Abstract

Applying the concept of binary superimposed gratings, widely tunable single-mode laser diodes suitable for multispecies gas detection in the 1.8μm wavelength range could be manufactured on InAs/InGaAs quantum dash-in-a-well material. A discrete wavelength tuning range of 21nm as well as continuous tuning over 0.8nm are demonstrated. Water and hydrogen chloride could be detected at absorption lines 13nm apart.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Werle, “Diode laser sensors for in-situ gas analysis,” in Laser in Environmental and Life Sciences--Modern Analytical Methods, P. Hering, J. P. Lay, and S. Stry, eds. (Springer, 2004).
  2. V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29, 1824-1834 (1993).
    [CrossRef]
  3. H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433-441 (1996).
    [CrossRef]
  4. H.-P. Gauggel, H. Artman, C. Geng, F. Scholz, and H. Schweizer, “Wide-range tunability of GaInP-AlGaInP DFB lasers with superstructured gratings,” IEEE Photon. Technol. Lett. 9, 14-16 (1997).
    [CrossRef]
  5. I. A. Avrutsky, D. S. Ellis, A. Tager, H. Anis, and J. M. Xu, “Design of widely tunable semiconductor lasers and the concept of binary superimposed gratings (BSG's),” IEEE J. Quantum Electron. 34, 729-741 (1998).
    [CrossRef]
  6. J. Hong, M. Cyr, H. Kim, S. Jatar, C. Rogers, D. Goodchild, and S. Clements, “Cascaded strongly gain coupled (SGC) DFB lasers with 15-nm continuous-wavelength tuning,” IEEE Photon. Technol. Lett. 11, 1214-1216 (1999).
    [CrossRef]
  7. R. Todt, T. Jacke, R. Meyer, and M.-C. Amann, “Thermally widely tunable laser diodes with distributed feedback,” Appl. Phys. Lett. 87, 021103 (2005).
    [CrossRef]
  8. M. Maute, F. Riemenschneider, G. Böhm, H. Halbritter, M. Ortsiefer, R. Shau, P. Meissner, and M.-C. Amann, “Micro-mechanically tunable long wavelength VCSEL with buried tunnel junction,” Electron. Lett. 40, 430-431 (2004).
    [CrossRef]
  9. C. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6, 978-987 (2000).
    [CrossRef]
  10. S. Mahnkopf, R. März, M. Kamp, G. H. Duan, F. Lelarge, and A. Forchel, “Tunable photonic crystal coupled-cavity laser,” IEEE J. Quantum Elect. 40,, 1306-1314 (2004).
    [CrossRef]
  11. Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, Y. Kondo, and M. Yamamoto, “Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 29, 1817-1823 (1993).
    [CrossRef]
  12. M. Müller, M. Kamp, A. Forchel, and J.-L. Gentner, “Wide-range-tunable laterally coupled distributed feedback lasers based on InGaAsP-InP,” Appl. Phys. Lett. 79, 2684-2686(2001).
    [CrossRef]
  13. V. Minier, A. Kevorkian, and J. M. Xu, “Diffraction characteristics of superimposed holographic gratings in planar optical waveguides,” IEEE Photon. Technol. Lett. 4, 1115-1118 (1992).
    [CrossRef]
  14. V. Minier, and J. M. Xu, “Coupled-mode analysis of superimposed phase grating guided-wave structures and intergrating coupling effects,” Opt. Eng. 32, 2054-2063 (1993).
    [CrossRef]
  15. V. Jayaraman, D. A. Coldren, and L. A. Coldren, “Extended tuning range semiconductor lasers with sampled gratings,” paper SDL15.5 presented at LEOS'91, San Jose, California, 4-7 November 1991.
  16. M. Müller, F. Klopf, M. Kamp, J. P. Reithmaier, and A. Forchel, “Wide range tunable laterally coupled distributed feedback lasers based on InGaAs-GaAs quantum dots,” IEEE Photon. Technol. Lett. 14, 1246-1248 (2002).
    [CrossRef]
  17. J. P. Reithmaier, S. Deubert, R. Krebs, F. Klopf, R. Schwertberger, A. Somers, L. Bach, W. Kaiser, A. Forchel, R. Alizon, D. Hadass, A. Bilenca, H. Dery, B. Mikhelashvili, G. Eisenstein, M. Calligaro, S. Bansropun, and M. Krakowski, “Lasers and amplifiers based on quantum-dot like gain material,” Proc. SPIE 5361, 1-14 (2004).
    [CrossRef]
  18. A. Somers, W. Kaiser, J. P. Reithmaier, A. Forchel, M. Gioaninni, and I. Montrosset, “Optical gain properties of InAs/InAlGaAs/InP quantum dash structures with a spectral gain bandwidth of more than 300 nm,” Appl. Phys. Lett. 89, 061107 (2006).
    [CrossRef]
  19. J. P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D 38, 2088-2102 (2005).
    [CrossRef]
  20. A. Sauerwald, T. Kümmell, G. Bacher, A. Somers, R. Schwertberger, J. P. Reithmaier, and A. Forchel, “Size control of InAs quantum dashes,” Appl. Phys. Lett. 86, 253112 (2005).
    [CrossRef]
  21. G. B. Morrison and D. T. Cassidy, “A probability-amplitude transfer matrix model for distributed-feedback laser structures,” IEEE J. Quantum Electron. 36, 633-640 (2000).
    [CrossRef]
  22. M. Yamada and K. Sakuda, “Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach,” Appl. Opt. 26, 3474-3478 (1987).
    [CrossRef] [PubMed]
  23. T. Makino, “Transfer-matrix analysis of the intensity and phase noise of multi-section DFB semiconductor lasers,” IEEE J. Quantum Electron. 27, 2404-2415 (1991).
    [CrossRef]
  24. M. Kamp, J. Hofmann, F. Schäfer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling--a material independent way to complex coupled DFB lasers,” Opt. Mater. 17, 19-25 (2001).
    [CrossRef]
  25. A. A. Ukhanov, R. H. Wang, T. J. Rotter, A. Stintz, L. F. Lester, P. G. Eliseev, and K. J. Malloy, “Orientation dependence of the optical properties in InAs quantum-dash lasers on InP,” Appl. Phys. Lett. 81, 981-983 (2002).
    [CrossRef]

2006 (1)

A. Somers, W. Kaiser, J. P. Reithmaier, A. Forchel, M. Gioaninni, and I. Montrosset, “Optical gain properties of InAs/InAlGaAs/InP quantum dash structures with a spectral gain bandwidth of more than 300 nm,” Appl. Phys. Lett. 89, 061107 (2006).
[CrossRef]

2005 (3)

J. P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D 38, 2088-2102 (2005).
[CrossRef]

A. Sauerwald, T. Kümmell, G. Bacher, A. Somers, R. Schwertberger, J. P. Reithmaier, and A. Forchel, “Size control of InAs quantum dashes,” Appl. Phys. Lett. 86, 253112 (2005).
[CrossRef]

R. Todt, T. Jacke, R. Meyer, and M.-C. Amann, “Thermally widely tunable laser diodes with distributed feedback,” Appl. Phys. Lett. 87, 021103 (2005).
[CrossRef]

