Abstract

A new, compact, spatially scanning, open-path 2.7μm tunable diode laser absorption spectrometer with short absorption path lengths below 10cm was developed to analyze the spatiotemporal dynamics of one-dimensional (1D) spatial water vapor gradients. This spectrometer, which is based on a room- temperature distributed feedback diode laser, is capable of measuring absolute, calibration-free, line-of-sight averaged, but laterally resolved 1D H2O concentration profiles with a minimum fractional optical resolution of 2.1×103 optical density (OD) (2.5×104 OD after a background subtraction procedure), which permits a signal-to-noise-ratio of 407 (3400) at 10,000partsin106(ppm) H2O, or normalized sensitivities of 2.6ppmm (0.32ppmm) at 0.5Hz duty cycle. The spectrometer’s lateral spatial resolution (governed by the 500μm sampling beam diameter) was validated by analyzing a well-defined laminar jet of nitrogen gas in humidified air. This scanning setup was then used to (a) quantitatively investigate for what we believe to be the first time the H2O boundary layer from 0.7 to 11mm beneath the stomatous side of a single, undetached plant leaf, and (b) to study the temporal boundary layer dynamics and its dependence on stepwise light stimulation of the photosynthetic system. In addition the 2.7μm diode laser was carefully characterized in terms of spectral purity, beam profile, as well as quasi-static and dynamic wavelength tuning coefficients.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. D. Hinkley and P. L. Kelley, “Detection of air pollutants with tunable diode lasers,” Science 171, 635-639 (1971).
    [CrossRef] [PubMed]
  2. H. I. Schiff, G. I. Mackay, and J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed., Vol. 127 of Chemical Analysis (Wiley, 1994), Chap. 5.
  3. C. Schulz, A. Dreizler, V. Ebert, and J. Wolfrum, “Combustion diagnostics,” in Springer Handbook of Experimental Fluid Dynamics, C. Tropea, J. Foss, and A. Yarin, eds. (Springer, 2006), pp. 1241-1316.
  4. V. Ebert and J. Wolfrum, “Absorption spectroscopy,” in Optical Measurements--Techniques and Applications, F. Mayinger and O. Feldmann, eds. (Springer-Verlag, 2001), pp. 227-265.
  5. P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the a-band with vertical-cavity-surface-emitting lasers,” Appl. Phys. B 72, 127-135 (2001).
  6. S. Wagner, B. T. Fisher, J. W. Fleming, and V. Ebert, “TDLAS based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst. 32, 839-846 (2009).
    [CrossRef]
  7. H. Teichert, T. Fernholz, and V. Ebert, “In-situ measurement of CO, H2O and gas temperature in a lignite-fired power-plant,” Appl. Opt. 42, 2043-2051 (2003).
    [CrossRef] [PubMed]
  8. V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, and H. Jaritz, “Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant,” Proc. Combust. Inst. 28, 423-430(2000).
    [CrossRef]
  9. M. P. Arroyo, S. Langlois, and R. K. Hanson, “Diode-laser absorption technique for simultaneous measurements of multiple gasdynamic parameters in high-speed flows containing water vapor,” Appl. Opt. 33, 3296-3307 (1994).
    [CrossRef] [PubMed]
  10. R. K. Hanson and J. Jeffries, “Diode laser sensors for ground testing,” AIAA paper 3441 (American Institute of Aeronautics and Astronautics, 2006).
  11. E. Schlosser, J. Wolfrum, L. Hildebrandt, H. Seifert, B. Oser, and V. Ebert, “Diode laser based in situ detection of alkali atoms: development of a new method for determination of residence time distribution in combustion plants,” Appl. Phys. B 75, 237-247 (2002).
    [CrossRef]
  12. R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O and NH3 near 2.0 μm,” Appl. Phys. B 67, 283-288 (1998).
    [CrossRef]
