Abstract

Conventional fiber optic evanescent-field gas sensors are based on a high number of total reflections while the gas is passing the active bare core fiber and of course a suitable laser light source. The use of miniaturized laser sources for sensitive detection of CO2 in gaseous and water-dissolved phase for environmental monitoring are studied for signal enhancing purposes. Additionally, the fiber optic sensor, consisting of a coiled bare multimode fiber core, was sensitized by an active polymer coating for the detection of explosive TNT. The implementation of ZnO waveguiding nanowires is discussed for surface and sensitivity enhancing coating of waveguiding elements, considering computational and experimental results.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Allen, B. R. Strazisar, Y. Soong, and S. W. Hedges, “Modeling carbon dioxide sequestration in saline aquifers: Significance of elevated pressures and salinities,” Fuel Process. Technol. 86, 1569-1580 (2005).
    [CrossRef]
  2. R. Meyer, J. Köhler, and A. Homburg, Explosives (Wiley, 2007).
    [CrossRef]
  3. R. J. Woodfin, Trace Chemical Sensing of Explosives (Wiley, 2007).
  4. J.W.Gardner and J.Yinon, eds. Noses and Sensors for the Detection of Explosives (Kluwer, 2003).
  5. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025-1035 (2004).
    [CrossRef] [PubMed]
  6. N. J. Harrick, Internal Reflection Spectroscopy (Wiley Interscience, 1967).
  7. R. Orghici, U. Willer, M. Gierszewska, S. R. Waldvogel, and W. Schade, “Fiber optic evanescent field sensor for detection of explosives and CO2 dissolved in water,” Appl. Phys. B 90, 355-360 (2008).
    [CrossRef]
  8. J. J. Caroll, J. D. Slupsky, and A. E. Mather, “The solubility of carbon dioxide in water at low pressure,” J. Phys. Chem. Ref. Data 20, 1201-1209 (1991).
    [CrossRef]
  9. D. S. Moore, “Instrumentation for trace detection of high explosives,” Rev. Sci. Instrum. 75, 2499-2512 (2004).
    [CrossRef]
  10. M. C. Schopohl, A. Faust, D. Mirk, R. Fröhlich, O. Kataeva, and S. R. Waldvogel, “Synthesis of rigid receptors based on triphenylene ketals,” Eur. J. Org. Chem. 2005, 2987-2999 (2005).
    [CrossRef]
  11. C. N. Sheaff, D. Eastwood, C. M. Wai, and R. S. Addleman, “Fluorescence detection and identification of tagging agents and impurities found in explosives,” Appl. Spectrosc. 62, 739-746 (2008).
    [CrossRef] [PubMed]
  12. P. A. Pella, “Measurement of the vapor pressures of TNT, 2,4-DNT, 2,6-DNT, and EGDN,” J. Chem. Thermodyn. 9, 301-305 (1977).
    [CrossRef]
  13. L. Wischmeier, C. Bekeny, T. Voss, S. Börner, and W. Schade, “Optical properties of single ZnO nanowires,” Phys. Status Solidi B 243, 919-923 (2006).
    [CrossRef]
  14. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis,” Opt. Express 8, 173-190 (2001).
    [CrossRef] [PubMed]
  15. S. Börner, C. E. Rüter, T. Voss, D. Kip, and W. Schade, “Modeling of ZnO nanorods for evanescent field optical sensors,” Phys. Status Solidi A 204, 3487-3495 (2007).
    [CrossRef]
  16. M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater. 13, 113-116 (2001).
    [CrossRef]

2008

R. Orghici, U. Willer, M. Gierszewska, S. R. Waldvogel, and W. Schade, “Fiber optic evanescent field sensor for detection of explosives and CO2 dissolved in water,” Appl. Phys. B 90, 355-360 (2008).
[CrossRef]

C. N. Sheaff, D. Eastwood, C. M. Wai, and R. S. Addleman, “Fluorescence detection and identification of tagging agents and impurities found in explosives,” Appl. Spectrosc. 62, 739-746 (2008).
[CrossRef] [PubMed]