2004 (3)

M. Maute, F. Riemenschneider, G. Böhm, H. Halbritter, M. Ortsiefer, R. Shau, P. Meissner, and M.-C. Amann, “Micro-mechanically tunable long wavelength VCSEL with buried tunnel junction,” Electron. Lett. 40, 430-431 (2004).
[CrossRef]

S. Mahnkopf, R. März, M. Kamp, G. H. Duan, F. Lelarge, and A. Forchel, “Tunable photonic crystal coupled-cavity laser,” IEEE J. Quantum Elect. 40,, 1306-1314 (2004).
[CrossRef]

J. P. Reithmaier, S. Deubert, R. Krebs, F. Klopf, R. Schwertberger, A. Somers, L. Bach, W. Kaiser, A. Forchel, R. Alizon, D. Hadass, A. Bilenca, H. Dery, B. Mikhelashvili, G. Eisenstein, M. Calligaro, S. Bansropun, and M. Krakowski, “Lasers and amplifiers based on quantum-dot like gain material,” Proc. SPIE 5361, 1-14 (2004).
[CrossRef]

2002 (2)

M. Müller, F. Klopf, M. Kamp, J. P. Reithmaier, and A. Forchel, “Wide range tunable laterally coupled distributed feedback lasers based on InGaAs-GaAs quantum dots,” IEEE Photon. Technol. Lett. 14, 1246-1248 (2002).
[CrossRef]

A. A. Ukhanov, R. H. Wang, T. J. Rotter, A. Stintz, L. F. Lester, P. G. Eliseev, and K. J. Malloy, “Orientation dependence of the optical properties in InAs quantum-dash lasers on InP,” Appl. Phys. Lett. 81, 981-983 (2002).
[CrossRef]

2001 (2)

M. Kamp, J. Hofmann, F. Schäfer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling--a material independent way to complex coupled DFB lasers,” Opt. Mater. 17, 19-25 (2001).
[CrossRef]

M. Müller, M. Kamp, A. Forchel, and J.-L. Gentner, “Wide-range-tunable laterally coupled distributed feedback lasers based on InGaAsP-InP,” Appl. Phys. Lett. 79, 2684-2686(2001).
[CrossRef]

2000 (2)

G. B. Morrison and D. T. Cassidy, “A probability-amplitude transfer matrix model for distributed-feedback laser structures,” IEEE J. Quantum Electron. 36, 633-640 (2000).
[CrossRef]

C. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6, 978-987 (2000).
[CrossRef]

1999 (1)

J. Hong, M. Cyr, H. Kim, S. Jatar, C. Rogers, D. Goodchild, and S. Clements, “Cascaded strongly gain coupled (SGC) DFB lasers with 15-nm continuous-wavelength tuning,” IEEE Photon. Technol. Lett. 11, 1214-1216 (1999).
[CrossRef]

1998 (1)

I. A. Avrutsky, D. S. Ellis, A. Tager, H. Anis, and J. M. Xu, “Design of widely tunable semiconductor lasers and the concept of binary superimposed gratings (BSG's),” IEEE J. Quantum Electron. 34, 729-741 (1998).
[CrossRef]

1997 (1)

H.-P. Gauggel, H. Artman, C. Geng, F. Scholz, and H. Schweizer, “Wide-range tunability of GaInP-AlGaInP DFB lasers with superstructured gratings,” IEEE Photon. Technol. Lett. 9, 14-16 (1997).
[CrossRef]

1996 (1)

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433-441 (1996).
[CrossRef]

1993 (3)

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29, 1824-1834 (1993).
[CrossRef]

Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, Y. Kondo, and M. Yamamoto, “Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 29, 1817-1823 (1993).
[CrossRef]

V. Minier, and J. M. Xu, “Coupled-mode analysis of superimposed phase grating guided-wave structures and intergrating coupling effects,” Opt. Eng. 32, 2054-2063 (1993).
[CrossRef]

1992 (1)

V. Minier, A. Kevorkian, and J. M. Xu, “Diffraction characteristics of superimposed holographic gratings in planar optical waveguides,” IEEE Photon. Technol. Lett. 4, 1115-1118 (1992).
[CrossRef]

1991 (1)

T. Makino, “Transfer-matrix analysis of the intensity and phase noise of multi-section DFB semiconductor lasers,” IEEE J. Quantum Electron. 27, 2404-2415 (1991).
[CrossRef]

1987 (1)

Alizon, R.

J. P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D 38, 2088-2102 (2005).
[CrossRef]

J. P. Reithmaier, S. Deubert, R. Krebs, F. Klopf, R. Schwertberger, A. Somers, L. Bach, W. Kaiser, A. Forchel, R. Alizon, D. Hadass, A. Bilenca, H. Dery, B. Mikhelashvili, G. Eisenstein, M. Calligaro, S. Bansropun, and M. Krakowski, “Lasers and amplifiers based on quantum-dot like gain material,” Proc. SPIE 5361, 1-14 (2004).
[CrossRef]

Amann, M.-C.

R. Todt, T. Jacke, R. Meyer, and M.-C. Amann, “Thermally widely tunable laser diodes with distributed feedback,” Appl. Phys. Lett. 87, 021103 (2005).
[CrossRef]

M. Maute, F. Riemenschneider, G. Böhm, H. Halbritter, M. Ortsiefer, R. Shau, P. Meissner, and M.-C. Amann, “Micro-mechanically tunable long wavelength VCSEL with buried tunnel junction,” Electron. Lett. 40, 430-431 (2004).
[CrossRef]

Anis, H.

I. A. Avrutsky, D. S. Ellis, A. Tager, H. Anis, and J. M. Xu, “Design of widely tunable semiconductor lasers and the concept of binary superimposed gratings (BSG's),” IEEE J. Quantum Electron. 34, 729-741 (1998).
[CrossRef]

Artman, H.

H.-P. Gauggel, H. Artman, C. Geng, F. Scholz, and H. Schweizer, “Wide-range tunability of GaInP-AlGaInP DFB lasers with superstructured gratings,” IEEE Photon. Technol. Lett. 9, 14-16 (1997).
[CrossRef]

Avrutsky, I. A.

I. A. Avrutsky, D. S. Ellis, A. Tager, H. Anis, and J. M. Xu, “Design of widely tunable semiconductor lasers and the concept of binary superimposed gratings (BSG's),” IEEE J. Quantum Electron. 34, 729-741 (1998).
[CrossRef]

Bach, L.

J. P. Reithmaier, S. Deubert, R. Krebs, F. Klopf, R. Schwertberger, A. Somers, L. Bach, W. Kaiser, A. Forchel, R. Alizon, D. Hadass, A. Bilenca, H. Dery, B. Mikhelashvili, G. Eisenstein, M. Calligaro, S. Bansropun, and M. Krakowski, “Lasers and amplifiers based on quantum-dot like gain material,” Proc. SPIE 5361, 1-14 (2004).
[CrossRef]

Bacher, G.

A. Sauerwald, T. Kümmell, G. Bacher, A. Somers, R. Schwertberger, J. P. Reithmaier, and A. Forchel, “Size control of InAs quantum dashes,” Appl. Phys. Lett. 86, 253112 (2005).
[CrossRef]

Bansropun, S.

