Abstract

A new optical performance monitoring technique of an optical link in real time is experimentally demonstrated. Rather than comparing bit streams or analyzing eye diagrams, we use a novel optical correlator to compare the shapes of the individual received bits to a standard. The all-optical correlator outputs a pulse whose strength directly measures the degradation of the bit during transmission. Results are produced within three bit periods in real time instead of requiring statistical analysis of long data streams. The correlator is based on a simplified White cell-based true-time delay device.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Chen, A. W. Poon, and X.-R. Cao, “Tranparent monitoring of rise time using aysnchronous amplitude histograms in optical transmissions systems,” J. Lightwave Technol. 22, 1661-1667(2004).
    [CrossRef]
  2. Y. C. Chung, “Optical monitoring techniques for WDM networks,” in Electronic-Enhanced Optics, Optical Sensing in Semiconductor Manufacturing, Electro-Optics in Space, Broadband Optical Networks, Digest of the LEOS Summer Topical Meetings (IEEE, 2000), pp. IV43-IV44.
  3. G. Rossi, T. E. Dimmick, and D. J. Blumenthal, “Optical performance monitoring in reconfigurable WDM optical networks using subcarrier multiplexing,” J. Lightwave Technol. 18, 1639-1648 (2000).
    [CrossRef]
  4. I. Shake, H. Takara, and S. Kawanishi, “Simple Q factor monitoring for BER estimation using opened eye diagrams captured by high-speed asynchronous electrooptical sampling,” IEEE Photon. Technol. Lett. 15, 620-622 (2003).
    [CrossRef]
  5. L. Ding, W.-D. Zhong, C. Lu, and Y. Wang, “New bit-error monitoring technique based on histograms and curve fitting,” Opt. Express 12, 2507-2511 (2004).
    [CrossRef] [PubMed]
  6. L. Y. Chan, K. K. Qureshi, P. K. A. Wai, B. Moses, L. F. K. Lui, H. Y. Tam, and M. S. Demokan, “All-optical bit-error monitoring system using cascaded inverted wavelength converter and optical NOR gate,” IEEE Photon. Technol. Lett. 15, 593-595(2003).
    [CrossRef]
  7. R. Adams, M. Rochette, R. T. Ng, and B. J. Eggleton, “All-optical in-band OSNR monitoring at 40 Gb/s using a nonlinear optical loop mirror,” IEEE Photon. Technol. Lett. 18, 469-471 (2006).
    [CrossRef]
  8. B. L. Anderson, A. Duressi, D. Rabb, and F. Abou-Galala, “Real-time all-optical quality of service monitoring using correlation and a network protocol to exploit it,” Appl. Opt. 43, 1121-1130 (2004).
    [CrossRef] [PubMed]
  9. Y. Takushima and Y. C. Chung, “Optical reflectometry based on correlation detection and its application to the in-service monitoring of WDM passive optical network,” Opt. Express 15, 5318-5326 (2007).
    [CrossRef] [PubMed]
  10. B. L. Anderson and C. D. Liddle, “Optical true-time delay for phased array antennas: demonstration of a quadratic White cell,” Appl. Opt. 41, 4912-4921 (2002).
    [CrossRef] [PubMed]
  11. C. M. Warnky, R. Mital, and B. L. Anderson, “Demonstration of a quartic cell, a free-sapce true-time-delay device based on the White cell,” J. Lightwave Technol. 24, 3849-3855 (2006).
    [CrossRef]
  12. R. Mital, C. M. Warnky, and B. L. Anderson, “Design and demonstration of a higher-order polynomial cell--octic cell,” J. Lightwave Technol. 24, 982-990 (2006).
    [CrossRef]
  13. A. Rader and B. L. Anderson, “Demonstration of a linear optical true-time delay device using a microelectromechanical mirror array,” Appl. Opt. 42, 1409-1416 (2003).
    [CrossRef] [PubMed]
  14. Y. L. Chang and M. E. Marhic, “Fiber-optic ladder networks for inverse decoding coherent CDMA,” J. Lightwave Technol. 10, 1952-1062 (1992).
    [CrossRef]
  15. B. Moslehi, J. W. Goodman, M. Tur, and H. J. Shaw, “Fiber-optic lattice signal processing,” Proc. IEEE 72, 909-930 (1984).
    [CrossRef]
  16. K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. 33, 193-209 (1985).
    [CrossRef]
  17. P. R. Prucnal and M. A. Santoro, “Spread spectrum fiber-optic local area network using optical processing,” J. Lightwave Technol. 4, 547-554 (1986).
    [CrossRef]
  18. D. M. Gookin and M. H. Berry, “Finite impulse response filter with large dynamic range and high sampling rate,” Appl. Opt. 29, 1061-1062 (1990).
    [CrossRef] [PubMed]
  19. A. G. Podoleanu, R. K. Harding, and D. A. Jackson, “Low-cost high-speed multichannel fiber-optic correlator,” Opt. Lett. 20, 112-114 (1995).
    [CrossRef] [PubMed]
  20. G. W. Euliss and R. A. Athale, “Time-integrating correlator based on fiber-optic delay lines,” Opt. Lett. 19, 649-651 (1994).
    [CrossRef] [PubMed]
  21. P. C. Teh, P. Petropolous, M. Ibsen, and D. J. Richardson, “A comparative study of the performance of seven- and 63-chip optical code-division multiple access encoders and decorders based on superstructured fiber Bragg gratings,” J. Lightwave Technol. 19, 1352-1365 (2001).
    [CrossRef]
  22. J. White, “Long optical paths of large aperture,” J. Opt. Soc. Am. 32, 285-288 (1942).
    [CrossRef]
  23. B. L. Anderson, J. Stuart, A. Collins, C. A. Klein, E. A. Beecher, and S. B. Brown, “Optically produced true-time delays for phased antenna arrays,” Appl. Opt. 36, 8493-8503(1997).
    [CrossRef]
  24. B. L. Anderson and R. Mital, “Polynomial-based optical true-time delay devices using MEMs,” Appl. Opt. 41, 5449-5461 (2002).
    [CrossRef] [PubMed]
  25. J. G. Proakis, Digital Communications (McGraw-Hill, 1989).

