Abstract

It is demonstrated that the incorporation of variable pulse duration flashlamp power supplies into an Nd:YAG burst mode laser system results in very substantial increases in the realizable energy per pulse, the total pulse train length, and uniformity of the intensity envelope. As an example, trains of 20 pulses at burst frequencies of 50 and 20kHz are demonstrated with individual pulse energy at 1064nm of 220 and 400mJ, respectively. Conversion efficiency to the second- (532nm) and third- (355nm) harmonic wavelengths of 50% and 35–40%, respectively, is also achieved. Use of the third-harmonic output of the burst mode laser as a pump source for a simple, home built optical parametric oscillator (OPO) produces pulse trains of broadly wavelength tunable output. Sum-frequency mixing of OPO signal output at 622nm with residual output from the 355nm pump beam is shown to produce uniform bursts of tunable output at 226nm, with individual pulse energy of 0.5mJ. Time-correlated NO planar laser induced fluorescence (PLIF) image sequences are obtained in a Mach 3 wind tunnel at 500kHz, representing, to our knowledge, the first demonstration of NO PLIF imaging at repetition rates exceeding tens of hertz.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Wu, W. R. Lempert, and R. B. Miles, “MHz pulse-burst laser system and visualization of shock-wave boundary-layer interaction in a Mach 2.5 wind tunnel,” AIAA J. 38, 672-679 (2000).
    [CrossRef]
  2. B. Thurow, N. Jiang, M. Samimy, and W. Lempert, “Narrow-linewidth megahertz-rate pulse-burst laser for high-speed flow diagnostics,” Appl. Opt. 43, 5064-5073 (2004).
    [CrossRef] [PubMed]
  3. M. Wernet and A. B. Opalskii, “Development and application of a MHz frame rate digital Particle Image Velocimetry system,” in 24th Aerodynamic Measurement Technology & Ground Testing Conference Rep. AIAA-2004-2184 (American Institute of Aeronautics and Astronautics, 2004).
  4. A. L. Kastengren, J. C. Dutton, and G. S. Elliott, “Large-scale structure visualization and convection velocity in supersonic blunt-base cylinder wakes,” Phys. Fluids 19, 015103(2007).
    [CrossRef]
  5. B. Thurow and A. Satija, “A design of MHz repetition rate pulse burst laser system at Auburn University,” in 44th AIAA Aerospace Sciences Meeting, Rep. AIAA-2006-1384 (American Institute of Aeronautics and Astronautics, 2004).
  6. D. J. Den Hartog, N. Jiang, and W. R. Lempert, “A pulse burst laser system for high repetition rate Thomson scattering diagnostic,” accepted for publication in Rev. Sci. Instrum.
  7. G. Kychakoff, K. Knapp, R. D. Howe, and R. K. Hanson, “Flow visualization in combustion gases using nitric oxide fluorescence,” AIAA J. 22, 153-154 (1984).
    [CrossRef]
  8. B. K. McMillan, J. L. Palmer, and R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow,” Appl. Opt. 32, 7532-7545 (1993).
    [CrossRef]
  9. J. S. Fox, A. F. P. Houwing, P. M. Danehy, M. J. Gaston, N. R. Muidford, and S. L. Gai, “Mole-fraction-sensitive imaging of hypermixing shear layers,” J. Propul. Power 17, 284-292 (2001).
    [CrossRef]
  10. N. Jiang, W. R. Lempert, G. L. Switzer, T. R. Meyer, and J. R. Gord, “A narrow-linewidth MHz-repetition-rate optical parametric oscillator for high-speed flow and combustion diagnostics,” Appl. Opt. 47, 64-71 (2008).
    [CrossRef]
  11. C. F. Kaminski, J. Hult, and M. Alden, “High repetition rate planar laser induced fluorescence of OH in a non-premixed flame,” Appl. Phys. B. 68, 757-760 (1999).
    [CrossRef]
  12. C. Kittler and A. Dreizler, “Cinematographic imaging of hydroxyl radicals in turbulent flames by planar laser-induced fluorescence up to 5 kHz repetition rate,” Appl. Phys. B. 89, 163-166 (2007).
    [CrossRef]
  13. A. Y. Dergachev, B. Pati, and P. F. Moulton, “Efficient third-harmonic generation with a Ti:sapphire laser,” in Advanced Solid State Lasers, 1999 OSA Technical Digest Series (Optical Society of America, 1999), paper PD3.
  14. C. K. Ni and A. H. Kung, “Effective suppression of amplified spontaneous emission by stimulated Brillouin scattering phase conjugation,” Opt. Lett. 21, 1673-1675 (1996).
    [CrossRef] [PubMed]
  15. R.N.Bracewell, The Fourier Transform and Its Applications, 2nd ed. (McGraw-Hill, 1986).
  16. H. Yoshida, V. Kmetik, H. Fujita, M. Nakatsuka, T. Yamanaka, and K. Yoshida, “Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror,” Appl. Opt. 36, 3739-3744 (1997).
    [CrossRef] [PubMed]
  17. A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev A 44, 3205-3209 (1991).
    [CrossRef] [PubMed]
  18. D. J. Armstrong, W. J. Alford, T. D. Raymond, A. V. Smith, and M. S. Bowers, “Parametric amplification and oscillation with walkoff-compensating crystals,” J. Opt. Soc. Am. B 14, 460-474 (1997).
    [CrossRef]
  19. W. R. Bosenberg, W. S. Pelouch, and C. L. Tang, “High-efficiency and narrow-linewidth operation of a two-crystal β-BaB2O4 optical parametric oscillator,” Appl. Phys. Lett. 55, 1952-1954 (1989).
    [CrossRef]
  20. W. D. Kulatilaka, T. N. Anderson, T. L. Bougher, and R. P. Lucht, “Development of injection-seeded, pulsed optical parametric generator/oscillator systems for high-resolution spectroscopy,” Appl. Phys. B 80, 669-680(2005).
    [CrossRef]
  21. J. A. J. Fitzpatrick, O. V. Checkhlov, J. M. F. Elks, and C. M. Western, “An injection seeded narrow bandwidth pulsed optical parametric oscillator and its application to the investigation of hyperfine structure in the PF radical,” J. Chem. Phys. 115, 6920-6930 (2001).
    [CrossRef]
  22. W. Lee and W. Lempert, “Enhancement of spectral purity of injection-seeded titanium:sapphire laser by cavity locking and stimulated Brillouin scattering,” Appl. Opt. 42, 4320-4326 (2003).
    [CrossRef] [PubMed]
  23. W. R. Lempert, P. Wu, B. Zhang, R. B. Miles, J. L. Lowrance, V. Mastracola, and W. F. Kosonocky, “Pulse-burst laser system for high speed flow diagnostics,” in 34th AIAA Aerospace Sciences Meeting, Rep. AIAA-1996-0500 (American Institute of Aeronautics and Astronautics, 1996).
  24. B. Thurow, N. Jiang, W. Lempert, and M. Samimy, “Development of megahertz-rate planar Doppler velocimetry for high speed flows,” AIAA J. 43, 500-511 (2005).
    [CrossRef]
  25. M. Nishihara, N. Jiang, J. W. Rich, W. R. Lempert, I. V. Adamovich, and S. Gogineni, “Low-temperature supersonic boundary layer control using repetitively pulsed MHD forcing,” Phys. Fluids 17, 106102 (2005).
    [CrossRef]