J. P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D 38, 2088-2102 (2005).
[CrossRef]

J. P. Reithmaier, S. Deubert, R. Krebs, F. Klopf, R. Schwertberger, A. Somers, L. Bach, W. Kaiser, A. Forchel, R. Alizon, D. Hadass, A. Bilenca, H. Dery, B. Mikhelashvili, G. Eisenstein, M. Calligaro, S. Bansropun, and M. Krakowski, “Lasers and amplifiers based on quantum-dot like gain material,” Proc. SPIE 5361, 1-14 (2004).
[CrossRef]

Berg, T. W.

J. P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D 38, 2088-2102 (2005).
[CrossRef]

Bilenca, A.

J. P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D 38, 2088-2102 (2005).
[CrossRef]

J. P. Reithmaier, S. Deubert, R. Krebs, F. Klopf, R. Schwertberger, A. Somers, L. Bach, W. Kaiser, A. Forchel, R. Alizon, D. Hadass, A. Bilenca, H. Dery, B. Mikhelashvili, G. Eisenstein, M. Calligaro, S. Bansropun, and M. Krakowski, “Lasers and amplifiers based on quantum-dot like gain material,” Proc. SPIE 5361, 1-14 (2004).
[CrossRef]

Bleuel, T.

M. Kamp, J. Hofmann, F. Schäfer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling--a material independent way to complex coupled DFB lasers,” Opt. Mater. 17, 19-25 (2001).
[CrossRef]

Böhm, G.

M. Maute, F. Riemenschneider, G. Böhm, H. Halbritter, M. Ortsiefer, R. Shau, P. Meissner, and M.-C. Amann, “Micro-mechanically tunable long wavelength VCSEL with buried tunnel junction,” Electron. Lett. 40, 430-431 (2004).
[CrossRef]

Calligaro, M.

J. P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D 38, 2088-2102 (2005).
[CrossRef]

J. P. Reithmaier, S. Deubert, R. Krebs, F. Klopf, R. Schwertberger, A. Somers, L. Bach, W. Kaiser, A. Forchel, R. Alizon, D. Hadass, A. Bilenca, H. Dery, B. Mikhelashvili, G. Eisenstein, M. Calligaro, S. Bansropun, and M. Krakowski, “Lasers and amplifiers based on quantum-dot like gain material,” Proc. SPIE 5361, 1-14 (2004).
[CrossRef]

Cassidy, D. T.

G. B. Morrison and D. T. Cassidy, “A probability-amplitude transfer matrix model for distributed-feedback laser structures,” IEEE J. Quantum Electron. 36, 633-640 (2000).
[CrossRef]

Chang-Hasnain, C.

C. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6, 978-987 (2000).
[CrossRef]

Chuang, Z.-M.

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29, 1824-1834 (1993).
[CrossRef]

Clements, S.

J. Hong, M. Cyr, H. Kim, S. Jatar, C. Rogers, D. Goodchild, and S. Clements, “Cascaded strongly gain coupled (SGC) DFB lasers with 15-nm continuous-wavelength tuning,” IEEE Photon. Technol. Lett. 11, 1214-1216 (1999).
[CrossRef]

Coldren, D. A.

V. Jayaraman, D. A. Coldren, and L. A. Coldren, “Extended tuning range semiconductor lasers with sampled gratings,” paper SDL15.5 presented at LEOS'91, San Jose, California, 4-7 November 1991.

Coldren, L. A.

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29, 1824-1834 (1993).
[CrossRef]

V. Jayaraman, D. A. Coldren, and L. A. Coldren, “Extended tuning range semiconductor lasers with sampled gratings,” paper SDL15.5 presented at LEOS'91, San Jose, California, 4-7 November 1991.

Cyr, M.

J. Hong, M. Cyr, H. Kim, S. Jatar, C. Rogers, D. Goodchild, and S. Clements, “Cascaded strongly gain coupled (SGC) DFB lasers with 15-nm continuous-wavelength tuning,” IEEE Photon. Technol. Lett. 11, 1214-1216 (1999).
[CrossRef]

Dery, H.

J. P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D 38, 2088-2102 (2005).
[CrossRef]

J. P. Reithmaier, S. Deubert, R. Krebs, F. Klopf, R. Schwertberger, A. Somers, L. Bach, W. Kaiser, A. Forchel, R. Alizon, D. Hadass, A. Bilenca, H. Dery, B. Mikhelashvili, G. Eisenstein, M. Calligaro, S. Bansropun, and M. Krakowski, “Lasers and amplifiers based on quantum-dot like gain material,” Proc. SPIE 5361, 1-14 (2004).
[CrossRef]

Deubert, S.

J. P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D 38, 2088-2102 (2005).
[CrossRef]

J. P. Reithmaier, S. Deubert, R. Krebs, F. Klopf, R. Schwertberger, A. Somers, L. Bach, W. Kaiser, A. Forchel, R. Alizon, D. Hadass, A. Bilenca, H. Dery, B. Mikhelashvili, G. Eisenstein, M. Calligaro, S. Bansropun, and M. Krakowski, “Lasers and amplifiers based on quantum-dot like gain material,” Proc. SPIE 5361, 1-14 (2004).
[CrossRef]

Duan, G. H.

S. Mahnkopf, R. März, M. Kamp, G. H. Duan, F. Lelarge, and A. Forchel, “Tunable photonic crystal coupled-cavity laser,” IEEE J. Quantum Elect. 40,, 1306-1314 (2004).
[CrossRef]

Eisenstein, G.

J. P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D 38, 2088-2102 (2005).
[CrossRef]

J. P. Reithmaier, S. Deubert, R. Krebs, F. Klopf, R. Schwertberger, A. Somers, L. Bach, W. Kaiser, A. Forchel, R. Alizon, D. Hadass, A. Bilenca, H. Dery, B. Mikhelashvili, G. Eisenstein, M. Calligaro, S. Bansropun, and M. Krakowski, “Lasers and amplifiers based on quantum-dot like gain material,” Proc. SPIE 5361, 1-14 (2004).
[CrossRef]

Eliseev, P. G.

A. A. Ukhanov, R. H. Wang, T. J. Rotter, A. Stintz, L. F. Lester, P. G. Eliseev, and K. J. Malloy, “Orientation dependence of the optical properties in InAs quantum-dash lasers on InP,” Appl. Phys. Lett. 81, 981-983 (2002).
[CrossRef]

Ellis, D. S.

I. A. Avrutsky, D. S. Ellis, A. Tager, H. Anis, and J. M. Xu, “Design of widely tunable semiconductor lasers and the concept of binary superimposed gratings (BSG's),” IEEE J. Quantum Electron. 34, 729-741 (1998).
[CrossRef]

Fischer, M.

M. Kamp, J. Hofmann, F. Schäfer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling--a material independent way to complex coupled DFB lasers,” Opt. Mater. 17, 19-25 (2001).
[CrossRef]

Forchel, A.