2007

S. Börner, C. E. Rüter, T. Voss, D. Kip, and W. Schade, “Modeling of ZnO nanorods for evanescent field optical sensors,” Phys. Status Solidi A 204, 3487-3495 (2007).
[CrossRef]

2006

L. Wischmeier, C. Bekeny, T. Voss, S. Börner, and W. Schade, “Optical properties of single ZnO nanowires,” Phys. Status Solidi B 243, 919-923 (2006).
[CrossRef]

2005

M. C. Schopohl, A. Faust, D. Mirk, R. Fröhlich, O. Kataeva, and S. R. Waldvogel, “Synthesis of rigid receptors based on triphenylene ketals,” Eur. J. Org. Chem. 2005, 2987-2999 (2005).
[CrossRef]

D. E. Allen, B. R. Strazisar, Y. Soong, and S. W. Hedges, “Modeling carbon dioxide sequestration in saline aquifers: Significance of elevated pressures and salinities,” Fuel Process. Technol. 86, 1569-1580 (2005).
[CrossRef]

2004

2001

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis,” Opt. Express 8, 173-190 (2001).
[CrossRef] [PubMed]

M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater. 13, 113-116 (2001).
[CrossRef]

1991

J. J. Caroll, J. D. Slupsky, and A. E. Mather, “The solubility of carbon dioxide in water at low pressure,” J. Phys. Chem. Ref. Data 20, 1201-1209 (1991).
[CrossRef]

1977

P. A. Pella, “Measurement of the vapor pressures of TNT, 2,4-DNT, 2,6-DNT, and EGDN,” J. Chem. Thermodyn. 9, 301-305 (1977).
[CrossRef]

Addleman, R. S.

Allen, D. E.

D. E. Allen, B. R. Strazisar, Y. Soong, and S. W. Hedges, “Modeling carbon dioxide sequestration in saline aquifers: Significance of elevated pressures and salinities,” Fuel Process. Technol. 86, 1569-1580 (2005).
[CrossRef]

Bekeny, C.

L. Wischmeier, C. Bekeny, T. Voss, S. Börner, and W. Schade, “Optical properties of single ZnO nanowires,” Phys. Status Solidi B 243, 919-923 (2006).
[CrossRef]

Börner, S.

S. Börner, C. E. Rüter, T. Voss, D. Kip, and W. Schade, “Modeling of ZnO nanorods for evanescent field optical sensors,” Phys. Status Solidi A 204, 3487-3495 (2007).
[CrossRef]

L. Wischmeier, C. Bekeny, T. Voss, S. Börner, and W. Schade, “Optical properties of single ZnO nanowires,” Phys. Status Solidi B 243, 919-923 (2006).
[CrossRef]

Caroll, J. J.

J. J. Caroll, J. D. Slupsky, and A. E. Mather, “The solubility of carbon dioxide in water at low pressure,” J. Phys. Chem. Ref. Data 20, 1201-1209 (1991).
[CrossRef]

Eastwood, D.

Faust, A.

M. C. Schopohl, A. Faust, D. Mirk, R. Fröhlich, O. Kataeva, and S. R. Waldvogel, “Synthesis of rigid receptors based on triphenylene ketals,” Eur. J. Org. Chem. 2005, 2987-2999 (2005).
[CrossRef]

Feick, H.

M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater. 13, 113-116 (2001).
[CrossRef]

Fröhlich, R.

M. C. Schopohl, A. Faust, D. Mirk, R. Fröhlich, O. Kataeva, and S. R. Waldvogel, “Synthesis of rigid receptors based on triphenylene ketals,” Eur. J. Org. Chem. 2005, 2987-2999 (2005).
[CrossRef]

Gierszewska, M.

R. Orghici, U. Willer, M. Gierszewska, S. R. Waldvogel, and W. Schade, “Fiber optic evanescent field sensor for detection of explosives and CO2 dissolved in water,” Appl. Phys. B 90, 355-360 (2008).
[CrossRef]

Harrick, N. J.