2008 (1)

2007 (2)

A. L. Kastengren, J. C. Dutton, and G. S. Elliott, “Large-scale structure visualization and convection velocity in supersonic blunt-base cylinder wakes,” Phys. Fluids 19, 015103(2007).
[CrossRef]

C. Kittler and A. Dreizler, “Cinematographic imaging of hydroxyl radicals in turbulent flames by planar laser-induced fluorescence up to 5 kHz repetition rate,” Appl. Phys. B. 89, 163-166 (2007).
[CrossRef]

2005 (3)

W. D. Kulatilaka, T. N. Anderson, T. L. Bougher, and R. P. Lucht, “Development of injection-seeded, pulsed optical parametric generator/oscillator systems for high-resolution spectroscopy,” Appl. Phys. B 80, 669-680(2005).
[CrossRef]

B. Thurow, N. Jiang, W. Lempert, and M. Samimy, “Development of megahertz-rate planar Doppler velocimetry for high speed flows,” AIAA J. 43, 500-511 (2005).
[CrossRef]

M. Nishihara, N. Jiang, J. W. Rich, W. R. Lempert, I. V. Adamovich, and S. Gogineni, “Low-temperature supersonic boundary layer control using repetitively pulsed MHD forcing,” Phys. Fluids 17, 106102 (2005).
[CrossRef]

2004 (1)

2003 (1)

2001 (2)

J. A. J. Fitzpatrick, O. V. Checkhlov, J. M. F. Elks, and C. M. Western, “An injection seeded narrow bandwidth pulsed optical parametric oscillator and its application to the investigation of hyperfine structure in the PF radical,” J. Chem. Phys. 115, 6920-6930 (2001).
[CrossRef]