  13. A. D. Griffiths and A. F. P. Houwing, “Diode laser absorption spectroscopy of water vapor in a scramjet combustor,” Appl. Opt. 44, 6653-6659 (2005).
    [CrossRef] [PubMed]
  14. P. Wiesen, J. Kleffmann, R. Kurtenbach, and K. H. Becker, “Emission of nitrous oxide and methane from aero engines: monitoring by tunable diode laser spectroscopy,” Infrared Phys. Technol. 37, 75-81 (1996).
    [CrossRef]
  15. J. Wormhoudt, J. Shorter, B. McManus, P. L. Kababian, M. Zahniser, W. M. Davis, E. R. Cespedes, and C. E. Kolb, “Tunable infrared laser detection of pyrolysis products of explosive in soils,” Appl. Opt. 35, 3992-3997 (1996).
    [CrossRef] [PubMed]
  16. R. D. May, “Open-path, near-infrared tunable diode laser spectrometer for atmospheric measurements of H2O,” J. Geophys. Res. 103, 19161-19172 (1998).
    [CrossRef]
  17. W. Gurlit, J. P. Burrows, R. Zimmermann, U. Platt, C. Giesemann, J. Wolfrum, and V. Ebert, “Lightweight diode laser spectrometer CHILD (Compact High-altitude In-situ Laser Diode) for balloonborne measurements of water vapor and methane,” Appl. Opt. 44, 91-102 (2005).
    [PubMed]
  18. F. Lübken, F. Dingler, H. von Lucke, J. Anders, W. J. Riedel, and H. Wolf, “MASERATI: a RocketBorne Tunable Diode Laser Absorption Spectrometer,” Appl. Opt. 38, 5338-5349(1999).
    [CrossRef]
  19. A. Salhi, D. Barat, D. Romanini, Y. Rouillard, O. Ouvrard, R. Werner, J. Seufert, J. Koeth, A. Vicet, and A. Garnache, “Single-frequency Sb-based distributed-feedback lasers emitting at 2.3 μm above room-temperature for application in tunable diode laser absorption spectroscopy,” Appl. Opt. 45, 4957-4965 (2006).
    [CrossRef] [PubMed]
  20. J. T. C. Liu, G. B. Rieker, J. Jeffries, M. R. Gruber, C. D. Carter, T. Mathur, and R. K. Hanson, “Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor,” Appl. Opt. 44, 6701-6711 (2005).
    [CrossRef] [PubMed]
  21. X. Liu, J. B. Jeffries, R. K. Hanson, K. M. Hinckley, and M. A. Woodmansee, “Development of a tuneable diode laser sensor for measurements of gas turbine exhaust temperature,” Appl. Phys. B 82, 196-478 (2006).
    [CrossRef]
  22. A. R. Awtry, B. T. Fisher, R. A. Moffat, V. Ebert, and J. W. Fleming, “Simultaneous diode laser based in situ quantification of oxygen, carbon monoxide, water vapor, and liquid water in a dense water mist environment,” Proc. Combust. Inst. 31, 799-806 (2006).
    [CrossRef]
  23. V. Ebert, H. Teichert, C. Giesemann, H. Saathoff, and U. Schurath, “Fiber-coupled in situ-laser absorption spectrometer for the selective detection of water vapor traces down to the ppb-level,” Tech. Mess. 72, 23-30 (2005).
    [CrossRef]
  24. L. Gianfrani, G. Gagliardi, M. van Burgel, and E. Kerstel, “Isotope analysis of water by means of near infrared dual-wavelength diode laser spectroscopy,” Opt. Express 11, 1566-1576 (2003).
    [CrossRef] [PubMed]
  25. B. Zaitone, G. Castanet, N. Damaschke, C. Tropea, S. Hunsmann, and V. Ebert, “Evaporation of an acoustically levitated droplet,” presented at the 10th International Congress on Liquid Atomization and Spray Systems, ICLASS-2006, 27 August-1 September, Kyoto, Japan, 2006.
  26. S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “High resolution measurements of absolute water transpiration rates from plant leaves via 1.37 μm tunable diode laser absorption spectroscopy (TDLAS),” Appl. Phys. B 92, 393-401 (2008).
    [CrossRef]
  27. X. Zhou, X. J. B. Liu, and R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases using a single tuneable diode laser,” Meas. Sci. Technol. 14, 1459-1468 (2003).
    [CrossRef]
  28. D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, and J. D. W. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near-IR diode laser hygrometer,” Appl. Phys. B 67, 275-282 (1998).