N. J. Harrick, Internal Reflection Spectroscopy (Wiley Interscience, 1967).

Hedges, S. W.

D. E. Allen, B. R. Strazisar, Y. Soong, and S. W. Hedges, “Modeling carbon dioxide sequestration in saline aquifers: Significance of elevated pressures and salinities,” Fuel Process. Technol. 86, 1569-1580 (2005).
[CrossRef]

Homburg, A.

R. Meyer, J. Köhler, and A. Homburg, Explosives (Wiley, 2007).
[CrossRef]

Huang, M. H.

M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater. 13, 113-116 (2001).
[CrossRef]

Joannopoulos, J. D.

Johnson, S. G.

Kataeva, O.

M. C. Schopohl, A. Faust, D. Mirk, R. Fröhlich, O. Kataeva, and S. R. Waldvogel, “Synthesis of rigid receptors based on triphenylene ketals,” Eur. J. Org. Chem. 2005, 2987-2999 (2005).
[CrossRef]

Kip, D.

S. Börner, C. E. Rüter, T. Voss, D. Kip, and W. Schade, “Modeling of ZnO nanorods for evanescent field optical sensors,” Phys. Status Solidi A 204, 3487-3495 (2007).
[CrossRef]

Köhler, J.

R. Meyer, J. Köhler, and A. Homburg, Explosives (Wiley, 2007).
[CrossRef]

Lou, J.

Mather, A. E.

J. J. Caroll, J. D. Slupsky, and A. E. Mather, “The solubility of carbon dioxide in water at low pressure,” J. Phys. Chem. Ref. Data 20, 1201-1209 (1991).
[CrossRef]

Mazur, E.

Meyer, R.

R. Meyer, J. Köhler, and A. Homburg, Explosives (Wiley, 2007).
[CrossRef]

Mirk, D.

M. C. Schopohl, A. Faust, D. Mirk, R. Fröhlich, O. Kataeva, and S. R. Waldvogel, “Synthesis of rigid receptors based on triphenylene ketals,” Eur. J. Org. Chem. 2005, 2987-2999 (2005).
[CrossRef]

Moore, D. S.

D. S. Moore, “Instrumentation for trace detection of high explosives,” Rev. Sci. Instrum. 75, 2499-2512 (2004).
[CrossRef]

Orghici, R.

R. Orghici, U. Willer, M. Gierszewska, S. R. Waldvogel, and W. Schade, “Fiber optic evanescent field sensor for detection of explosives and CO2 dissolved in water,” Appl. Phys. B 90, 355-360 (2008).
[CrossRef]

Pella, P. A.

P. A. Pella, “Measurement of the vapor pressures of TNT, 2,4-DNT, 2,6-DNT, and EGDN,” J. Chem. Thermodyn. 9, 301-305 (1977).
[CrossRef]

Rüter, C. E.

S. Börner, C. E. Rüter, T. Voss, D. Kip, and W. Schade, “Modeling of ZnO nanorods for evanescent field optical sensors,” Phys. Status Solidi A 204, 3487-3495 (2007).
[CrossRef]

Schade, W.

R. Orghici, U. Willer, M. Gierszewska, S. R. Waldvogel, and W. Schade, “Fiber optic evanescent field sensor for detection of explosives and CO2 dissolved in water,” Appl. Phys. B 90, 355-360 (2008).
[CrossRef]

S. Börner, C. E. Rüter, T. Voss, D. Kip, and W. Schade, “Modeling of ZnO nanorods for evanescent field optical sensors,” Phys. Status Solidi A 204, 3487-3495 (2007).
[CrossRef]

L. Wischmeier, C. Bekeny, T. Voss, S. Börner, and W. Schade, “Optical properties of single ZnO nanowires,” Phys. Status Solidi B 243, 919-923 (2006).
[CrossRef]

Schopohl, M. C.