J. S. Fox, A. F. P. Houwing, P. M. Danehy, M. J. Gaston, N. R. Muidford, and S. L. Gai, “Mole-fraction-sensitive imaging of hypermixing shear layers,” J. Propul. Power 17, 284-292 (2001).
[CrossRef]

2000 (1)

P. Wu, W. R. Lempert, and R. B. Miles, “MHz pulse-burst laser system and visualization of shock-wave boundary-layer interaction in a Mach 2.5 wind tunnel,” AIAA J. 38, 672-679 (2000).
[CrossRef]

1999 (1)

C. F. Kaminski, J. Hult, and M. Alden, “High repetition rate planar laser induced fluorescence of OH in a non-premixed flame,” Appl. Phys. B. 68, 757-760 (1999).
[CrossRef]

1997 (2)

1996 (1)

1993 (1)

1991 (1)

A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev A 44, 3205-3209 (1991).
[CrossRef] [PubMed]

1989 (1)

W. R. Bosenberg, W. S. Pelouch, and C. L. Tang, “High-efficiency and narrow-linewidth operation of a two-crystal β-BaB2O4 optical parametric oscillator,” Appl. Phys. Lett. 55, 1952-1954 (1989).
[CrossRef]

1984 (1)

G. Kychakoff, K. Knapp, R. D. Howe, and R. K. Hanson, “Flow visualization in combustion gases using nitric oxide fluorescence,” AIAA J. 22, 153-154 (1984).
[CrossRef]

Adamovich, I. V.

M. Nishihara, N. Jiang, J. W. Rich, W. R. Lempert, I. V. Adamovich, and S. Gogineni, “Low-temperature supersonic boundary layer control using repetitively pulsed MHD forcing,” Phys. Fluids 17, 106102 (2005).
[CrossRef]

Alden, M.

C. F. Kaminski, J. Hult, and M. Alden, “High repetition rate planar laser induced fluorescence of OH in a non-premixed flame,” Appl. Phys. B. 68, 757-760 (1999).
[CrossRef]

Alford, W. J.

Anderson, T. N.

W. D. Kulatilaka, T. N. Anderson, T. L. Bougher, and R. P. Lucht, “Development of injection-seeded, pulsed optical parametric generator/oscillator systems for high-resolution spectroscopy,” Appl. Phys. B 80, 669-680(2005).
[CrossRef]

Armstrong, D. J.

Bosenberg, W. R.

W. R. Bosenberg, W. S. Pelouch, and C. L. Tang, “High-efficiency and narrow-linewidth operation of a two-crystal β-BaB2O4 optical parametric oscillator,” Appl. Phys. Lett. 55, 1952-1954 (1989).
[CrossRef]

Bougher, T. L.

W. D. Kulatilaka, T. N. Anderson, T. L. Bougher, and R. P. Lucht, “Development of injection-seeded, pulsed optical parametric generator/oscillator systems for high-resolution spectroscopy,” Appl. Phys. B 80, 669-680(2005).
[CrossRef]

Bowers, M. S.

Boyd, R. W.

A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev A 44, 3205-3209 (1991).
[CrossRef] [PubMed]

Checkhlov, O. V.

J. A. J. Fitzpatrick, O. V. Checkhlov, J. M. F. Elks, and C. M. Western, “An injection seeded narrow bandwidth pulsed optical parametric oscillator and its application to the investigation of hyperfine structure in the PF radical,” J. Chem. Phys. 115, 6920-6930 (2001).
[CrossRef]

Danehy, P. M.

J. S. Fox, A. F. P. Houwing, P. M. Danehy, M. J. Gaston, N. R. Muidford, and S. L. Gai, “Mole-fraction-sensitive imaging of hypermixing shear layers,” J. Propul. Power 17, 284-292 (2001).
[CrossRef]

Den Hartog, D. J.

D. J. Den Hartog, N. Jiang, and W. R. Lempert, “A pulse burst laser system for high repetition rate Thomson scattering diagnostic,” accepted for publication in Rev. Sci. Instrum.

Dergachev, A. Y.

A. Y. Dergachev, B. Pati, and P. F. Moulton, “Efficient third-harmonic generation with a Ti:sapphire laser,” in Advanced Solid State Lasers, 1999 OSA Technical Digest Series (Optical Society of America, 1999), paper PD3.

Dreizler, A.

C. Kittler and A. Dreizler, “Cinematographic imaging of hydroxyl radicals in turbulent flames by planar laser-induced fluorescence up to 5 kHz repetition rate,” Appl. Phys. B. 89, 163-166 (2007).
[CrossRef]

Dutton, J. C.