A. Somers, W. Kaiser, J. P. Reithmaier, A. Forchel, M. Gioaninni, and I. Montrosset, “Optical gain properties of InAs/InAlGaAs/InP quantum dash structures with a spectral gain bandwidth of more than 300 nm,” Appl. Phys. Lett. 89, 061107 (2006).
[CrossRef]

J. P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D 38, 2088-2102 (2005).
[CrossRef]

A. Sauerwald, T. Kümmell, G. Bacher, A. Somers, R. Schwertberger, J. P. Reithmaier, and A. Forchel, “Size control of InAs quantum dashes,” Appl. Phys. Lett. 86, 253112 (2005).
[CrossRef]

J. P. Reithmaier, S. Deubert, R. Krebs, F. Klopf, R. Schwertberger, A. Somers, L. Bach, W. Kaiser, A. Forchel, R. Alizon, D. Hadass, A. Bilenca, H. Dery, B. Mikhelashvili, G. Eisenstein, M. Calligaro, S. Bansropun, and M. Krakowski, “Lasers and amplifiers based on quantum-dot like gain material,” Proc. SPIE 5361, 1-14 (2004).
[CrossRef]

S. Mahnkopf, R. März, M. Kamp, G. H. Duan, F. Lelarge, and A. Forchel, “Tunable photonic crystal coupled-cavity laser,” IEEE J. Quantum Elect. 40,, 1306-1314 (2004).
[CrossRef]

M. Müller, F. Klopf, M. Kamp, J. P. Reithmaier, and A. Forchel, “Wide range tunable laterally coupled distributed feedback lasers based on InGaAs-GaAs quantum dots,” IEEE Photon. Technol. Lett. 14, 1246-1248 (2002).
[CrossRef]

M. Kamp, J. Hofmann, F. Schäfer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling--a material independent way to complex coupled DFB lasers,” Opt. Mater. 17, 19-25 (2001).
[CrossRef]

M. Müller, M. Kamp, A. Forchel, and J.-L. Gentner, “Wide-range-tunable laterally coupled distributed feedback lasers based on InGaAsP-InP,” Appl. Phys. Lett. 79, 2684-2686(2001).
[CrossRef]

Gauggel, H.-P.

H.-P. Gauggel, H. Artman, C. Geng, F. Scholz, and H. Schweizer, “Wide-range tunability of GaInP-AlGaInP DFB lasers with superstructured gratings,” IEEE Photon. Technol. Lett. 9, 14-16 (1997).
[CrossRef]

Geng, C.

H.-P. Gauggel, H. Artman, C. Geng, F. Scholz, and H. Schweizer, “Wide-range tunability of GaInP-AlGaInP DFB lasers with superstructured gratings,” IEEE Photon. Technol. Lett. 9, 14-16 (1997).
[CrossRef]

Gentner, J.-L.

M. Müller, M. Kamp, A. Forchel, and J.-L. Gentner, “Wide-range-tunable laterally coupled distributed feedback lasers based on InGaAsP-InP,” Appl. Phys. Lett. 79, 2684-2686(2001).
[CrossRef]

Gioaninni, M.

A. Somers, W. Kaiser, J. P. Reithmaier, A. Forchel, M. Gioaninni, and I. Montrosset, “Optical gain properties of InAs/InAlGaAs/InP quantum dash structures with a spectral gain bandwidth of more than 300 nm,” Appl. Phys. Lett. 89, 061107 (2006).
[CrossRef]

Gioannini, M.

J. P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D 38, 2088-2102 (2005).
[CrossRef]

Goodchild, D.

J. Hong, M. Cyr, H. Kim, S. Jatar, C. Rogers, D. Goodchild, and S. Clements, “Cascaded strongly gain coupled (SGC) DFB lasers with 15-nm continuous-wavelength tuning,” IEEE Photon. Technol. Lett. 11, 1214-1216 (1999).
[CrossRef]

Hadass, D.

J. P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D 38, 2088-2102 (2005).
[CrossRef]

J. P. Reithmaier, S. Deubert, R. Krebs, F. Klopf, R. Schwertberger, A. Somers, L. Bach, W. Kaiser, A. Forchel, R. Alizon, D. Hadass, A. Bilenca, H. Dery, B. Mikhelashvili, G. Eisenstein, M. Calligaro, S. Bansropun, and M. Krakowski, “Lasers and amplifiers based on quantum-dot like gain material,” Proc. SPIE 5361, 1-14 (2004).
[CrossRef]

Halbritter, H.

M. Maute, F. Riemenschneider, G. Böhm, H. Halbritter, M. Ortsiefer, R. Shau, P. Meissner, and M.-C. Amann, “Micro-mechanically tunable long wavelength VCSEL with buried tunnel junction,” Electron. Lett. 40, 430-431 (2004).
[CrossRef]

Hofmann, J.

M. Kamp, J. Hofmann, F. Schäfer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling--a material independent way to complex coupled DFB lasers,” Opt. Mater. 17, 19-25 (2001).
[CrossRef]

Hong, J.

J. Hong, M. Cyr, H. Kim, S. Jatar, C. Rogers, D. Goodchild, and S. Clements, “Cascaded strongly gain coupled (SGC) DFB lasers with 15-nm continuous-wavelength tuning,” IEEE Photon. Technol. Lett. 11, 1214-1216 (1999).
[CrossRef]

Ishii, H.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433-441 (1996).
[CrossRef]

Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, Y. Kondo, and M. Yamamoto, “Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 29, 1817-1823 (1993).
[CrossRef]

Jacke, T.

R. Todt, T. Jacke, R. Meyer, and M.-C. Amann, “Thermally widely tunable laser diodes with distributed feedback,” Appl. Phys. Lett. 87, 021103 (2005).
[CrossRef]

Jatar, S.

J. Hong, M. Cyr, H. Kim, S. Jatar, C. Rogers, D. Goodchild, and S. Clements, “Cascaded strongly gain coupled (SGC) DFB lasers with 15-nm continuous-wavelength tuning,” IEEE Photon. Technol. Lett. 11, 1214-1216 (1999).
[CrossRef]

Jayaraman, V.

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29, 1824-1834 (1993).
[CrossRef]

V. Jayaraman, D. A. Coldren, and L. A. Coldren, “Extended tuning range semiconductor lasers with sampled gratings,” paper SDL15.5 presented at LEOS'91, San Jose, California, 4-7 November 1991.

Kaiser, W.

A. Somers, W. Kaiser, J. P. Reithmaier, A. Forchel, M. Gioaninni, and I. Montrosset, “Optical gain properties of InAs/InAlGaAs/InP quantum dash structures with a spectral gain bandwidth of more than 300 nm,” Appl. Phys. Lett. 89, 061107 (2006).
[CrossRef]

J. P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D 38, 2088-2102 (2005).
[CrossRef]

J. P. Reithmaier, S. Deubert, R. Krebs, F. Klopf, R. Schwertberger, A. Somers, L. Bach, W. Kaiser, A. Forchel, R. Alizon, D. Hadass, A. Bilenca, H. Dery, B. Mikhelashvili, G. Eisenstein, M. Calligaro, S. Bansropun, and M. Krakowski, “Lasers and amplifiers based on quantum-dot like gain material,” Proc. SPIE 5361, 1-14 (2004).
[CrossRef]

Kamp, M.