    [CrossRef]
  29. C. R. Webster, G. J. Flesch, K. Mansour, R. Haberle, and J. Baumann, “Mars laser hygrometer,” Appl. Opt. 43, 4436-4445 (2004).
    [CrossRef] [PubMed]
  30. C. G. Tarsitano and C. R. Webster, “Multilaser Herriott cell for planetary tunable laser spectrometers,” Appl. Opt. 46, 6923-6935 (2007).
    [CrossRef] [PubMed]
  31. A. Farooq, J. B. Jeffries, and R. K. Hanson, “In situ combustion measurements of H2O and temperature near 2.5 μm using tunable diode laser absorption,” Meas. Sci. Technol. 19, 075604 (2008).
    [CrossRef]
  32. G. Durry, L. Joly, T. Le Barbu, B. Parvitte, and V. Zéninari, “Laser diode spectroscopy of the H2O isotopologues in the 2.64 micron region for the in situ monitoring of the Martian atmosphere,” Infrared Phys. Technol. 51, 229-235 (2008).
    [CrossRef]
  33. R. Villareal and P. L. Varghese, “Frequency-resolved absorption tomography with tunable diode lasers,” Appl. Opt. 44, 6786-6795 (2005).
    [CrossRef]
  34. B. Schirmer, A. Melling, and G. Brenn, “Experimental investigation of the water vapor concentration near phase boundaries with evaporation,” Meas. Sci. Technol. 15, 1671-1682 (2004).
    [CrossRef]
  35. P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, “Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy,” J. Chem. Phys. 121, 9964-9970 (2004).
    [CrossRef] [PubMed]
  36. F. P. Hindle, S. J. Carey, K. B. Ozanyan, D. E. Winterbone, E. Clough, and H. McCann, “Near infra-red chemical species tomography of sprays of volatile hydrocarbons,” Tech. Mess. 7-8, 352-357 (2002).
    [CrossRef]
  37. F.-Y. Zhang, T. Fujiwara, and K. Komurasaki, “Diode-laser tomography for arcjet plume reconstruction,” Appl. Opt. 40, 957-946 (2001).
    [CrossRef]
  38. K. Wunderle, T. Fernholz, and V. Ebert, “Selektion optimaler Absorptionslinien für abstimmbare Laserabsorptionsspektrometer,” VDI-Ber. 1959, 137-148 (2006).
  39. B. H. Armstrong, “Spectrum line profiles: the Voigt function,” J. Quant. Spectrosc. Radiat. Transfer 7, 61-88 (1967).
    [CrossRef]
  40. L. Galatry, “Simultaneous effect of doppler and foreign gastions of broadening on spectral lines,” Phys. Rev. 122, 1218-1223 (1961).
    [CrossRef]
  41. S. G. Rautian and I. C. Sobel'man, “The Effect of collisions on the Dopplerbroadening of spectral lines,” Sov. Phys. Usp. 9, 701-716 (1967).
    [CrossRef]
  42. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, J. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
    [CrossRef]
  43. S. Hunsmann, G. Wagner, H. Saathoff, O. Möhler, U. Schurath, and V. Ebert, “Messung der Temperaturabhängigkeit der Linienstärken und Druckverbreiterungskoeffizienten von H2O-Absorptionslinien im 1.4 μm-Band,” VDI-Ber. 1959, 149-164 (2006).
  44. K. Levenberg, “A method for the solution of certain problems in least squares,” Q. Appl. Math 2, 164-168 (1944).
  45. D. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 11, 431-441 (1963).
    [CrossRef]
  46. V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, and J. Wolfrum, “High sensitivity in-situ CO-detection in a 3 MWth rotary kiln for special waste incineration using new 2.3 μm distributed feedback diode lasers,” Proc. Combust. Inst. 30, 1611-1618 (2005).
    [CrossRef]
  47. J. L. Monteith and M. Unsworth, Principles of Environmental Physics (Academic, 2008).
  48. H. Jones, “Stomatal control of photosynthesis and transpiration,” J. Exp. Bot. 49, 387-398 (1998).
    [CrossRef]
  49. R. W. Pearcy, J. P. Krall, and G. F. Sassenrath-Cole, “Photosynthesis if fluctuating light environment,” in Photosynthesis and the Environment, N. R. Baker, ed. (Kluwer Academic, 1996).