2007 (1)

2006 (3)

2004 (3)

2003 (3)

A. Rader and B. L. Anderson, “Demonstration of a linear optical true-time delay device using a microelectromechanical mirror array,” Appl. Opt. 42, 1409-1416 (2003).
[CrossRef] [PubMed]

I. Shake, H. Takara, and S. Kawanishi, “Simple Q factor monitoring for BER estimation using opened eye diagrams captured by high-speed asynchronous electrooptical sampling,” IEEE Photon. Technol. Lett. 15, 620-622 (2003).
[CrossRef]

L. Y. Chan, K. K. Qureshi, P. K. A. Wai, B. Moses, L. F. K. Lui, H. Y. Tam, and M. S. Demokan, “All-optical bit-error monitoring system using cascaded inverted wavelength converter and optical NOR gate,” IEEE Photon. Technol. Lett. 15, 593-595(2003).
[CrossRef]

2002 (2)

2001 (1)

2000 (2)

G. Rossi, T. E. Dimmick, and D. J. Blumenthal, “Optical performance monitoring in reconfigurable WDM optical networks using subcarrier multiplexing,” J. Lightwave Technol. 18, 1639-1648 (2000).
[CrossRef]

Y. C. Chung, “Optical monitoring techniques for WDM networks,” in Electronic-Enhanced Optics, Optical Sensing in Semiconductor Manufacturing, Electro-Optics in Space, Broadband Optical Networks, Digest of the LEOS Summer Topical Meetings (IEEE, 2000), pp. IV43-IV44.

1997 (1)

1995 (1)

1994 (1)

1992 (1)

Y. L. Chang and M. E. Marhic, “Fiber-optic ladder networks for inverse decoding coherent CDMA,” J. Lightwave Technol. 10, 1952-1062 (1992).
[CrossRef]

1990 (1)

1989 (1)

J. G. Proakis, Digital Communications (McGraw-Hill, 1989).

1986 (1)

P. R. Prucnal and M. A. Santoro, “Spread spectrum fiber-optic local area network using optical processing,” J. Lightwave Technol. 4, 547-554 (1986).
[CrossRef]

1985 (1)

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. 33, 193-209 (1985).
[CrossRef]

1984 (1)

B. Moslehi, J. W. Goodman, M. Tur, and H. J. Shaw, “Fiber-optic lattice signal processing,” Proc. IEEE 72, 909-930 (1984).
[CrossRef]

1942 (1)

Abou-Galala, F.