S. Mahnkopf, R. März, M. Kamp, G. H. Duan, F. Lelarge, and A. Forchel, “Tunable photonic crystal coupled-cavity laser,” IEEE J. Quantum Elect. 40,, 1306-1314 (2004).
[CrossRef]

M. Müller, F. Klopf, M. Kamp, J. P. Reithmaier, and A. Forchel, “Wide range tunable laterally coupled distributed feedback lasers based on InGaAs-GaAs quantum dots,” IEEE Photon. Technol. Lett. 14, 1246-1248 (2002).
[CrossRef]

M. Müller, M. Kamp, A. Forchel, and J.-L. Gentner, “Wide-range-tunable laterally coupled distributed feedback lasers based on InGaAsP-InP,” Appl. Phys. Lett. 79, 2684-2686(2001).
[CrossRef]

M. Kamp, J. Hofmann, F. Schäfer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling--a material independent way to complex coupled DFB lasers,” Opt. Mater. 17, 19-25 (2001).
[CrossRef]

Kano, F.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433-441 (1996).
[CrossRef]

Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, Y. Kondo, and M. Yamamoto, “Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 29, 1817-1823 (1993).
[CrossRef]

Kevorkian, A.

V. Minier, A. Kevorkian, and J. M. Xu, “Diffraction characteristics of superimposed holographic gratings in planar optical waveguides,” IEEE Photon. Technol. Lett. 4, 1115-1118 (1992).
[CrossRef]

Kim, H.

J. Hong, M. Cyr, H. Kim, S. Jatar, C. Rogers, D. Goodchild, and S. Clements, “Cascaded strongly gain coupled (SGC) DFB lasers with 15-nm continuous-wavelength tuning,” IEEE Photon. Technol. Lett. 11, 1214-1216 (1999).
[CrossRef]

Klopf, F.

J. P. Reithmaier, S. Deubert, R. Krebs, F. Klopf, R. Schwertberger, A. Somers, L. Bach, W. Kaiser, A. Forchel, R. Alizon, D. Hadass, A. Bilenca, H. Dery, B. Mikhelashvili, G. Eisenstein, M. Calligaro, S. Bansropun, and M. Krakowski, “Lasers and amplifiers based on quantum-dot like gain material,” Proc. SPIE 5361, 1-14 (2004).
[CrossRef]

M. Müller, F. Klopf, M. Kamp, J. P. Reithmaier, and A. Forchel, “Wide range tunable laterally coupled distributed feedback lasers based on InGaAs-GaAs quantum dots,” IEEE Photon. Technol. Lett. 14, 1246-1248 (2002).
[CrossRef]

Kondo, Y.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433-441 (1996).
[CrossRef]

Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, Y. Kondo, and M. Yamamoto, “Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 29, 1817-1823 (1993).
[CrossRef]

Krakowski, M.

J. P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D 38, 2088-2102 (2005).
[CrossRef]

J. P. Reithmaier, S. Deubert, R. Krebs, F. Klopf, R. Schwertberger, A. Somers, L. Bach, W. Kaiser, A. Forchel, R. Alizon, D. Hadass, A. Bilenca, H. Dery, B. Mikhelashvili, G. Eisenstein, M. Calligaro, S. Bansropun, and M. Krakowski, “Lasers and amplifiers based on quantum-dot like gain material,” Proc. SPIE 5361, 1-14 (2004).
[CrossRef]

Krebs, R.

J. P. Reithmaier, S. Deubert, R. Krebs, F. Klopf, R. Schwertberger, A. Somers, L. Bach, W. Kaiser, A. Forchel, R. Alizon, D. Hadass, A. Bilenca, H. Dery, B. Mikhelashvili, G. Eisenstein, M. Calligaro, S. Bansropun, and M. Krakowski, “Lasers and amplifiers based on quantum-dot like gain material,” Proc. SPIE 5361, 1-14 (2004).
[CrossRef]

Kümmell, T.

A. Sauerwald, T. Kümmell, G. Bacher, A. Somers, R. Schwertberger, J. P. Reithmaier, and A. Forchel, “Size control of InAs quantum dashes,” Appl. Phys. Lett. 86, 253112 (2005).
[CrossRef]

Lay, J. P.

P. Werle, “Diode laser sensors for in-situ gas analysis,” in Laser in Environmental and Life Sciences--Modern Analytical Methods, P. Hering, J. P. Lay, and S. Stry, eds. (Springer, 2004).

Lelarge, F.

S. Mahnkopf, R. März, M. Kamp, G. H. Duan, F. Lelarge, and A. Forchel, “Tunable photonic crystal coupled-cavity laser,” IEEE J. Quantum Elect. 40,, 1306-1314 (2004).
[CrossRef]

Lester, L. F.

A. A. Ukhanov, R. H. Wang, T. J. Rotter, A. Stintz, L. F. Lester, P. G. Eliseev, and K. J. Malloy, “Orientation dependence of the optical properties in InAs quantum-dash lasers on InP,” Appl. Phys. Lett. 81, 981-983 (2002).
[CrossRef]

Mahnkopf, S.

S. Mahnkopf, R. März, M. Kamp, G. H. Duan, F. Lelarge, and A. Forchel, “Tunable photonic crystal coupled-cavity laser,” IEEE J. Quantum Elect. 40,, 1306-1314 (2004).
[CrossRef]

Makino, T.

T. Makino, “Transfer-matrix analysis of the intensity and phase noise of multi-section DFB semiconductor lasers,” IEEE J. Quantum Electron. 27, 2404-2415 (1991).
[CrossRef]

Malloy, K. J.

A. A. Ukhanov, R. H. Wang, T. J. Rotter, A. Stintz, L. F. Lester, P. G. Eliseev, and K. J. Malloy, “Orientation dependence of the optical properties in InAs quantum-dash lasers on InP,” Appl. Phys. Lett. 81, 981-983 (2002).
[CrossRef]

März, R.

S. Mahnkopf, R. März, M. Kamp, G. H. Duan, F. Lelarge, and A. Forchel, “Tunable photonic crystal coupled-cavity laser,” IEEE J. Quantum Elect. 40,, 1306-1314 (2004).
[CrossRef]

Maute, M.

M. Maute, F. Riemenschneider, G. Böhm, H. Halbritter, M. Ortsiefer, R. Shau, P. Meissner, and M.-C. Amann, “Micro-mechanically tunable long wavelength VCSEL with buried tunnel junction,” Electron. Lett. 40, 430-431 (2004).
[CrossRef]

Meissner, P.

M. Maute, F. Riemenschneider, G. Böhm, H. Halbritter, M. Ortsiefer, R. Shau, P. Meissner, and M.-C. Amann, “Micro-mechanically tunable long wavelength VCSEL with buried tunnel junction,” Electron. Lett. 40, 430-431 (2004).
[CrossRef]

Meyer, R.

R. Todt, T. Jacke, R. Meyer, and M.-C. Amann, “Thermally widely tunable laser diodes with distributed feedback,” Appl. Phys. Lett. 87, 021103 (2005).
[CrossRef]

Mikhelashvili, B.