2009

S. Wagner, B. T. Fisher, J. W. Fleming, and V. Ebert, “TDLAS based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst. 32, 839-846 (2009).
[CrossRef]

2008

S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “High resolution measurements of absolute water transpiration rates from plant leaves via 1.37 μm tunable diode laser absorption spectroscopy (TDLAS),” Appl. Phys. B 92, 393-401 (2008).
[CrossRef]

A. Farooq, J. B. Jeffries, and R. K. Hanson, “In situ combustion measurements of H2O and temperature near 2.5 μm using tunable diode laser absorption,” Meas. Sci. Technol. 19, 075604 (2008).
[CrossRef]

G. Durry, L. Joly, T. Le Barbu, B. Parvitte, and V. Zéninari, “Laser diode spectroscopy of the H2O isotopologues in the 2.64 micron region for the in situ monitoring of the Martian atmosphere,” Infrared Phys. Technol. 51, 229-235 (2008).
[CrossRef]

2007

2006

S. Hunsmann, G. Wagner, H. Saathoff, O. Möhler, U. Schurath, and V. Ebert, “Messung der Temperaturabhängigkeit der Linienstärken und Druckverbreiterungskoeffizienten von H2O-Absorptionslinien im 1.4 μm-Band,” VDI-Ber. 1959, 149-164 (2006).

K. Wunderle, T. Fernholz, and V. Ebert, “Selektion optimaler Absorptionslinien für abstimmbare Laserabsorptionsspektrometer,” VDI-Ber. 1959, 137-148 (2006).

A. Salhi, D. Barat, D. Romanini, Y. Rouillard, O. Ouvrard, R. Werner, J. Seufert, J. Koeth, A. Vicet, and A. Garnache, “Single-frequency Sb-based distributed-feedback lasers emitting at 2.3 μm above room-temperature for application in tunable diode laser absorption spectroscopy,” Appl. Opt. 45, 4957-4965 (2006).
[CrossRef] [PubMed]

X. Liu, J. B. Jeffries, R. K. Hanson, K. M. Hinckley, and M. A. Woodmansee, “Development of a tuneable diode laser sensor for measurements of gas turbine exhaust temperature,” Appl. Phys. B 82, 196-478 (2006).
[CrossRef]

A. R. Awtry, B. T. Fisher, R. A. Moffat, V. Ebert, and J. W. Fleming, “Simultaneous diode laser based in situ quantification of oxygen, carbon monoxide, water vapor, and liquid water in a dense water mist environment,” Proc. Combust. Inst. 31, 799-806 (2006).
[CrossRef]

2005

V. Ebert, H. Teichert, C. Giesemann, H. Saathoff, and U. Schurath, “Fiber-coupled in situ-laser absorption spectrometer for the selective detection of water vapor traces down to the ppb-level,” Tech. Mess. 72, 23-30 (2005).
[CrossRef]

A. D. Griffiths and A. F. P. Houwing, “Diode laser absorption spectroscopy of water vapor in a scramjet combustor,” Appl. Opt. 44, 6653-6659 (2005).
[CrossRef] [PubMed]

W. Gurlit, J. P. Burrows, R. Zimmermann, U. Platt, C. Giesemann, J. Wolfrum, and V. Ebert, “Lightweight diode laser spectrometer CHILD (Compact High-altitude In-situ Laser Diode) for balloonborne measurements of water vapor and methane,” Appl. Opt. 44, 91-102 (2005).
[PubMed]

J. T. C. Liu, G. B. Rieker, J. Jeffries, M. R. Gruber, C. D. Carter, T. Mathur, and R. K. Hanson, “Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor,” Appl. Opt. 44, 6701-6711 (2005).
[CrossRef] [PubMed]

R. Villareal and P. L. Varghese, “Frequency-resolved absorption tomography with tunable diode lasers,” Appl. Opt. 44, 6786-6795 (2005).
[CrossRef]

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, J. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, and J. Wolfrum, “High sensitivity in-situ CO-detection in a 3 MWth rotary kiln for special waste incineration using new 2.3 μm distributed feedback diode lasers,” Proc. Combust. Inst. 30, 1611-1618 (2005).
[CrossRef]

2004

B. Schirmer, A. Melling, and G. Brenn, “Experimental investigation of the water vapor concentration near phase boundaries with evaporation,” Meas. Sci. Technol. 15, 1671-1682 (2004).
[CrossRef]

