Abstract

In this work we describe the experimental realization of a simple scheme capable of implementing RGB improved dynamic color binary-phase Fourier computer-generated holograms (CGHs) by means of a single ferroelectric liquid crystal on silicon (FLCOS) display and an electronically controlled color-filter wheel. Tricolor multiwavelength illumination is achieved by aligning an Ar–Kr laser (wavelengths λB=488nm and λG=568nm) and a He–Ne laser (λR=633nm). Chromatic compensation is achieved by synchronizing a time sequence of properly scaled CGHs displayed on the FLCOS display with the corresponding filter from the color wheel. Quality CGHs are designed for each color component by using an optimized iterative Fourier transform algorithm applied to a phase-only modulation display. As a result, we present excellent experimental results on the reconstruction of these time-multiplexed wavelength-compensated diffractive optical elements and color CGHs.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. S. Millán, M. J. Yzuel, J. Campos, and C. Ferreira, “Different strategies in optical recognition of polychromatic images,” Appl. Opt. 31, 2560-2567 (1992).
    [CrossRef] [PubMed]
  2. Z. Q. Wang, C. M. Cartwright, C. Southar, and W. A. Gillespie, “Real-time color image correlator with a color liquid-crystal television and a Fresnel holographic filter,” Appl. Opt. 32, 715-717 (1993).
    [CrossRef] [PubMed]
  3. M. L. Hsieh, K. Y. Hsu, and H. Zhai, “Color image recognition by use of a joint-transform correlator of three liquid-crystal televisions,” Appl. Opt. 41, 1500-1504(2002).
    [CrossRef] [PubMed]
  4. I. Moreno, J. Campos, M. J. Yzuel, and V. Kober, “Implementation of bipolar real-valued input scenes in real-time optical correlator: application to color pattern recognition,” Opt. Eng. 37, 144-150 (1998).
    [CrossRef]
  5. E. Tajahuerce, V. Climent, J. Lancis, M. Fernández-Alonso, and P. Andrés, “Achromatic Fourier transforming properties of a separated diffractive lens doublet: theory and experiment,” Appl. Opt. 37, 6164-6173 (1998).
    [CrossRef]
  6. P. St.-Hiliare, S. A. Benton, M. Lucente, and P. M. Hubel, “Color images with the MIT holographic video display,” Proc. SPIE 1667, 73-84 (1992).
    [CrossRef]
  7. T. Shimobaba and T. Ito, “A color holographic reconstruction system by time division multiplexing with reference light of laser,” Opt. Rev. 10, 339-341 (2003).
    [CrossRef]
  8. T. Shimobaba, A. Shiraki, N. Masuda, and T. Ito, “An electroholographic colour reconstruction by time division switching of reference lights,” J. Opt. A Pure Appl. Opt. 9, 757-760(2007).
    [CrossRef]
  9. T. Ito and K. Okano, “Color electroholography by three colored reference lights simultaneously incident upon one hologram panel,” Opt. Express 12, 4320-4325 (2004).
    [CrossRef] [PubMed]