J. P. Reithmaier, S. Deubert, R. Krebs, F. Klopf, R. Schwertberger, A. Somers, L. Bach, W. Kaiser, A. Forchel, R. Alizon, D. Hadass, A. Bilenca, H. Dery, B. Mikhelashvili, G. Eisenstein, M. Calligaro, S. Bansropun, and M. Krakowski, “Lasers and amplifiers based on quantum-dot like gain material,” Proc. SPIE 5361, 1-14 (2004).
[CrossRef]

Mikhelashvili, V.

J. P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D 38, 2088-2102 (2005).
[CrossRef]

Minier, V.

V. Minier, and J. M. Xu, “Coupled-mode analysis of superimposed phase grating guided-wave structures and intergrating coupling effects,” Opt. Eng. 32, 2054-2063 (1993).
[CrossRef]

V. Minier, A. Kevorkian, and J. M. Xu, “Diffraction characteristics of superimposed holographic gratings in planar optical waveguides,” IEEE Photon. Technol. Lett. 4, 1115-1118 (1992).
[CrossRef]

Montrosset, I.

A. Somers, W. Kaiser, J. P. Reithmaier, A. Forchel, M. Gioaninni, and I. Montrosset, “Optical gain properties of InAs/InAlGaAs/InP quantum dash structures with a spectral gain bandwidth of more than 300 nm,” Appl. Phys. Lett. 89, 061107 (2006).
[CrossRef]

J. P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D 38, 2088-2102 (2005).
[CrossRef]

Mørk, J.

J. P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D 38, 2088-2102 (2005).
[CrossRef]

Morrison, G. B.

G. B. Morrison and D. T. Cassidy, “A probability-amplitude transfer matrix model for distributed-feedback laser structures,” IEEE J. Quantum Electron. 36, 633-640 (2000).
[CrossRef]

Müller, M.

M. Müller, F. Klopf, M. Kamp, J. P. Reithmaier, and A. Forchel, “Wide range tunable laterally coupled distributed feedback lasers based on InGaAs-GaAs quantum dots,” IEEE Photon. Technol. Lett. 14, 1246-1248 (2002).
[CrossRef]

M. Müller, M. Kamp, A. Forchel, and J.-L. Gentner, “Wide-range-tunable laterally coupled distributed feedback lasers based on InGaAsP-InP,” Appl. Phys. Lett. 79, 2684-2686(2001).
[CrossRef]

Ortsiefer, M.

M. Maute, F. Riemenschneider, G. Böhm, H. Halbritter, M. Ortsiefer, R. Shau, P. Meissner, and M.-C. Amann, “Micro-mechanically tunable long wavelength VCSEL with buried tunnel junction,” Electron. Lett. 40, 430-431 (2004).
[CrossRef]

Parillaud, O.

J. P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D 38, 2088-2102 (2005).
[CrossRef]

Reinhard, M.

M. Kamp, J. Hofmann, F. Schäfer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling--a material independent way to complex coupled DFB lasers,” Opt. Mater. 17, 19-25 (2001).
[CrossRef]

Reithmaier, J. P.

A. Somers, W. Kaiser, J. P. Reithmaier, A. Forchel, M. Gioaninni, and I. Montrosset, “Optical gain properties of InAs/InAlGaAs/InP quantum dash structures with a spectral gain bandwidth of more than 300 nm,” Appl. Phys. Lett. 89, 061107 (2006).
[CrossRef]

J. P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D 38, 2088-2102 (2005).
[CrossRef]

A. Sauerwald, T. Kümmell, G. Bacher, A. Somers, R. Schwertberger, J. P. Reithmaier, and A. Forchel, “Size control of InAs quantum dashes,” Appl. Phys. Lett. 86, 253112 (2005).
[CrossRef]

J. P. Reithmaier, S. Deubert, R. Krebs, F. Klopf, R. Schwertberger, A. Somers, L. Bach, W. Kaiser, A. Forchel, R. Alizon, D. Hadass, A. Bilenca, H. Dery, B. Mikhelashvili, G. Eisenstein, M. Calligaro, S. Bansropun, and M. Krakowski, “Lasers and amplifiers based on quantum-dot like gain material,” Proc. SPIE 5361, 1-14 (2004).
[CrossRef]

M. Müller, F. Klopf, M. Kamp, J. P. Reithmaier, and A. Forchel, “Wide range tunable laterally coupled distributed feedback lasers based on InGaAs-GaAs quantum dots,” IEEE Photon. Technol. Lett. 14, 1246-1248 (2002).
[CrossRef]

M. Kamp, J. Hofmann, F. Schäfer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling--a material independent way to complex coupled DFB lasers,” Opt. Mater. 17, 19-25 (2001).
[CrossRef]

Resneau, P.

J. P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D 38, 2088-2102 (2005).
[CrossRef]

Riemenschneider, F.

M. Maute, F. Riemenschneider, G. Böhm, H. Halbritter, M. Ortsiefer, R. Shau, P. Meissner, and M.-C. Amann, “Micro-mechanically tunable long wavelength VCSEL with buried tunnel junction,” Electron. Lett. 40, 430-431 (2004).
[CrossRef]

Rogers, C.

J. Hong, M. Cyr, H. Kim, S. Jatar, C. Rogers, D. Goodchild, and S. Clements, “Cascaded strongly gain coupled (SGC) DFB lasers with 15-nm continuous-wavelength tuning,” IEEE Photon. Technol. Lett. 11, 1214-1216 (1999).
[CrossRef]

Rotter, T. J.

A. A. Ukhanov, R. H. Wang, T. J. Rotter, A. Stintz, L. F. Lester, P. G. Eliseev, and K. J. Malloy, “Orientation dependence of the optical properties in InAs quantum-dash lasers on InP,” Appl. Phys. Lett. 81, 981-983 (2002).
[CrossRef]

Sakuda, K.

Sauerwald, A.

A. Sauerwald, T. Kümmell, G. Bacher, A. Somers, R. Schwertberger, J. P. Reithmaier, and A. Forchel, “Size control of InAs quantum dashes,” Appl. Phys. Lett. 86, 253112 (2005).
[CrossRef]

Schäfer, F.

M. Kamp, J. Hofmann, F. Schäfer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling--a material independent way to complex coupled DFB lasers,” Opt. Mater. 17, 19-25 (2001).
[CrossRef]

Scholz, F.

H.-P. Gauggel, H. Artman, C. Geng, F. Scholz, and H. Schweizer, “Wide-range tunability of GaInP-AlGaInP DFB lasers with superstructured gratings,” IEEE Photon. Technol. Lett. 9, 14-16 (1997).
[CrossRef]

Schweizer, H.

H.-P. Gauggel, H. Artman, C. Geng, F. Scholz, and H. Schweizer, “Wide-range tunability of GaInP-AlGaInP DFB lasers with superstructured gratings,” IEEE Photon. Technol. Lett. 9, 14-16 (1997).
[CrossRef]

Schwertberger, R.