A. L. Kastengren, J. C. Dutton, and G. S. Elliott, “Large-scale structure visualization and convection velocity in supersonic blunt-base cylinder wakes,” Phys. Fluids 19, 015103(2007).
[CrossRef]

Elks, J. M. F.

J. A. J. Fitzpatrick, O. V. Checkhlov, J. M. F. Elks, and C. M. Western, “An injection seeded narrow bandwidth pulsed optical parametric oscillator and its application to the investigation of hyperfine structure in the PF radical,” J. Chem. Phys. 115, 6920-6930 (2001).
[CrossRef]

Elliott, G. S.

A. L. Kastengren, J. C. Dutton, and G. S. Elliott, “Large-scale structure visualization and convection velocity in supersonic blunt-base cylinder wakes,” Phys. Fluids 19, 015103(2007).
[CrossRef]

Fitzpatrick, J. A. J.

J. A. J. Fitzpatrick, O. V. Checkhlov, J. M. F. Elks, and C. M. Western, “An injection seeded narrow bandwidth pulsed optical parametric oscillator and its application to the investigation of hyperfine structure in the PF radical,” J. Chem. Phys. 115, 6920-6930 (2001).
[CrossRef]

Fox, J. S.

J. S. Fox, A. F. P. Houwing, P. M. Danehy, M. J. Gaston, N. R. Muidford, and S. L. Gai, “Mole-fraction-sensitive imaging of hypermixing shear layers,” J. Propul. Power 17, 284-292 (2001).
[CrossRef]

Fujita, H.

Gaeta, A. L.

A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev A 44, 3205-3209 (1991).
[CrossRef] [PubMed]

Gai, S. L.

J. S. Fox, A. F. P. Houwing, P. M. Danehy, M. J. Gaston, N. R. Muidford, and S. L. Gai, “Mole-fraction-sensitive imaging of hypermixing shear layers,” J. Propul. Power 17, 284-292 (2001).
[CrossRef]

Gaston, M. J.

J. S. Fox, A. F. P. Houwing, P. M. Danehy, M. J. Gaston, N. R. Muidford, and S. L. Gai, “Mole-fraction-sensitive imaging of hypermixing shear layers,” J. Propul. Power 17, 284-292 (2001).
[CrossRef]

Gogineni, S.

M. Nishihara, N. Jiang, J. W. Rich, W. R. Lempert, I. V. Adamovich, and S. Gogineni, “Low-temperature supersonic boundary layer control using repetitively pulsed MHD forcing,” Phys. Fluids 17, 106102 (2005).
[CrossRef]

Gord, J. R.

Hanson, R. K.

B. K. McMillan, J. L. Palmer, and R. K. Hanson, “Temporally resolved, two-line fluorescence imaging of NO temperature in a transverse jet in a supersonic cross flow,” Appl. Opt. 32, 7532-7545 (1993).
[CrossRef]

G. Kychakoff, K. Knapp, R. D. Howe, and R. K. Hanson, “Flow visualization in combustion gases using nitric oxide fluorescence,” AIAA J. 22, 153-154 (1984).
[CrossRef]

Houwing, A. F. P.

J. S. Fox, A. F. P. Houwing, P. M. Danehy, M. J. Gaston, N. R. Muidford, and S. L. Gai, “Mole-fraction-sensitive imaging of hypermixing shear layers,” J. Propul. Power 17, 284-292 (2001).
[CrossRef]

Howe, R. D.

G. Kychakoff, K. Knapp, R. D. Howe, and R. K. Hanson, “Flow visualization in combustion gases using nitric oxide fluorescence,” AIAA J. 22, 153-154 (1984).
[CrossRef]

Hult, J.

C. F. Kaminski, J. Hult, and M. Alden, “High repetition rate planar laser induced fluorescence of OH in a non-premixed flame,” Appl. Phys. B. 68, 757-760 (1999).
[CrossRef]

Jiang, N.

N. Jiang, W. R. Lempert, G. L. Switzer, T. R. Meyer, and J. R. Gord, “A narrow-linewidth MHz-repetition-rate optical parametric oscillator for high-speed flow and combustion diagnostics,” Appl. Opt. 47, 64-71 (2008).
[CrossRef]

M. Nishihara, N. Jiang, J. W. Rich, W. R. Lempert, I. V. Adamovich, and S. Gogineni, “Low-temperature supersonic boundary layer control using repetitively pulsed MHD forcing,” Phys. Fluids 17, 106102 (2005).
[CrossRef]

B. Thurow, N. Jiang, W. Lempert, and M. Samimy, “Development of megahertz-rate planar Doppler velocimetry for high speed flows,” AIAA J. 43, 500-511 (2005).
[CrossRef]

B. Thurow, N. Jiang, M. Samimy, and W. Lempert, “Narrow-linewidth megahertz-rate pulse-burst laser for high-speed flow diagnostics,” Appl. Opt. 43, 5064-5073 (2004).
[CrossRef] [PubMed]

D. J. Den Hartog, N. Jiang, and W. R. Lempert, “A pulse burst laser system for high repetition rate Thomson scattering diagnostic,” accepted for publication in Rev. Sci. Instrum.