  10. A. Márquez, C. Iemmi, J. Campos, J. C. Escalera, and M. J. Yzuel, “Programmable apodizer to compensate chromatic aberration effects using a liquid crystal spatial light modulator,” Opt. Express 13, 716-730 (2005).
    [CrossRef] [PubMed]
  11. A. Márquez, C. Iemmi, J. Campos, and M. J. Yzuel, “Achromatic diffractive lens written onto a liquid crystal display,” Opt. Lett. 31, 392-394 (2006).
    [CrossRef] [PubMed]
  12. M. S. Millán, J. Otón, and E. Pérez-Cabré, “Dynamic compensation of programmable Fresnel lenses,” Opt. Express 14, 6226-6242 (2006).
    [CrossRef] [PubMed]
  13. M. S. Millán, J. Otón, and E. Pérez-Cabré, “Dynamic compensation of chromatic aberration in a programmable diffractive lens,” Opt. Express 14, 9103-9111 (2006).
    [CrossRef] [PubMed]
  14. M. L. Huebschman, B. Munjuluri, and H. R. Garner, “Dynamic holographic 3-D image projection,” Opt. Express 11, 437-445(2003).
    [CrossRef] [PubMed]
  15. A. Martínez, I. Moreno, and M. M. Sánchez-López, “Comparative analysis of time and spatial multiplexed diffractive optical elements in a ferroelectric liquid crystal display,” Jpn. J. Appl. Phys. 47, 1589-1594 (2008).
    [CrossRef]
  16. I. Moreno, C. Iemmi, A. Márquez, J. Campos, and M. J. Yzuel, “Modulation light efficiency of diffractive lenses displayed in a restricted phase-mostly modulation display,” Appl. Opt. 43, 6278-6284 (2004).
    [CrossRef] [PubMed]
  17. A. Martínez, N. Beaudoin, I. Moreno, M. M. Sánchez-López, and P. Velásquez, “Optimization of the contrast-ratio of a ferroelectric liquid crystal optical modulator,” J. Opt. A Pure Appl. Opt. 8, 1013-1018 (2006).
    [CrossRef]
  18. J. A. Davis and M. A. Waring, “Contrast ratio improvement for the two-dimensional magneto-optic spatial light modulator,” Appl. Opt. 31, 6183-6184 (1992).
    [CrossRef] [PubMed]
  19. I. Moreno, J. Campos, C. Gorecki, and M. J. Yzuel, “Effects of amplitude and phase mismatching errors in the generation of a kinoform for pattern recognition,” Jpn. J. Appl. Phys. 34, 6423-6432 (1995).
    [CrossRef]
  20. T. Shimobaba, A. Shiraki, N. Masuda, and T. Ito, “Electroholographic display unit for three-dimensional display by use of special-purpose computational chip for holography and reflective LCD panel,” Opt. Express 13, 4196-4201 (2005).
    [CrossRef] [PubMed]
  21. T. Shimonaba, A. Shiraki, Y. Ichihashi, N. Masuda, and T. Ito, “Interactive color electroholography using the FPGA technology and time division switching method,” Electron. Exp. 5, 271-278 (2008).
    [CrossRef]
  22. M. Skeren, I. Richter, and P. Fiala, “Iterative Fourier transform algorithm: comparison of various approaches,” J. Mod. Opt. 49, 1851-1870 (2002).
    [CrossRef]
  23. F. Wyrowski, “Diffractive optical elements: iterative calculation of quantized, blazed phase structures,” J. Opt. Soc. Am. A 7, 961-969 (1990).
    [CrossRef]