A. Sauerwald, T. Kümmell, G. Bacher, A. Somers, R. Schwertberger, J. P. Reithmaier, and A. Forchel, “Size control of InAs quantum dashes,” Appl. Phys. Lett. 86, 253112 (2005).
[CrossRef]

J. P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D 38, 2088-2102 (2005).
[CrossRef]

J. P. Reithmaier, S. Deubert, R. Krebs, F. Klopf, R. Schwertberger, A. Somers, L. Bach, W. Kaiser, A. Forchel, R. Alizon, D. Hadass, A. Bilenca, H. Dery, B. Mikhelashvili, G. Eisenstein, M. Calligaro, S. Bansropun, and M. Krakowski, “Lasers and amplifiers based on quantum-dot like gain material,” Proc. SPIE 5361, 1-14 (2004).
[CrossRef]

Shau, R.

M. Maute, F. Riemenschneider, G. Böhm, H. Halbritter, M. Ortsiefer, R. Shau, P. Meissner, and M.-C. Amann, “Micro-mechanically tunable long wavelength VCSEL with buried tunnel junction,” Electron. Lett. 40, 430-431 (2004).
[CrossRef]

Somers, A.

A. Somers, W. Kaiser, J. P. Reithmaier, A. Forchel, M. Gioaninni, and I. Montrosset, “Optical gain properties of InAs/InAlGaAs/InP quantum dash structures with a spectral gain bandwidth of more than 300 nm,” Appl. Phys. Lett. 89, 061107 (2006).
[CrossRef]

J. P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D 38, 2088-2102 (2005).
[CrossRef]

A. Sauerwald, T. Kümmell, G. Bacher, A. Somers, R. Schwertberger, J. P. Reithmaier, and A. Forchel, “Size control of InAs quantum dashes,” Appl. Phys. Lett. 86, 253112 (2005).
[CrossRef]

J. P. Reithmaier, S. Deubert, R. Krebs, F. Klopf, R. Schwertberger, A. Somers, L. Bach, W. Kaiser, A. Forchel, R. Alizon, D. Hadass, A. Bilenca, H. Dery, B. Mikhelashvili, G. Eisenstein, M. Calligaro, S. Bansropun, and M. Krakowski, “Lasers and amplifiers based on quantum-dot like gain material,” Proc. SPIE 5361, 1-14 (2004).
[CrossRef]

Stintz, A.

A. A. Ukhanov, R. H. Wang, T. J. Rotter, A. Stintz, L. F. Lester, P. G. Eliseev, and K. J. Malloy, “Orientation dependence of the optical properties in InAs quantum-dash lasers on InP,” Appl. Phys. Lett. 81, 981-983 (2002).
[CrossRef]

Stry, S.

P. Werle, “Diode laser sensors for in-situ gas analysis,” in Laser in Environmental and Life Sciences--Modern Analytical Methods, P. Hering, J. P. Lay, and S. Stry, eds. (Springer, 2004).

Tager, A.

I. A. Avrutsky, D. S. Ellis, A. Tager, H. Anis, and J. M. Xu, “Design of widely tunable semiconductor lasers and the concept of binary superimposed gratings (BSG's),” IEEE J. Quantum Electron. 34, 729-741 (1998).
[CrossRef]

Tamamura, T.

Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, Y. Kondo, and M. Yamamoto, “Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 29, 1817-1823 (1993).
[CrossRef]

Tanobe, H.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433-441 (1996).
[CrossRef]

Todt, R.

R. Todt, T. Jacke, R. Meyer, and M.-C. Amann, “Thermally widely tunable laser diodes with distributed feedback,” Appl. Phys. Lett. 87, 021103 (2005).
[CrossRef]

Tohmori, Y.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433-441 (1996).
[CrossRef]

Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, Y. Kondo, and M. Yamamoto, “Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 29, 1817-1823 (1993).
[CrossRef]

Tromborg, B.

J. P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D 38, 2088-2102 (2005).
[CrossRef]

Ukhanov, A. A.

A. A. Ukhanov, R. H. Wang, T. J. Rotter, A. Stintz, L. F. Lester, P. G. Eliseev, and K. J. Malloy, “Orientation dependence of the optical properties in InAs quantum-dash lasers on InP,” Appl. Phys. Lett. 81, 981-983 (2002).
[CrossRef]

van der Poel, M.

J. P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D 38, 2088-2102 (2005).
[CrossRef]

Wang, R. H.

A. A. Ukhanov, R. H. Wang, T. J. Rotter, A. Stintz, L. F. Lester, P. G. Eliseev, and K. J. Malloy, “Orientation dependence of the optical properties in InAs quantum-dash lasers on InP,” Appl. Phys. Lett. 81, 981-983 (2002).
[CrossRef]

Werle, P.

P. Werle, “Diode laser sensors for in-situ gas analysis,” in Laser in Environmental and Life Sciences--Modern Analytical Methods, P. Hering, J. P. Lay, and S. Stry, eds. (Springer, 2004).

Xu, J. M.

I. A. Avrutsky, D. S. Ellis, A. Tager, H. Anis, and J. M. Xu, “Design of widely tunable semiconductor lasers and the concept of binary superimposed gratings (BSG's),” IEEE J. Quantum Electron. 34, 729-741 (1998).
[CrossRef]

V. Minier, and J. M. Xu, “Coupled-mode analysis of superimposed phase grating guided-wave structures and intergrating coupling effects,” Opt. Eng. 32, 2054-2063 (1993).
[CrossRef]

V. Minier, A. Kevorkian, and J. M. Xu, “Diffraction characteristics of superimposed holographic gratings in planar optical waveguides,” IEEE Photon. Technol. Lett. 4, 1115-1118 (1992).
[CrossRef]

Yamada, M.

Yamamoto, M.

Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, Y. Kondo, and M. Yamamoto, “Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 29, 1817-1823 (1993).
[CrossRef]

Yoshikuni, Y.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433-441 (1996).
[CrossRef]

Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, Y. Kondo, and M. Yamamoto, “Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 29, 1817-1823 (1993).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

A. Sauerwald, T. Kümmell, G. Bacher, A. Somers, R. Schwertberger, J. P. Reithmaier, and A. Forchel, “Size control of InAs quantum dashes,” Appl. Phys. Lett. 86, 253112 (2005).
[CrossRef]

A. A. Ukhanov, R. H. Wang, T. J. Rotter, A. Stintz, L. F. Lester, P. G. Eliseev, and K. J. Malloy, “Orientation dependence of the optical properties in InAs quantum-dash lasers on InP,” Appl. Phys. Lett. 81, 981-983 (2002).
[CrossRef]

R. Todt, T. Jacke, R. Meyer, and M.-C. Amann, “Thermally widely tunable laser diodes with distributed feedback,” Appl. Phys. Lett. 87, 021103 (2005).
[CrossRef]

M. Müller, M. Kamp, A. Forchel, and J.-L. Gentner, “Wide-range-tunable laterally coupled distributed feedback lasers based on InGaAsP-InP,” Appl. Phys. Lett. 79, 2684-2686(2001).
[CrossRef]

A. Somers, W. Kaiser, J. P. Reithmaier, A. Forchel, M. Gioaninni, and I. Montrosset, “Optical gain properties of InAs/InAlGaAs/InP quantum dash structures with a spectral gain bandwidth of more than 300 nm,” Appl. Phys. Lett. 89, 061107 (2006).
[CrossRef]