Kaminski, C. F.

C. F. Kaminski, J. Hult, and M. Alden, “High repetition rate planar laser induced fluorescence of OH in a non-premixed flame,” Appl. Phys. B. 68, 757-760 (1999).
[CrossRef]

Kastengren, A. L.

A. L. Kastengren, J. C. Dutton, and G. S. Elliott, “Large-scale structure visualization and convection velocity in supersonic blunt-base cylinder wakes,” Phys. Fluids 19, 015103(2007).
[CrossRef]

Kittler, C.

C. Kittler and A. Dreizler, “Cinematographic imaging of hydroxyl radicals in turbulent flames by planar laser-induced fluorescence up to 5 kHz repetition rate,” Appl. Phys. B. 89, 163-166 (2007).
[CrossRef]

Kmetik, V.

Knapp, K.

G. Kychakoff, K. Knapp, R. D. Howe, and R. K. Hanson, “Flow visualization in combustion gases using nitric oxide fluorescence,” AIAA J. 22, 153-154 (1984).
[CrossRef]

Kosonocky, W. F.

W. R. Lempert, P. Wu, B. Zhang, R. B. Miles, J. L. Lowrance, V. Mastracola, and W. F. Kosonocky, “Pulse-burst laser system for high speed flow diagnostics,” in 34th AIAA Aerospace Sciences Meeting, Rep. AIAA-1996-0500 (American Institute of Aeronautics and Astronautics, 1996).

Kulatilaka, W. D.

W. D. Kulatilaka, T. N. Anderson, T. L. Bougher, and R. P. Lucht, “Development of injection-seeded, pulsed optical parametric generator/oscillator systems for high-resolution spectroscopy,” Appl. Phys. B 80, 669-680(2005).
[CrossRef]

Kung, A. H.

Kychakoff, G.

G. Kychakoff, K. Knapp, R. D. Howe, and R. K. Hanson, “Flow visualization in combustion gases using nitric oxide fluorescence,” AIAA J. 22, 153-154 (1984).
[CrossRef]

Lee, W.

Lempert, W.

Lempert, W. R.

N. Jiang, W. R. Lempert, G. L. Switzer, T. R. Meyer, and J. R. Gord, “A narrow-linewidth MHz-repetition-rate optical parametric oscillator for high-speed flow and combustion diagnostics,” Appl. Opt. 47, 64-71 (2008).
[CrossRef]

M. Nishihara, N. Jiang, J. W. Rich, W. R. Lempert, I. V. Adamovich, and S. Gogineni, “Low-temperature supersonic boundary layer control using repetitively pulsed MHD forcing,” Phys. Fluids 17, 106102 (2005).
[CrossRef]

P. Wu, W. R. Lempert, and R. B. Miles, “MHz pulse-burst laser system and visualization of shock-wave boundary-layer interaction in a Mach 2.5 wind tunnel,” AIAA J. 38, 672-679 (2000).
[CrossRef]

W. R. Lempert, P. Wu, B. Zhang, R. B. Miles, J. L. Lowrance, V. Mastracola, and W. F. Kosonocky, “Pulse-burst laser system for high speed flow diagnostics,” in 34th AIAA Aerospace Sciences Meeting, Rep. AIAA-1996-0500 (American Institute of Aeronautics and Astronautics, 1996).

D. J. Den Hartog, N. Jiang, and W. R. Lempert, “A pulse burst laser system for high repetition rate Thomson scattering diagnostic,” accepted for publication in Rev. Sci. Instrum.

Lowrance, J. L.

W. R. Lempert, P. Wu, B. Zhang, R. B. Miles, J. L. Lowrance, V. Mastracola, and W. F. Kosonocky, “Pulse-burst laser system for high speed flow diagnostics,” in 34th AIAA Aerospace Sciences Meeting, Rep. AIAA-1996-0500 (American Institute of Aeronautics and Astronautics, 1996).

Lucht, R. P.

W. D. Kulatilaka, T. N. Anderson, T. L. Bougher, and R. P. Lucht, “Development of injection-seeded, pulsed optical parametric generator/oscillator systems for high-resolution spectroscopy,” Appl. Phys. B 80, 669-680(2005).
[CrossRef]

Mastracola, V.