P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, “Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy,” J. Chem. Phys. 121, 9964-9970 (2004).
[CrossRef] [PubMed]

C. R. Webster, G. J. Flesch, K. Mansour, R. Haberle, and J. Baumann, “Mars laser hygrometer,” Appl. Opt. 43, 4436-4445 (2004).
[CrossRef] [PubMed]

2003

2002

E. Schlosser, J. Wolfrum, L. Hildebrandt, H. Seifert, B. Oser, and V. Ebert, “Diode laser based in situ detection of alkali atoms: development of a new method for determination of residence time distribution in combustion plants,” Appl. Phys. B 75, 237-247 (2002).
[CrossRef]

F. P. Hindle, S. J. Carey, K. B. Ozanyan, D. E. Winterbone, E. Clough, and H. McCann, “Near infra-red chemical species tomography of sprays of volatile hydrocarbons,” Tech. Mess. 7-8, 352-357 (2002).
[CrossRef]

2001

F.-Y. Zhang, T. Fujiwara, and K. Komurasaki, “Diode-laser tomography for arcjet plume reconstruction,” Appl. Opt. 40, 957-946 (2001).
[CrossRef]

P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the a-band with vertical-cavity-surface-emitting lasers,” Appl. Phys. B 72, 127-135 (2001).

2000

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, and H. Jaritz, “Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant,” Proc. Combust. Inst. 28, 423-430(2000).
[CrossRef]

1999

1998

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O and NH3 near 2.0 μm,” Appl. Phys. B 67, 283-288 (1998).
[CrossRef]

D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, and J. D. W. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near-IR diode laser hygrometer,” Appl. Phys. B 67, 275-282 (1998).
[CrossRef]

R. D. May, “Open-path, near-infrared tunable diode laser spectrometer for atmospheric measurements of H2O,” J. Geophys. Res. 103, 19161-19172 (1998).
[CrossRef]

H. Jones, “Stomatal control of photosynthesis and transpiration,” J. Exp. Bot. 49, 387-398 (1998).
[CrossRef]

1996

P. Wiesen, J. Kleffmann, R. Kurtenbach, and K. H. Becker, “Emission of nitrous oxide and methane from aero engines: monitoring by tunable diode laser spectroscopy,” Infrared Phys. Technol. 37, 75-81 (1996).
[CrossRef]

J. Wormhoudt, J. Shorter, B. McManus, P. L. Kababian, M. Zahniser, W. M. Davis, E. R. Cespedes, and C. E. Kolb, “Tunable infrared laser detection of pyrolysis products of explosive in soils,” Appl. Opt. 35, 3992-3997 (1996).
[CrossRef] [PubMed]

1994

1971

E. D. Hinkley and P. L. Kelley, “Detection of air pollutants with tunable diode lasers,” Science 171, 635-639 (1971).
[CrossRef] [PubMed]

1967

B. H. Armstrong, “Spectrum line profiles: the Voigt function,” J. Quant. Spectrosc. Radiat. Transfer 7, 61-88 (1967).
[CrossRef]

S. G. Rautian and I. C. Sobel'man, “The Effect of collisions on the Dopplerbroadening of spectral lines,” Sov. Phys. Usp. 9, 701-716 (1967).
[CrossRef]

1963

D. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 11, 431-441 (1963).
[CrossRef]

1961

L. Galatry, “Simultaneous effect of doppler and foreign gastions of broadening on spectral lines,” Phys. Rev. 122, 1218-1223 (1961).
[CrossRef]

1944

K. Levenberg, “A method for the solution of certain problems in least squares,” Q. Appl. Math 2, 164-168 (1944).

Le Barbu, T.

G. Durry, L. Joly, T. Le Barbu, B. Parvitte, and V. Zéninari, “Laser diode spectroscopy of the H2O isotopologues in the 2.64 micron region for the in situ monitoring of the Martian atmosphere,” Infrared Phys. Technol. 51, 229-235 (2008).
[CrossRef]

Allen, M. G.

D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, and J. D. W. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near-IR diode laser hygrometer,” Appl. Phys. B 67, 275-282 (1998).
[CrossRef]

Anders, J.

Armstrong, B. H.