Adams, R.

R. Adams, M. Rochette, R. T. Ng, and B. J. Eggleton, “All-optical in-band OSNR monitoring at 40 Gb/s using a nonlinear optical loop mirror,” IEEE Photon. Technol. Lett. 18, 469-471 (2006).
[CrossRef]

Anderson, B. L.

Athale, R. A.

Beecher, E. A.

Berry, M. H.

Blumenthal, D. J.

Brown, S. B.

Cao, X.-R.

Chan, L. Y.

L. Y. Chan, K. K. Qureshi, P. K. A. Wai, B. Moses, L. F. K. Lui, H. Y. Tam, and M. S. Demokan, “All-optical bit-error monitoring system using cascaded inverted wavelength converter and optical NOR gate,” IEEE Photon. Technol. Lett. 15, 593-595(2003).
[CrossRef]

Chang, Y. L.

Y. L. Chang and M. E. Marhic, “Fiber-optic ladder networks for inverse decoding coherent CDMA,” J. Lightwave Technol. 10, 1952-1062 (1992).
[CrossRef]

Chen, H.

Chung, Y. C.

Y. Takushima and Y. C. Chung, “Optical reflectometry based on correlation detection and its application to the in-service monitoring of WDM passive optical network,” Opt. Express 15, 5318-5326 (2007).
[CrossRef] [PubMed]

Y. C. Chung, “Optical monitoring techniques for WDM networks,” in Electronic-Enhanced Optics, Optical Sensing in Semiconductor Manufacturing, Electro-Optics in Space, Broadband Optical Networks, Digest of the LEOS Summer Topical Meetings (IEEE, 2000), pp. IV43-IV44.

Collins, A.

Cutler, C. C.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. 33, 193-209 (1985).
[CrossRef]

Demokan, M. S.

L. Y. Chan, K. K. Qureshi, P. K. A. Wai, B. Moses, L. F. K. Lui, H. Y. Tam, and M. S. Demokan, “All-optical bit-error monitoring system using cascaded inverted wavelength converter and optical NOR gate,” IEEE Photon. Technol. Lett. 15, 593-595(2003).
[CrossRef]

Dimmick, T. E.

Ding, L.

Duressi, A.

Eggleton, B. J.

R. Adams, M. Rochette, R. T. Ng, and B. J. Eggleton, “All-optical in-band OSNR monitoring at 40 Gb/s using a nonlinear optical loop mirror,” IEEE Photon. Technol. Lett. 18, 469-471 (2006).
[CrossRef]

Euliss, G. W.

Goodman, J. W.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. 33, 193-209 (1985).
[CrossRef]

B. Moslehi, J. W. Goodman, M. Tur, and H. J. Shaw, “Fiber-optic lattice signal processing,” Proc. IEEE 72, 909-930 (1984).
[CrossRef]

Gookin, D. M.

Harding, R. K.

Ibsen, M.

Jackson, D. A.

Jackson, K. P.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. 33, 193-209 (1985).
[CrossRef]

Kawanishi, S.

I. Shake, H. Takara, and S. Kawanishi, “Simple Q factor monitoring for BER estimation using opened eye diagrams captured by high-speed asynchronous electrooptical sampling,” IEEE Photon. Technol. Lett. 15, 620-622 (2003).
[CrossRef]

Klein, C. A.

Liddle, C. D.

Lu, C.

Lui, L. F. K.

L. Y. Chan, K. K. Qureshi, P. K. A. Wai, B. Moses, L. F. K. Lui, H. Y. Tam, and M. S. Demokan, “All-optical bit-error monitoring system using cascaded inverted wavelength converter and optical NOR gate,” IEEE Photon. Technol. Lett. 15, 593-595(2003).
[CrossRef]

Marhic, M. E.

Y. L. Chang and M. E. Marhic, “Fiber-optic ladder networks for inverse decoding coherent CDMA,” J. Lightwave Technol. 10, 1952-1062 (1992).
[CrossRef]

Mital, R.