W. R. Lempert, P. Wu, B. Zhang, R. B. Miles, J. L. Lowrance, V. Mastracola, and W. F. Kosonocky, “Pulse-burst laser system for high speed flow diagnostics,” in 34th AIAA Aerospace Sciences Meeting, Rep. AIAA-1996-0500 (American Institute of Aeronautics and Astronautics, 1996).

McMillan, B. K.

Meyer, T. R.

Miles, R. B.

P. Wu, W. R. Lempert, and R. B. Miles, “MHz pulse-burst laser system and visualization of shock-wave boundary-layer interaction in a Mach 2.5 wind tunnel,” AIAA J. 38, 672-679 (2000).
[CrossRef]

W. R. Lempert, P. Wu, B. Zhang, R. B. Miles, J. L. Lowrance, V. Mastracola, and W. F. Kosonocky, “Pulse-burst laser system for high speed flow diagnostics,” in 34th AIAA Aerospace Sciences Meeting, Rep. AIAA-1996-0500 (American Institute of Aeronautics and Astronautics, 1996).

Moulton, P. F.

A. Y. Dergachev, B. Pati, and P. F. Moulton, “Efficient third-harmonic generation with a Ti:sapphire laser,” in Advanced Solid State Lasers, 1999 OSA Technical Digest Series (Optical Society of America, 1999), paper PD3.

Muidford, N. R.

J. S. Fox, A. F. P. Houwing, P. M. Danehy, M. J. Gaston, N. R. Muidford, and S. L. Gai, “Mole-fraction-sensitive imaging of hypermixing shear layers,” J. Propul. Power 17, 284-292 (2001).
[CrossRef]

Nakatsuka, M.

Ni, C. K.

Nishihara, M.

M. Nishihara, N. Jiang, J. W. Rich, W. R. Lempert, I. V. Adamovich, and S. Gogineni, “Low-temperature supersonic boundary layer control using repetitively pulsed MHD forcing,” Phys. Fluids 17, 106102 (2005).
[CrossRef]

Opalskii, A. B.

M. Wernet and A. B. Opalskii, “Development and application of a MHz frame rate digital Particle Image Velocimetry system,” in 24th Aerodynamic Measurement Technology & Ground Testing Conference Rep. AIAA-2004-2184 (American Institute of Aeronautics and Astronautics, 2004).

Palmer, J. L.

Pati, B.

A. Y. Dergachev, B. Pati, and P. F. Moulton, “Efficient third-harmonic generation with a Ti:sapphire laser,” in Advanced Solid State Lasers, 1999 OSA Technical Digest Series (Optical Society of America, 1999), paper PD3.

Pelouch, W. S.

W. R. Bosenberg, W. S. Pelouch, and C. L. Tang, “High-efficiency and narrow-linewidth operation of a two-crystal β-BaB2O4 optical parametric oscillator,” Appl. Phys. Lett. 55, 1952-1954 (1989).
[CrossRef]

Raymond, T. D.

Rich, J. W.

M. Nishihara, N. Jiang, J. W. Rich, W. R. Lempert, I. V. Adamovich, and S. Gogineni, “Low-temperature supersonic boundary layer control using repetitively pulsed MHD forcing,” Phys. Fluids 17, 106102 (2005).
[CrossRef]

Samimy, M.

B. Thurow, N. Jiang, W. Lempert, and M. Samimy, “Development of megahertz-rate planar Doppler velocimetry for high speed flows,” AIAA J. 43, 500-511 (2005).
[CrossRef]

B. Thurow, N. Jiang, M. Samimy, and W. Lempert, “Narrow-linewidth megahertz-rate pulse-burst laser for high-speed flow diagnostics,” Appl. Opt. 43, 5064-5073 (2004).
[CrossRef] [PubMed]

Satija, A.

B. Thurow and A. Satija, “A design of MHz repetition rate pulse burst laser system at Auburn University,” in 44th AIAA Aerospace Sciences Meeting, Rep. AIAA-2006-1384 (American Institute of Aeronautics and Astronautics, 2004).

Smith, A. V.

Switzer, G. L.

Tang, C. L.

W. R. Bosenberg, W. S. Pelouch, and C. L. Tang, “High-efficiency and narrow-linewidth operation of a two-crystal β-BaB2O4 optical parametric oscillator,” Appl. Phys. Lett. 55, 1952-1954 (1989).
[CrossRef]

Thurow, B.