M. C. Schopohl, A. Faust, D. Mirk, R. Fröhlich, O. Kataeva, and S. R. Waldvogel, “Synthesis of rigid receptors based on triphenylene ketals,” Eur. J. Org. Chem. 2005, 2987-2999 (2005).
[CrossRef]

Sheaff, C. N.

Slupsky, J. D.

J. J. Caroll, J. D. Slupsky, and A. E. Mather, “The solubility of carbon dioxide in water at low pressure,” J. Phys. Chem. Ref. Data 20, 1201-1209 (1991).
[CrossRef]

Soong, Y.

D. E. Allen, B. R. Strazisar, Y. Soong, and S. W. Hedges, “Modeling carbon dioxide sequestration in saline aquifers: Significance of elevated pressures and salinities,” Fuel Process. Technol. 86, 1569-1580 (2005).
[CrossRef]

Strazisar, B. R.

D. E. Allen, B. R. Strazisar, Y. Soong, and S. W. Hedges, “Modeling carbon dioxide sequestration in saline aquifers: Significance of elevated pressures and salinities,” Fuel Process. Technol. 86, 1569-1580 (2005).
[CrossRef]

Tong, L.

Tran, N.

M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater. 13, 113-116 (2001).
[CrossRef]

Voss, T.

S. Börner, C. E. Rüter, T. Voss, D. Kip, and W. Schade, “Modeling of ZnO nanorods for evanescent field optical sensors,” Phys. Status Solidi A 204, 3487-3495 (2007).
[CrossRef]

L. Wischmeier, C. Bekeny, T. Voss, S. Börner, and W. Schade, “Optical properties of single ZnO nanowires,” Phys. Status Solidi B 243, 919-923 (2006).
[CrossRef]

Wai, C. M.

Waldvogel, S. R.

R. Orghici, U. Willer, M. Gierszewska, S. R. Waldvogel, and W. Schade, “Fiber optic evanescent field sensor for detection of explosives and CO2 dissolved in water,” Appl. Phys. B 90, 355-360 (2008).
[CrossRef]

M. C. Schopohl, A. Faust, D. Mirk, R. Fröhlich, O. Kataeva, and S. R. Waldvogel, “Synthesis of rigid receptors based on triphenylene ketals,” Eur. J. Org. Chem. 2005, 2987-2999 (2005).
[CrossRef]

Weber, E.

M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater. 13, 113-116 (2001).
[CrossRef]

Willer, U.

R. Orghici, U. Willer, M. Gierszewska, S. R. Waldvogel, and W. Schade, “Fiber optic evanescent field sensor for detection of explosives and CO2 dissolved in water,” Appl. Phys. B 90, 355-360 (2008).
[CrossRef]

Wischmeier, L.

L. Wischmeier, C. Bekeny, T. Voss, S. Börner, and W. Schade, “Optical properties of single ZnO nanowires,” Phys. Status Solidi B 243, 919-923 (2006).
[CrossRef]

Woodfin, R. J.

R. J. Woodfin, Trace Chemical Sensing of Explosives (Wiley, 2007).

Wu, Y.

M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater. 13, 113-116 (2001).
[CrossRef]

Yang, P.

M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater. 13, 113-116 (2001).
[CrossRef]

Adv. Mater.

M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater. 13, 113-116 (2001).
[CrossRef]

Appl. Phys. B

R. Orghici, U. Willer, M. Gierszewska, S. R. Waldvogel, and W. Schade, “Fiber optic evanescent field sensor for detection of explosives and CO2 dissolved in water,” Appl. Phys. B 90, 355-360 (2008).
[CrossRef]

Appl. Spectrosc.

Eur. J. Org. Chem.

M. C. Schopohl, A. Faust, D. Mirk, R. Fröhlich, O. Kataeva, and S. R. Waldvogel, “Synthesis of rigid receptors based on triphenylene ketals,” Eur. J. Org. Chem. 2005, 2987-2999 (2005).
[CrossRef]

Fuel Process. Technol.