B. H. Armstrong, “Spectrum line profiles: the Voigt function,” J. Quant. Spectrosc. Radiat. Transfer 7, 61-88 (1967).
[CrossRef]

Arroyo, M. P.

Auwera, J. Vander

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, J. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Awtry, A. R.

A. R. Awtry, B. T. Fisher, R. A. Moffat, V. Ebert, and J. W. Fleming, “Simultaneous diode laser based in situ quantification of oxygen, carbon monoxide, water vapor, and liquid water in a dense water mist environment,” Proc. Combust. Inst. 31, 799-806 (2006).
[CrossRef]

Baer, D. S.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O and NH3 near 2.0 μm,” Appl. Phys. B 67, 283-288 (1998).
[CrossRef]

Barat, D.

Barbe, A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, J. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Barrick, J. D. W.

D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, and J. D. W. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near-IR diode laser hygrometer,” Appl. Phys. B 67, 275-282 (1998).
[CrossRef]

Baumann, J.

Bechara, J.

H. I. Schiff, G. I. Mackay, and J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed., Vol. 127 of Chemical Analysis (Wiley, 1994), Chap. 5.

Becker, K. H.

P. Wiesen, J. Kleffmann, R. Kurtenbach, and K. H. Becker, “Emission of nitrous oxide and methane from aero engines: monitoring by tunable diode laser spectroscopy,” Infrared Phys. Technol. 37, 75-81 (1996).
[CrossRef]

Benner, D. C.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, J. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Birk, M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, J. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Brenn, G.

B. Schirmer, A. Melling, and G. Brenn, “Experimental investigation of the water vapor concentration near phase boundaries with evaporation,” Meas. Sci. Technol. 15, 1671-1682 (2004).
[CrossRef]

Brown, L. R.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, J. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Burrows, J. P.

Carey, S. J.

F. P. Hindle, S. J. Carey, K. B. Ozanyan, D. E. Winterbone, E. Clough, and H. McCann, “Near infra-red chemical species tomography of sprays of volatile hydrocarbons,” Tech. Mess. 7-8, 352-357 (2002).
[CrossRef]

Carleer, M. R.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, J. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Carter, C. D.

Castanet, G.

B. Zaitone, G. Castanet, N. Damaschke, C. Tropea, S. Hunsmann, and V. Ebert, “Evaporation of an acoustically levitated droplet,” presented at the 10th International Congress on Liquid Atomization and Spray Systems, ICLASS-2006, 27 August-1 September, Kyoto, Japan, 2006.

Cespedes, E. R.

Chackerian, J.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, J. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Chance, K.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, J. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Chapman, W. B.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O and NH3 near 2.0 μm,” Appl. Phys. B 67, 283-288 (1998).
[CrossRef]

Clough, E.

F. P. Hindle, S. J. Carey, K. B. Ozanyan, D. E. Winterbone, E. Clough, and H. McCann, “Near infra-red chemical species tomography of sprays of volatile hydrocarbons,” Tech. Mess. 7-8, 352-357 (2002).
[CrossRef]

Coudert, L. H.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, J. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Damaschke, N.

B. Zaitone, G. Castanet, N. Damaschke, C. Tropea, S. Hunsmann, and V. Ebert, “Evaporation of an acoustically levitated droplet,” presented at the 10th International Congress on Liquid Atomization and Spray Systems, ICLASS-2006, 27 August-1 September, Kyoto, Japan, 2006.

Dana, V.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, J. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Davis, W. M.

Devi, V. M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, J. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Dingler, F.

Dreizler, A.

C. Schulz, A. Dreizler, V. Ebert, and J. Wolfrum, “Combustion diagnostics,” in Springer Handbook of Experimental Fluid Dynamics, C. Tropea, J. Foss, and A. Yarin, eds. (Springer, 2006), pp. 1241-1316.

Durry, G.

G. Durry, L. Joly, T. Le Barbu, B. Parvitte, and V. Zéninari, “Laser diode spectroscopy of the H2O isotopologues in the 2.64 micron region for the in situ monitoring of the Martian atmosphere,” Infrared Phys. Technol. 51, 229-235 (2008).
[CrossRef]

Ebert, V.