B. Thurow, N. Jiang, W. Lempert, and M. Samimy, “Development of megahertz-rate planar Doppler velocimetry for high speed flows,” AIAA J. 43, 500-511 (2005).
[CrossRef]

B. Thurow, N. Jiang, M. Samimy, and W. Lempert, “Narrow-linewidth megahertz-rate pulse-burst laser for high-speed flow diagnostics,” Appl. Opt. 43, 5064-5073 (2004).
[CrossRef] [PubMed]

B. Thurow and A. Satija, “A design of MHz repetition rate pulse burst laser system at Auburn University,” in 44th AIAA Aerospace Sciences Meeting, Rep. AIAA-2006-1384 (American Institute of Aeronautics and Astronautics, 2004).

Wernet, M.

M. Wernet and A. B. Opalskii, “Development and application of a MHz frame rate digital Particle Image Velocimetry system,” in 24th Aerodynamic Measurement Technology & Ground Testing Conference Rep. AIAA-2004-2184 (American Institute of Aeronautics and Astronautics, 2004).

Western, C. M.

J. A. J. Fitzpatrick, O. V. Checkhlov, J. M. F. Elks, and C. M. Western, “An injection seeded narrow bandwidth pulsed optical parametric oscillator and its application to the investigation of hyperfine structure in the PF radical,” J. Chem. Phys. 115, 6920-6930 (2001).
[CrossRef]

Wu, P.

P. Wu, W. R. Lempert, and R. B. Miles, “MHz pulse-burst laser system and visualization of shock-wave boundary-layer interaction in a Mach 2.5 wind tunnel,” AIAA J. 38, 672-679 (2000).
[CrossRef]

W. R. Lempert, P. Wu, B. Zhang, R. B. Miles, J. L. Lowrance, V. Mastracola, and W. F. Kosonocky, “Pulse-burst laser system for high speed flow diagnostics,” in 34th AIAA Aerospace Sciences Meeting, Rep. AIAA-1996-0500 (American Institute of Aeronautics and Astronautics, 1996).

Yamanaka, T.

Yoshida, H.

Yoshida, K.

Zhang, B.

W. R. Lempert, P. Wu, B. Zhang, R. B. Miles, J. L. Lowrance, V. Mastracola, and W. F. Kosonocky, “Pulse-burst laser system for high speed flow diagnostics,” in 34th AIAA Aerospace Sciences Meeting, Rep. AIAA-1996-0500 (American Institute of Aeronautics and Astronautics, 1996).

AIAA J. (3)

P. Wu, W. R. Lempert, and R. B. Miles, “MHz pulse-burst laser system and visualization of shock-wave boundary-layer interaction in a Mach 2.5 wind tunnel,” AIAA J. 38, 672-679 (2000).
[CrossRef]

G. Kychakoff, K. Knapp, R. D. Howe, and R. K. Hanson, “Flow visualization in combustion gases using nitric oxide fluorescence,” AIAA J. 22, 153-154 (1984).
[CrossRef]

B. Thurow, N. Jiang, W. Lempert, and M. Samimy, “Development of megahertz-rate planar Doppler velocimetry for high speed flows,” AIAA J. 43, 500-511 (2005).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. B (1)

W. D. Kulatilaka, T. N. Anderson, T. L. Bougher, and R. P. Lucht, “Development of injection-seeded, pulsed optical parametric generator/oscillator systems for high-resolution spectroscopy,” Appl. Phys. B 80, 669-680(2005).
[CrossRef]

Appl. Phys. B. (2)

C. F. Kaminski, J. Hult, and M. Alden, “High repetition rate planar laser induced fluorescence of OH in a non-premixed flame,” Appl. Phys. B. 68, 757-760 (1999).
[CrossRef]

C. Kittler and A. Dreizler, “Cinematographic imaging of hydroxyl radicals in turbulent flames by planar laser-induced fluorescence up to 5 kHz repetition rate,” Appl. Phys. B. 89, 163-166 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

W. R. Bosenberg, W. S. Pelouch, and C. L. Tang, “High-efficiency and narrow-linewidth operation of a two-crystal β-BaB2O4 optical parametric oscillator,” Appl. Phys. Lett. 55, 1952-1954 (1989).
[CrossRef]

J. Chem. Phys. (1)

J. A. J. Fitzpatrick, O. V. Checkhlov, J. M. F. Elks, and C. M. Western, “An injection seeded narrow bandwidth pulsed optical parametric oscillator and its application to the investigation of hyperfine structure in the PF radical,” J. Chem. Phys. 115, 6920-6930 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Propul. Power (1)

J. S. Fox, A. F. P. Houwing, P. M. Danehy, M. J. Gaston, N. R. Muidford, and S. L. Gai, “Mole-fraction-sensitive imaging of hypermixing shear layers,” J. Propul. Power 17, 284-292 (2001).
[CrossRef]