Moses, B.

L. Y. Chan, K. K. Qureshi, P. K. A. Wai, B. Moses, L. F. K. Lui, H. Y. Tam, and M. S. Demokan, “All-optical bit-error monitoring system using cascaded inverted wavelength converter and optical NOR gate,” IEEE Photon. Technol. Lett. 15, 593-595(2003).
[CrossRef]

Moslehi, B.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. 33, 193-209 (1985).
[CrossRef]

B. Moslehi, J. W. Goodman, M. Tur, and H. J. Shaw, “Fiber-optic lattice signal processing,” Proc. IEEE 72, 909-930 (1984).
[CrossRef]

Newton, S. A.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. 33, 193-209 (1985).
[CrossRef]

Ng, R. T.

R. Adams, M. Rochette, R. T. Ng, and B. J. Eggleton, “All-optical in-band OSNR monitoring at 40 Gb/s using a nonlinear optical loop mirror,” IEEE Photon. Technol. Lett. 18, 469-471 (2006).
[CrossRef]

Petropolous, P.

Podoleanu, A. G.

Poon, A. W.

Proakis, J. G.

J. G. Proakis, Digital Communications (McGraw-Hill, 1989).

Prucnal, P. R.

P. R. Prucnal and M. A. Santoro, “Spread spectrum fiber-optic local area network using optical processing,” J. Lightwave Technol. 4, 547-554 (1986).
[CrossRef]

Qureshi, K. K.

L. Y. Chan, K. K. Qureshi, P. K. A. Wai, B. Moses, L. F. K. Lui, H. Y. Tam, and M. S. Demokan, “All-optical bit-error monitoring system using cascaded inverted wavelength converter and optical NOR gate,” IEEE Photon. Technol. Lett. 15, 593-595(2003).
[CrossRef]

Rabb, D.

Rader, A.

Richardson, D. J.

Rochette, M.

R. Adams, M. Rochette, R. T. Ng, and B. J. Eggleton, “All-optical in-band OSNR monitoring at 40 Gb/s using a nonlinear optical loop mirror,” IEEE Photon. Technol. Lett. 18, 469-471 (2006).
[CrossRef]

Rossi, G.

Santoro, M. A.

P. R. Prucnal and M. A. Santoro, “Spread spectrum fiber-optic local area network using optical processing,” J. Lightwave Technol. 4, 547-554 (1986).
[CrossRef]

Shake, I.

I. Shake, H. Takara, and S. Kawanishi, “Simple Q factor monitoring for BER estimation using opened eye diagrams captured by high-speed asynchronous electrooptical sampling,” IEEE Photon. Technol. Lett. 15, 620-622 (2003).
[CrossRef]

Shaw, H. J.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. 33, 193-209 (1985).
[CrossRef]

B. Moslehi, J. W. Goodman, M. Tur, and H. J. Shaw, “Fiber-optic lattice signal processing,” Proc. IEEE 72, 909-930 (1984).
[CrossRef]

Stuart, J.

Takara, H.

I. Shake, H. Takara, and S. Kawanishi, “Simple Q factor monitoring for BER estimation using opened eye diagrams captured by high-speed asynchronous electrooptical sampling,” IEEE Photon. Technol. Lett. 15, 620-622 (2003).
[CrossRef]

Takushima, Y.

Tam, H. Y.

L. Y. Chan, K. K. Qureshi, P. K. A. Wai, B. Moses, L. F. K. Lui, H. Y. Tam, and M. S. Demokan, “All-optical bit-error monitoring system using cascaded inverted wavelength converter and optical NOR gate,” IEEE Photon. Technol. Lett. 15, 593-595(2003).
[CrossRef]

Teh, P. C.

Tur, M.

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. 33, 193-209 (1985).
[CrossRef]

B. Moslehi, J. W. Goodman, M. Tur, and H. J. Shaw, “Fiber-optic lattice signal processing,” Proc. IEEE 72, 909-930 (1984).
[CrossRef]

Wai, P. K. A.