2008 (2)

A. Martínez, I. Moreno, and M. M. Sánchez-López, “Comparative analysis of time and spatial multiplexed diffractive optical elements in a ferroelectric liquid crystal display,” Jpn. J. Appl. Phys. 47, 1589-1594 (2008).
[CrossRef]

T. Shimonaba, A. Shiraki, Y. Ichihashi, N. Masuda, and T. Ito, “Interactive color electroholography using the FPGA technology and time division switching method,” Electron. Exp. 5, 271-278 (2008).
[CrossRef]

2007 (1)

T. Shimobaba, A. Shiraki, N. Masuda, and T. Ito, “An electroholographic colour reconstruction by time division switching of reference lights,” J. Opt. A Pure Appl. Opt. 9, 757-760(2007).
[CrossRef]

2006 (4)

2005 (2)

2004 (2)

2003 (2)

M. L. Huebschman, B. Munjuluri, and H. R. Garner, “Dynamic holographic 3-D image projection,” Opt. Express 11, 437-445(2003).
[CrossRef] [PubMed]

T. Shimobaba and T. Ito, “A color holographic reconstruction system by time division multiplexing with reference light of laser,” Opt. Rev. 10, 339-341 (2003).
[CrossRef]

2002 (2)

M. Skeren, I. Richter, and P. Fiala, “Iterative Fourier transform algorithm: comparison of various approaches,” J. Mod. Opt. 49, 1851-1870 (2002).
[CrossRef]

M. L. Hsieh, K. Y. Hsu, and H. Zhai, “Color image recognition by use of a joint-transform correlator of three liquid-crystal televisions,” Appl. Opt. 41, 1500-1504(2002).
[CrossRef] [PubMed]

1998 (2)

I. Moreno, J. Campos, M. J. Yzuel, and V. Kober, “Implementation of bipolar real-valued input scenes in real-time optical correlator: application to color pattern recognition,” Opt. Eng. 37, 144-150 (1998).
[CrossRef]

E. Tajahuerce, V. Climent, J. Lancis, M. Fernández-Alonso, and P. Andrés, “Achromatic Fourier transforming properties of a separated diffractive lens doublet: theory and experiment,” Appl. Opt. 37, 6164-6173 (1998).
[CrossRef]

1995 (1)

I. Moreno, J. Campos, C. Gorecki, and M. J. Yzuel, “Effects of amplitude and phase mismatching errors in the generation of a kinoform for pattern recognition,” Jpn. J. Appl. Phys. 34, 6423-6432 (1995).
[CrossRef]

1993 (1)

1992 (3)

1990 (1)

Andrés, P.

Beaudoin, N.

A. Martínez, N. Beaudoin, I. Moreno, M. M. Sánchez-López, and P. Velásquez, “Optimization of the contrast-ratio of a ferroelectric liquid crystal optical modulator,” J. Opt. A Pure Appl. Opt. 8, 1013-1018 (2006).
[CrossRef]

Benton, S. A.

P. St.-Hiliare, S. A. Benton, M. Lucente, and P. M. Hubel, “Color images with the MIT holographic video display,” Proc. SPIE 1667, 73-84 (1992).
[CrossRef]

Campos, J.

Cartwright, C. M.

Climent, V.

Davis, J. A.

Escalera, J. C.

Fernández-Alonso, M.

Ferreira, C.

Fiala, P.

M. Skeren, I. Richter, and P. Fiala, “Iterative Fourier transform algorithm: comparison of various approaches,” J. Mod. Opt. 49, 1851-1870 (2002).
[CrossRef]

Garner, H. R.

Gillespie, W. A.

Gorecki, C.

I. Moreno, J. Campos, C. Gorecki, and M. J. Yzuel, “Effects of amplitude and phase mismatching errors in the generation of a kinoform for pattern recognition,” Jpn. J. Appl. Phys. 34, 6423-6432 (1995).
[CrossRef]

Hsieh, M. L.

Hsu, K. Y.

Hubel, P. M.

P. St.-Hiliare, S. A. Benton, M. Lucente, and P. M. Hubel, “Color images with the MIT holographic video display,” Proc. SPIE 1667, 73-84 (1992).
[CrossRef]

Huebschman, M. L.

Ichihashi, Y.

T. Shimonaba, A. Shiraki, Y. Ichihashi, N. Masuda, and T. Ito, “Interactive color electroholography using the FPGA technology and time division switching method,” Electron. Exp. 5, 271-278 (2008).
[CrossRef]

Iemmi, C.

Ito, T.

T. Shimonaba, A. Shiraki, Y. Ichihashi, N. Masuda, and T. Ito, “Interactive color electroholography using the FPGA technology and time division switching method,” Electron. Exp. 5, 271-278 (2008).
[CrossRef]

T. Shimobaba, A. Shiraki, N. Masuda, and T. Ito, “An electroholographic colour reconstruction by time division switching of reference lights,” J. Opt. A Pure Appl. Opt. 9, 757-760(2007).
[CrossRef]

T. Shimobaba, A. Shiraki, N. Masuda, and T. Ito, “Electroholographic display unit for three-dimensional display by use of special-purpose computational chip for holography and reflective LCD panel,” Opt. Express 13, 4196-4201 (2005).
[CrossRef] [PubMed]

T. Ito and K. Okano, “Color electroholography by three colored reference lights simultaneously incident upon one hologram panel,” Opt. Express 12, 4320-4325 (2004).
[CrossRef] [PubMed]

T. Shimobaba and T. Ito, “A color holographic reconstruction system by time division multiplexing with reference light of laser,” Opt. Rev. 10, 339-341 (2003).
[CrossRef]

Kober, V.