Opt. Lett. (1)

Phys. Fluids (2)

A. L. Kastengren, J. C. Dutton, and G. S. Elliott, “Large-scale structure visualization and convection velocity in supersonic blunt-base cylinder wakes,” Phys. Fluids 19, 015103(2007).
[CrossRef]

M. Nishihara, N. Jiang, J. W. Rich, W. R. Lempert, I. V. Adamovich, and S. Gogineni, “Low-temperature supersonic boundary layer control using repetitively pulsed MHD forcing,” Phys. Fluids 17, 106102 (2005).
[CrossRef]

Phys. Rev A (1)

A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev A 44, 3205-3209 (1991).
[CrossRef] [PubMed]

Other (6)

R.N.Bracewell, The Fourier Transform and Its Applications, 2nd ed. (McGraw-Hill, 1986).

B. Thurow and A. Satija, “A design of MHz repetition rate pulse burst laser system at Auburn University,” in 44th AIAA Aerospace Sciences Meeting, Rep. AIAA-2006-1384 (American Institute of Aeronautics and Astronautics, 2004).

D. J. Den Hartog, N. Jiang, and W. R. Lempert, “A pulse burst laser system for high repetition rate Thomson scattering diagnostic,” accepted for publication in Rev. Sci. Instrum.

M. Wernet and A. B. Opalskii, “Development and application of a MHz frame rate digital Particle Image Velocimetry system,” in 24th Aerodynamic Measurement Technology & Ground Testing Conference Rep. AIAA-2004-2184 (American Institute of Aeronautics and Astronautics, 2004).

A. Y. Dergachev, B. Pati, and P. F. Moulton, “Efficient third-harmonic generation with a Ti:sapphire laser,” in Advanced Solid State Lasers, 1999 OSA Technical Digest Series (Optical Society of America, 1999), paper PD3.

W. R. Lempert, P. Wu, B. Zhang, R. B. Miles, J. L. Lowrance, V. Mastracola, and W. F. Kosonocky, “Pulse-burst laser system for high speed flow diagnostics,” in 34th AIAA Aerospace Sciences Meeting, Rep. AIAA-1996-0500 (American Institute of Aeronautics and Astronautics, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the pulse burst laser system.

Fig. 2
Fig. 2

Two-pass small signal gain of analog modules model 8800 V variable pulse width power supply for a variety of lamp energies and lamp charging pulse widths. The graph labeled “old” corresponds to fixed pulse width supply currently used for amplifier 1.

Fig. 3
Fig. 3

Representative burst sequences at 1064 nm . The upper left is a 10 pulse sequence with 10 μs spacing and average individual pulse energy of 83 mJ . Upper right is a 20 pulse sequence with 20 μs spacing and 233 mJ / pulse . The lower left is 20 pulses with 50 μs spacing. The average individual pulse energy is 420 mJ . The lower right is a 99 pulse sequence with 10 μs spacing, and the average individual pulse energy is 27 mJ .

Fig. 4
Fig. 4

Second-harmonic conversion efficiency (left) and typical 532 nm burst sequence obtained from the new variable pulse width flashlamp power supplies (right). SHG uses type II KTP with an input beam diameter of approximately 8 mm .

Fig. 5
Fig. 5

Representative 355 mm (left) and 452 nm OPO signal (right) burst sequences obtained using new, variable pulse width flashlamp power supplies.

Fig. 6
Fig. 6

Typical 20 pulse, 10 μs spacing burst sequence at 226 nm using the new variable pulse duration flashlamp power supplies. The average individual pulse energy is 0.5 mJ .

Fig. 7
Fig. 7

Schematic diagram of the Mach 3 tunnel indicating approximate positions of NO seeded jet injection and PLIF imaging region.

Fig. 8
Fig. 8

355 nm (top), 622 nm (middle), and 226 nm (bottom) bursts at 250 kHz obtained with the modified portable burst mode laser system on loan from NASA—Glenn Research Center. This laser utilizes fixed pulse width flashlamp power supplies.

Fig. 9
Fig. 9

Streamwise-view NO PLIF image sequence obtained from a laboratory-scale Mach 3 flow using a burst sequence at 250 kHz similar to that shown in Fig. 8. Seeded jet is located just upstream of image window. Mach 3 flow is from left to right. No seeded jet is injected from bottom at location 5 mm upstream from window leading edge. The field of view is 9.5 mm ( horizontal ) × 7.1 mm ( height ) .

Fig. 10
Fig. 10

NO PLIF image sequence similar to that of Fig. 9 but obtained at 500 kHz burst frequency.

Metrics