L. Y. Chan, K. K. Qureshi, P. K. A. Wai, B. Moses, L. F. K. Lui, H. Y. Tam, and M. S. Demokan, “All-optical bit-error monitoring system using cascaded inverted wavelength converter and optical NOR gate,” IEEE Photon. Technol. Lett. 15, 593-595(2003).
[CrossRef]

Wang, Y.

Warnky, C. M.

White, J.

Zhong, W.-D.

Appl. Opt. (6)

IEEE Photon. Technol. Lett. (3)

I. Shake, H. Takara, and S. Kawanishi, “Simple Q factor monitoring for BER estimation using opened eye diagrams captured by high-speed asynchronous electrooptical sampling,” IEEE Photon. Technol. Lett. 15, 620-622 (2003).
[CrossRef]

L. Y. Chan, K. K. Qureshi, P. K. A. Wai, B. Moses, L. F. K. Lui, H. Y. Tam, and M. S. Demokan, “All-optical bit-error monitoring system using cascaded inverted wavelength converter and optical NOR gate,” IEEE Photon. Technol. Lett. 15, 593-595(2003).
[CrossRef]

R. Adams, M. Rochette, R. T. Ng, and B. J. Eggleton, “All-optical in-band OSNR monitoring at 40 Gb/s using a nonlinear optical loop mirror,” IEEE Photon. Technol. Lett. 18, 469-471 (2006).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J. W. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microwave Theory Tech. 33, 193-209 (1985).
[CrossRef]

J. Lightwave Technol. (7)

J. Opt. Soc. Am. (1)

Opt. Express (2)

Opt. Lett. (2)

Proc. IEEE (1)

B. Moslehi, J. W. Goodman, M. Tur, and H. J. Shaw, “Fiber-optic lattice signal processing,” Proc. IEEE 72, 909-930 (1984).
[CrossRef]

Other (2)

J. G. Proakis, Digital Communications (McGraw-Hill, 1989).

Y. C. Chung, “Optical monitoring techniques for WDM networks,” in Electronic-Enhanced Optics, Optical Sensing in Semiconductor Manufacturing, Electro-Optics in Space, Broadband Optical Networks, Digest of the LEOS Summer Topical Meetings (IEEE, 2000), pp. IV43-IV44.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Correlating a degraded bit (input) with a reference represented by the weights results in an optical output pulse whose height and width directly measure the degree of degradation of the pulse during transmission.

Fig. 2
Fig. 2

Resulting correlation output for a single 010 bit sequence, comparing the ideal case (no degradation) to a signal with noise, dispersion, and timing jitter. The more degraded the signal, the less energy exceeds the threshold.

Fig. 3
Fig. 3

(a) Array of spots makes multiple bounces in a regular pattern on the field mirror. (b) Original White cell is adapted to time delays by replacing the field mirror with an array of micromirrors that switch individual beams among paths of different lengths. (c) Fixed micromirror array can be used in the correlator to control the paths of the beams in the TDL.

Fig. 4
Fig. 4

Block diagram of the apparatus. MZ, Mach–Zehnder modulator; PD, photodetector.

Fig. 5
Fig. 5

Circuit schematic for dispersion generation circuitry [25].

Fig. 6
Fig. 6

Expected correlator output for an unimpaired beam. Here N = 18 , with 6 beams weighted “one” and 12 beams weighted “zero” (not generated).

Fig. 7
Fig. 7

“Linear” White cell TDL. Each light beam visits the longer path (Mirror C) a successive number of times to produce the sequence of delayed beams.

Fig. 8
Fig. 8

Experimental apparatus.

Fig. 9
Fig. 9

(a) Light beams visit Arm A on every even-numbered bounce and (b) visit Arm B a varying number of times on the odd-numbered bounces. One beam is sent to the delay Arm C on every odd bounce and never visits Arm B.

Fig. 10
Fig. 10

Correlator output for an unimpaired input signal. (a) Measured correlation. (b) Expected correlation using the weights of Table 1.

Fig. 11
Fig. 11

Measured results for (a), (b) attenuation and (c), (d) dispersion compared to predicted results from [8].

Tables (1)

Tables Icon

Table 1 Relative Weights in the Experiment of the Six Light Beams

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ψ ( t ) = k = 0 N - 1 s k ( t ) r ( t k τ k ) ,

Metrics