I. Moreno, J. Campos, M. J. Yzuel, and V. Kober, “Implementation of bipolar real-valued input scenes in real-time optical correlator: application to color pattern recognition,” Opt. Eng. 37, 144-150 (1998).
[CrossRef]

Lancis, J.

Lucente, M.

P. St.-Hiliare, S. A. Benton, M. Lucente, and P. M. Hubel, “Color images with the MIT holographic video display,” Proc. SPIE 1667, 73-84 (1992).
[CrossRef]

Márquez, A.

Martínez, A.

A. Martínez, I. Moreno, and M. M. Sánchez-López, “Comparative analysis of time and spatial multiplexed diffractive optical elements in a ferroelectric liquid crystal display,” Jpn. J. Appl. Phys. 47, 1589-1594 (2008).
[CrossRef]

A. Martínez, N. Beaudoin, I. Moreno, M. M. Sánchez-López, and P. Velásquez, “Optimization of the contrast-ratio of a ferroelectric liquid crystal optical modulator,” J. Opt. A Pure Appl. Opt. 8, 1013-1018 (2006).
[CrossRef]

Masuda, N.

T. Shimonaba, A. Shiraki, Y. Ichihashi, N. Masuda, and T. Ito, “Interactive color electroholography using the FPGA technology and time division switching method,” Electron. Exp. 5, 271-278 (2008).
[CrossRef]

T. Shimobaba, A. Shiraki, N. Masuda, and T. Ito, “An electroholographic colour reconstruction by time division switching of reference lights,” J. Opt. A Pure Appl. Opt. 9, 757-760(2007).
[CrossRef]

T. Shimobaba, A. Shiraki, N. Masuda, and T. Ito, “Electroholographic display unit for three-dimensional display by use of special-purpose computational chip for holography and reflective LCD panel,” Opt. Express 13, 4196-4201 (2005).
[CrossRef] [PubMed]

Millán, M. S.

Moreno, I.

A. Martínez, I. Moreno, and M. M. Sánchez-López, “Comparative analysis of time and spatial multiplexed diffractive optical elements in a ferroelectric liquid crystal display,” Jpn. J. Appl. Phys. 47, 1589-1594 (2008).
[CrossRef]

A. Martínez, N. Beaudoin, I. Moreno, M. M. Sánchez-López, and P. Velásquez, “Optimization of the contrast-ratio of a ferroelectric liquid crystal optical modulator,” J. Opt. A Pure Appl. Opt. 8, 1013-1018 (2006).
[CrossRef]

I. Moreno, C. Iemmi, A. Márquez, J. Campos, and M. J. Yzuel, “Modulation light efficiency of diffractive lenses displayed in a restricted phase-mostly modulation display,” Appl. Opt. 43, 6278-6284 (2004).
[CrossRef] [PubMed]

I. Moreno, J. Campos, M. J. Yzuel, and V. Kober, “Implementation of bipolar real-valued input scenes in real-time optical correlator: application to color pattern recognition,” Opt. Eng. 37, 144-150 (1998).
[CrossRef]

I. Moreno, J. Campos, C. Gorecki, and M. J. Yzuel, “Effects of amplitude and phase mismatching errors in the generation of a kinoform for pattern recognition,” Jpn. J. Appl. Phys. 34, 6423-6432 (1995).
[CrossRef]

Munjuluri, B.

Okano, K.

Otón, J.

Pérez-Cabré, E.

Richter, I.

