. Spectrosc. (1)

G. Comanescu, C. Manka, J. Grun, S. Nikitin, and D. Zabetakis, “Identification of explosives with two-dimensional, ultraviolet, resonance Raman spectroscopy,” Appl. Spectrosc. 62, 883-839(2008).
[CrossRef]

J. Opt. Soc. Am. (2)

Other (3)

A. Yariv and P. YehOptical Waves in Crystals (Wiley, 2003), pp 131-154.

CVI Optical Components and Assemblies; http://www.cvilaser.com/Common/PDFs/Dispersion_Equations.pdf.

J. R. Ferraro, K. Nakamoto, and C. W. Brown, Introductory Raman Spectroscopy, 2nd ed. (Academic, 2003), p. 137.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Calculated transmission of a folded ASF based on six 367.6 μm thick quartz plates: (a) 210 280 nm and (b) expanded scale for m = 16 at 248 nm . Surface losses and material absorption are neglected.

Fig. 2
Fig. 2

Simulation results for a six-plate ASF similar to the one shown in Fig. 1b assembled with normally distributed thickness errors ( σ ρ RMS) and azimuth angle errors ( σ ρ RMS). The vertical axis is a logarithm of the transmission corresponding to 90% probability for the ASF to achive performance equal or better than specified. Each data point corresponds to statistics over 10,000 randomly generated ASFs. The upper scale corresponds to phase retardation error in radians.

Fig. 3
Fig. 3

Experimental prototype of the ASF.

Fig. 4
Fig. 4

Segment of the measured transmission of the ASF (solid curve) and calculated transmission (dashed curve). Measured spectra are not corrected for D 2 lamp spectrum nor for system response.

Fig. 5
Fig. 5

Intensity of laser light scattered from Teflon sample after passage through the ASF. Laser tuned to 248.4 nm (solid circles) and 250.9 nm (open circles) demonstrating an extinction ratio of 240 . Transmission of the six-plate ASF is shown (dashed curve) for reference.

Fig. 6
Fig. 6

Raman spectrum of Teflon sample at 45 ° obtained using the ASF (solid). The laser was tuned to λ = 248.4 nm . The measured ASF transmission is shown (dashed curve) for reference.

Tables (2)

Tables Icon

Table 1 Polarization States of Light at a Blocked Wavelength After Transit of Successive Components of a Folded Six-Plate ASF ( ρ = 7.5 ° )

Tables Icon

Table 2 Calculated and Experimentally Measured Wavelengths of Transmission Minima for an ASF Consisting of Six Quartz Half-Wavelength Plates a

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Γ = 2 π ( m + 1 2 ) , m = 0 , 1 , 2 ,
W ^ ( ρ , Γ ) = R ^ ( ρ ) W ^ ( Γ ) R ^ ( ρ ) ,
W ^ ( Γ ) = [ exp ( i Γ / 2 ) 0 0 exp ( i Γ / 2 ) ]
R ^ ( ρ ) = [ cos ρ sin ρ sin ρ cos ρ ]
S ^ = P ^ x i = 1 N W ^ ( ρ i , Γ ) P ^ x ,
( E 2 x E 2 y ) = S ^ ( E 1 x E 1 y ) ,
T = | E 2 x | 2 + | E 2 y | 2 | E 1 x | 2 + | E 1 y | 2 .
Γ = L 2 π λ Δ n .
n = A 0 + A 1 λ 2 + A 2 / λ 2 + A 3 / λ 4 + A 4 / λ 6 + A 5 / λ 8 ,
A 0 = 2.35728 , A 1 = 1.17 × 10 2 , A 2 = 1.054 × 10 2 , A 3 = 1.34143 × 10 4 , A 4 = 0.445368 × 10 6 , A 5 = 5.92362 × 10 8
A 0 = 2.3849 , A 1 = 1.259 × 10 2 , A 2 = 1.079 × 10 2 , A 3 = 1.6518 × 10 4 , A 4 = 1.94741 × 10 6 , A 5 = 9.36476 × 10 8 .
L m = ( m + 1 / 2 ) Δ n λ .
Δ λ λ 2 L m | λ d Δ n d λ Δ n | .
δ λ 0.8 Δ λ N .

Metrics