D. E. Allen, B. R. Strazisar, Y. Soong, and S. W. Hedges, “Modeling carbon dioxide sequestration in saline aquifers: Significance of elevated pressures and salinities,” Fuel Process. Technol. 86, 1569-1580 (2005).
[CrossRef]

J. Chem. Thermodyn.

P. A. Pella, “Measurement of the vapor pressures of TNT, 2,4-DNT, 2,6-DNT, and EGDN,” J. Chem. Thermodyn. 9, 301-305 (1977).
[CrossRef]

J. Phys. Chem. Ref. Data

J. J. Caroll, J. D. Slupsky, and A. E. Mather, “The solubility of carbon dioxide in water at low pressure,” J. Phys. Chem. Ref. Data 20, 1201-1209 (1991).
[CrossRef]

Opt. Express

Phys. Status Solidi A

S. Börner, C. E. Rüter, T. Voss, D. Kip, and W. Schade, “Modeling of ZnO nanorods for evanescent field optical sensors,” Phys. Status Solidi A 204, 3487-3495 (2007).
[CrossRef]

Phys. Status Solidi B

L. Wischmeier, C. Bekeny, T. Voss, S. Börner, and W. Schade, “Optical properties of single ZnO nanowires,” Phys. Status Solidi B 243, 919-923 (2006).
[CrossRef]

Rev. Sci. Instrum.

D. S. Moore, “Instrumentation for trace detection of high explosives,” Rev. Sci. Instrum. 75, 2499-2512 (2004).
[CrossRef]

Other

N. J. Harrick, Internal Reflection Spectroscopy (Wiley Interscience, 1967).

R. Meyer, J. Köhler, and A. Homburg, Explosives (Wiley, 2007).
[CrossRef]

R. J. Woodfin, Trace Chemical Sensing of Explosives (Wiley, 2007).

J.W.Gardner and J.Yinon, eds. Noses and Sensors for the Detection of Explosives (Kluwer, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Integrated absorption coefficient depending on the pressure of CO 2 for direct absorption spectroscopy and using the evanescent-field sensor.

Fig. 2
Fig. 2

Experimental setup of the evanescent-field sensor device.

Fig. 3
Fig. 3

Monitoring different CO 2 concentrations dissolved in water as a function of temperature measured by the experimental setup shown in Fig. 2.

Fig. 4
Fig. 4

Calculated solubility of CO 2 in water from the theory at different temperatures. Inset: measurement of the integrated absorption coefficient A sensor of dissolved CO 2 in water at different temperatures.

Fig. 5
Fig. 5

Experimental setup of the evanescent-field sensor device applying receptor films for TNT detection.

Fig. 6
Fig. 6

Sensor signal for TNT ambience and recovery of the receptor film when flushing the sensor device by air. G eff is the ratio of the transmitted sensor intensity and reference signal.

Fig. 7
Fig. 7

(a) Normalized maximum magnitude of the evanescent field E max as a function of rod diameter (dots) and penetration depth obtained by MPB as a function of diameter for λ = 1570 nm (black squares). (b) Three-dimensional model of the absolute value of the electric field | E | of a nanorod with diameter D = 1000 nm at λ = 1570 nm .

Fig. 8
Fig. 8

Waveguiding in ZnO wires. (a) Single ZnO wire of D = 1.3 μm , l = 76.6 μm . (b) Single ZnO wire with D = 1.0 μm , l = 131 μm , and bending radii r 1 = 6.1 μm and r 2 = 7.3 μm . (c) Scattering of guided light caused by a crystalline defect. (d) Coupling of light from a wire with D 1 = 1.9 μm and length l 1 = 178 μm into a second wire of D 2 = 1.8 μm and l 2 = 118 μm .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

- ln I ( λ ) I 0 ( λ ) = a ( λ ) C L .
A = - ln I ( λ ) I 0 ( λ ) d λ = C L a ( λ ) d λ = C L K .

Metrics