M. Skeren, I. Richter, and P. Fiala, “Iterative Fourier transform algorithm: comparison of various approaches,” J. Mod. Opt. 49, 1851-1870 (2002).
[CrossRef]

Sánchez-López, M. M.

A. Martínez, I. Moreno, and M. M. Sánchez-López, “Comparative analysis of time and spatial multiplexed diffractive optical elements in a ferroelectric liquid crystal display,” Jpn. J. Appl. Phys. 47, 1589-1594 (2008).
[CrossRef]

A. Martínez, N. Beaudoin, I. Moreno, M. M. Sánchez-López, and P. Velásquez, “Optimization of the contrast-ratio of a ferroelectric liquid crystal optical modulator,” J. Opt. A Pure Appl. Opt. 8, 1013-1018 (2006).
[CrossRef]

Shimobaba, T.

T. Shimobaba, A. Shiraki, N. Masuda, and T. Ito, “An electroholographic colour reconstruction by time division switching of reference lights,” J. Opt. A Pure Appl. Opt. 9, 757-760(2007).
[CrossRef]

T. Shimobaba, A. Shiraki, N. Masuda, and T. Ito, “Electroholographic display unit for three-dimensional display by use of special-purpose computational chip for holography and reflective LCD panel,” Opt. Express 13, 4196-4201 (2005).
[CrossRef] [PubMed]

T. Shimobaba and T. Ito, “A color holographic reconstruction system by time division multiplexing with reference light of laser,” Opt. Rev. 10, 339-341 (2003).
[CrossRef]

Shimonaba, T.

T. Shimonaba, A. Shiraki, Y. Ichihashi, N. Masuda, and T. Ito, “Interactive color electroholography using the FPGA technology and time division switching method,” Electron. Exp. 5, 271-278 (2008).
[CrossRef]

Shiraki, A.

T. Shimonaba, A. Shiraki, Y. Ichihashi, N. Masuda, and T. Ito, “Interactive color electroholography using the FPGA technology and time division switching method,” Electron. Exp. 5, 271-278 (2008).
[CrossRef]

T. Shimobaba, A. Shiraki, N. Masuda, and T. Ito, “An electroholographic colour reconstruction by time division switching of reference lights,” J. Opt. A Pure Appl. Opt. 9, 757-760(2007).
[CrossRef]

T. Shimobaba, A. Shiraki, N. Masuda, and T. Ito, “Electroholographic display unit for three-dimensional display by use of special-purpose computational chip for holography and reflective LCD panel,” Opt. Express 13, 4196-4201 (2005).
[CrossRef] [PubMed]

Skeren, M.

M. Skeren, I. Richter, and P. Fiala, “Iterative Fourier transform algorithm: comparison of various approaches,” J. Mod. Opt. 49, 1851-1870 (2002).
[CrossRef]

Southar, C.

St.-Hiliare, P.

P. St.-Hiliare, S. A. Benton, M. Lucente, and P. M. Hubel, “Color images with the MIT holographic video display,” Proc. SPIE 1667, 73-84 (1992).
[CrossRef]

Tajahuerce, E.

Velásquez, P.

A. Martínez, N. Beaudoin, I. Moreno, M. M. Sánchez-López, and P. Velásquez, “Optimization of the contrast-ratio of a ferroelectric liquid crystal optical modulator,” J. Opt. A Pure Appl. Opt. 8, 1013-1018 (2006).
[CrossRef]

Wang, Z. Q.

Waring, M. A.

Wyrowski, F.

Yzuel, M. J.

Zhai, H.