Electron. Lett. (1)

M. Maute, F. Riemenschneider, G. Böhm, H. Halbritter, M. Ortsiefer, R. Shau, P. Meissner, and M.-C. Amann, “Micro-mechanically tunable long wavelength VCSEL with buried tunnel junction,” Electron. Lett. 40, 430-431 (2004).
[CrossRef]

IEEE J. Quantum Elect. (1)

S. Mahnkopf, R. März, M. Kamp, G. H. Duan, F. Lelarge, and A. Forchel, “Tunable photonic crystal coupled-cavity laser,” IEEE J. Quantum Elect. 40,, 1306-1314 (2004).
[CrossRef]

IEEE J. Quantum Electron. (6)

Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, Y. Kondo, and M. Yamamoto, “Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 29, 1817-1823 (1993).
[CrossRef]

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29, 1824-1834 (1993).
[CrossRef]

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433-441 (1996).
[CrossRef]

I. A. Avrutsky, D. S. Ellis, A. Tager, H. Anis, and J. M. Xu, “Design of widely tunable semiconductor lasers and the concept of binary superimposed gratings (BSG's),” IEEE J. Quantum Electron. 34, 729-741 (1998).
[CrossRef]

G. B. Morrison and D. T. Cassidy, “A probability-amplitude transfer matrix model for distributed-feedback laser structures,” IEEE J. Quantum Electron. 36, 633-640 (2000).
[CrossRef]

T. Makino, “Transfer-matrix analysis of the intensity and phase noise of multi-section DFB semiconductor lasers,” IEEE J. Quantum Electron. 27, 2404-2415 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6, 978-987 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

J. Hong, M. Cyr, H. Kim, S. Jatar, C. Rogers, D. Goodchild, and S. Clements, “Cascaded strongly gain coupled (SGC) DFB lasers with 15-nm continuous-wavelength tuning,” IEEE Photon. Technol. Lett. 11, 1214-1216 (1999).
[CrossRef]

H.-P. Gauggel, H. Artman, C. Geng, F. Scholz, and H. Schweizer, “Wide-range tunability of GaInP-AlGaInP DFB lasers with superstructured gratings,” IEEE Photon. Technol. Lett. 9, 14-16 (1997).
[CrossRef]

M. Müller, F. Klopf, M. Kamp, J. P. Reithmaier, and A. Forchel, “Wide range tunable laterally coupled distributed feedback lasers based on InGaAs-GaAs quantum dots,” IEEE Photon. Technol. Lett. 14, 1246-1248 (2002).
[CrossRef]

V. Minier, A. Kevorkian, and J. M. Xu, “Diffraction characteristics of superimposed holographic gratings in planar optical waveguides,” IEEE Photon. Technol. Lett. 4, 1115-1118 (1992).
[CrossRef]

J. Phys. D (1)

J. P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D 38, 2088-2102 (2005).
[CrossRef]

Opt. Eng. (1)

V. Minier, and J. M. Xu, “Coupled-mode analysis of superimposed phase grating guided-wave structures and intergrating coupling effects,” Opt. Eng. 32, 2054-2063 (1993).
[CrossRef]

Opt. Mater. (1)

M. Kamp, J. Hofmann, F. Schäfer, M. Reinhard, M. Fischer, T. Bleuel, J. P. Reithmaier, and A. Forchel, “Lateral coupling--a material independent way to complex coupled DFB lasers,” Opt. Mater. 17, 19-25 (2001).
[CrossRef]

Proc. SPIE (1)

J. P. Reithmaier, S. Deubert, R. Krebs, F. Klopf, R. Schwertberger, A. Somers, L. Bach, W. Kaiser, A. Forchel, R. Alizon, D. Hadass, A. Bilenca, H. Dery, B. Mikhelashvili, G. Eisenstein, M. Calligaro, S. Bansropun, and M. Krakowski, “Lasers and amplifiers based on quantum-dot like gain material,” Proc. SPIE 5361, 1-14 (2004).
[CrossRef]

Other (2)

V. Jayaraman, D. A. Coldren, and L. A. Coldren, “Extended tuning range semiconductor lasers with sampled gratings,” paper SDL15.5 presented at LEOS'91, San Jose, California, 4-7 November 1991.

P. Werle, “Diode laser sensors for in-situ gas analysis,” in Laser in Environmental and Life Sciences--Modern Analytical Methods, P. Hering, J. P. Lay, and S. Stry, eds. (Springer, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic view of the emission spectra and resulting laser spectrum of two multiple peak gratings with slightly different mode spacings. Laser emission only occurs at wavelengths with sufficient overlap.

Fig. 2
Fig. 2

Schematic view of the laser design. Two segments each with a BSG yielding a comblike emission spectrum with slightly different mode spacings are contacted separately. Planarization and electrical isolation are provided by a BCB layer.

Fig. 3
Fig. 3

Scanning electron microscope picture showing a section of a binary superimposed grating. The RWG is running from left to right, the chrome grating is orientated perpendicular to the RWG. The right side of the figure shows a magnified section of the grating. One of the larger irregularities in the grating period typical for BSGs can be seen clearly.

Fig. 4
Fig. 4

P ( I ) characteristic of an unmounted device with uncoated facets. Both segments have been short-circuited during measurement. The laser shows a threshold current of 60 mA and a slope efficiency of 0.140 W / A , yielding a maximum output power level of 15 mW per facet limited by thermal roll-over.

Fig. 5
Fig. 5

Four emission spectra recorded for four different injection currents in the respective laser segments. A tuning range of 21 nm was achieved. The current combinations used were (in order of increasing wavelength) I seg 1 = 90 mA and I seg 2 = 100 mA , I seg 1 = 100 mA and I seg 2 = 40 mA , I seg 1 = 60 mA and I seg 2 = 160 mA , and I seg 1 = 160 and I seg 2 = 180 mA .

Fig. 6
Fig. 6

Multiple emission spectra obtained under current variation resulting in a fine tuning grid covering a wavelength range of 13 nm . The current combinations range from I seg 1 = 40 mA and I seg 2 = 20 mA to I seg 1 = 120 mA and I seg 2 = 140 mA .

Fig. 7
Fig. 7

Wavelength as a function of total current, demonstrating continuous wavelength tuning over a range of 0.8 nm . In this measurement, I seg 1 was increased from 20 mA to 50 mA , while I seg 2 was increased from 135 mA to 165 mA simultaneously.

Fig. 8
Fig. 8

Measured and expected absorption spectrum of hydrogen chloride at 1792.97 nm .

Fig. 9
Fig. 9

Measured and expected absorption spectrum of water at 1806.26 nm .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n i ( λ ) = { n ( λ ) + Δ n / 2 , f [ s ( i 1 / 2 ) ] > 0 n ( λ ) Δ n / 2 , f [ s ( i 1 / 2 ) ] < 0 } ,
f ( x ) = j = 1 N a j sin ( 2 π x Λ j + Ψ j ) .
Λ j = λ j m / 2 n ( λ j ) .

Metrics