Appl. Opt. (6)

Electron. Exp. (1)

T. Shimonaba, A. Shiraki, Y. Ichihashi, N. Masuda, and T. Ito, “Interactive color electroholography using the FPGA technology and time division switching method,” Electron. Exp. 5, 271-278 (2008).
[CrossRef]

J. Mod. Opt. (1)

M. Skeren, I. Richter, and P. Fiala, “Iterative Fourier transform algorithm: comparison of various approaches,” J. Mod. Opt. 49, 1851-1870 (2002).
[CrossRef]

J. Opt. A Pure Appl. Opt. (2)

A. Martínez, N. Beaudoin, I. Moreno, M. M. Sánchez-López, and P. Velásquez, “Optimization of the contrast-ratio of a ferroelectric liquid crystal optical modulator,” J. Opt. A Pure Appl. Opt. 8, 1013-1018 (2006).
[CrossRef]

T. Shimobaba, A. Shiraki, N. Masuda, and T. Ito, “An electroholographic colour reconstruction by time division switching of reference lights,” J. Opt. A Pure Appl. Opt. 9, 757-760(2007).
[CrossRef]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (2)

I. Moreno, J. Campos, C. Gorecki, and M. J. Yzuel, “Effects of amplitude and phase mismatching errors in the generation of a kinoform for pattern recognition,” Jpn. J. Appl. Phys. 34, 6423-6432 (1995).
[CrossRef]

A. Martínez, I. Moreno, and M. M. Sánchez-López, “Comparative analysis of time and spatial multiplexed diffractive optical elements in a ferroelectric liquid crystal display,” Jpn. J. Appl. Phys. 47, 1589-1594 (2008).
[CrossRef]

Opt. Eng. (1)

I. Moreno, J. Campos, M. J. Yzuel, and V. Kober, “Implementation of bipolar real-valued input scenes in real-time optical correlator: application to color pattern recognition,” Opt. Eng. 37, 144-150 (1998).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Opt. Rev. (1)

T. Shimobaba and T. Ito, “A color holographic reconstruction system by time division multiplexing with reference light of laser,” Opt. Rev. 10, 339-341 (2003).
[CrossRef]

Proc. SPIE (1)

P. St.-Hiliare, S. A. Benton, M. Lucente, and P. M. Hubel, “Color images with the MIT holographic video display,” Proc. SPIE 1667, 73-84 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Scheme of the operating system. (b) Picture of the color-filter wheel. (c) Picture of the FLCOS display. SF, spatial filter; PBS, polarization beam splitter.

Fig. 2
Fig. 2

(a) Light emission spectra for the Ar–Kr and He–Ne lasers. (b) Normalized transmission spectra of the filters in the color wheel.

Fig. 3
Fig. 3

Diffraction pattern from a 2D square amplitude diffraction grating: (a) static grating and (b) dynamic wavelength- compensated grating.

Fig. 4
Fig. 4

(a) Gray-level object. (b) Binary phase monochrome hologram obtained after IFTA procedure. (c) Numerical simulation of the monochrome hologram reconstruction. (d) Numerical simulation of the hologram reconstruction simultaneously illuminated with the three RGB lasers.

Fig. 5
Fig. 5

Procedure for color hologram design. (a) Color object. (b) RGB decomposition. (c) Calculation of scaled IFTA binary phase holograms in each channel. (d) Numerical reconstruction.

Fig. 6
Fig. 6

Experimental reconstruction from (a) static monochrome hologram, (b) wavelength-compensated monochrome hologram, and (c) wavelength-compensated color hologram.

Tables (1)

Tables Icon

Table 1 Characteristics of the Liquid Crystal on Silicon Display for the Three Operating Wavelengths

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

J i = P 45 W i ( ϕ ) ( 1 0 ) ,
W a ( ϕ ) = ( 1 0 0 exp ( i ϕ ) ) , W b ( ϕ ) = R ( 45 ° ) · W a ( ϕ ) · R ( + 45 ° ) ,
R ( θ ) = ( cos θ sin θ sin θ cos θ ) .
P 0 = ( 1 0 0 0 ) .
J a = 1 2 ( + 1 1 ) , J b = exp ( i ϕ ) J a .
η m = 2 π 2 sin 2 ( ϕ 2 ) ,
η m DC = 1 2 cos 2 ( ϕ 2 ) ,

Metrics