S. Wagner, B. T. Fisher, J. W. Fleming, and V. Ebert, “TDLAS based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst. 32, 839-846 (2009).
[CrossRef]

S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “High resolution measurements of absolute water transpiration rates from plant leaves via 1.37 μm tunable diode laser absorption spectroscopy (TDLAS),” Appl. Phys. B 92, 393-401 (2008).
[CrossRef]

A. R. Awtry, B. T. Fisher, R. A. Moffat, V. Ebert, and J. W. Fleming, “Simultaneous diode laser based in situ quantification of oxygen, carbon monoxide, water vapor, and liquid water in a dense water mist environment,” Proc. Combust. Inst. 31, 799-806 (2006).
[CrossRef]

K. Wunderle, T. Fernholz, and V. Ebert, “Selektion optimaler Absorptionslinien für abstimmbare Laserabsorptionsspektrometer,” VDI-Ber. 1959, 137-148 (2006).

S. Hunsmann, G. Wagner, H. Saathoff, O. Möhler, U. Schurath, and V. Ebert, “Messung der Temperaturabhängigkeit der Linienstärken und Druckverbreiterungskoeffizienten von H2O-Absorptionslinien im 1.4 μm-Band,” VDI-Ber. 1959, 149-164 (2006).

V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, and J. Wolfrum, “High sensitivity in-situ CO-detection in a 3 MWth rotary kiln for special waste incineration using new 2.3 μm distributed feedback diode lasers,” Proc. Combust. Inst. 30, 1611-1618 (2005).
[CrossRef]

V. Ebert, H. Teichert, C. Giesemann, H. Saathoff, and U. Schurath, “Fiber-coupled in situ-laser absorption spectrometer for the selective detection of water vapor traces down to the ppb-level,” Tech. Mess. 72, 23-30 (2005).
[CrossRef]

W. Gurlit, J. P. Burrows, R. Zimmermann, U. Platt, C. Giesemann, J. Wolfrum, and V. Ebert, “Lightweight diode laser spectrometer CHILD (Compact High-altitude In-situ Laser Diode) for balloonborne measurements of water vapor and methane,” Appl. Opt. 44, 91-102 (2005).
[PubMed]

H. Teichert, T. Fernholz, and V. Ebert, “In-situ measurement of CO, H2O and gas temperature in a lignite-fired power-plant,” Appl. Opt. 42, 2043-2051 (2003).
[CrossRef] [PubMed]

E. Schlosser, J. Wolfrum, L. Hildebrandt, H. Seifert, B. Oser, and V. Ebert, “Diode laser based in situ detection of alkali atoms: development of a new method for determination of residence time distribution in combustion plants,” Appl. Phys. B 75, 237-247 (2002).
[CrossRef]

P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the a-band with vertical-cavity-surface-emitting lasers,” Appl. Phys. B 72, 127-135 (2001).

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, and H. Jaritz, “Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant,” Proc. Combust. Inst. 28, 423-430(2000).
[CrossRef]

C. Schulz, A. Dreizler, V. Ebert, and J. Wolfrum, “Combustion diagnostics,” in Springer Handbook of Experimental Fluid Dynamics, C. Tropea, J. Foss, and A. Yarin, eds. (Springer, 2006), pp. 1241-1316.

V. Ebert and J. Wolfrum, “Absorption spectroscopy,” in Optical Measurements--Techniques and Applications, F. Mayinger and O. Feldmann, eds. (Springer-Verlag, 2001), pp. 227-265.

B. Zaitone, G. Castanet, N. Damaschke, C. Tropea, S. Hunsmann, and V. Ebert, “Evaporation of an acoustically levitated droplet,” presented at the 10th International Congress on Liquid Atomization and Spray Systems, ICLASS-2006, 27 August-1 September, Kyoto, Japan, 2006.

Farooq, A.

A. Farooq, J. B. Jeffries, and R. K. Hanson, “In situ combustion measurements of H2O and temperature near 2.5 μm using tunable diode laser absorption,” Meas. Sci. Technol. 19, 075604 (2008).
[CrossRef]

Feller, G. S.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O and NH3 near 2.0 μm,” Appl. Phys. B 67, 283-288 (1998).
[CrossRef]

Fernholz, T.

K. Wunderle, T. Fernholz, and V. Ebert, “Selektion optimaler Absorptionslinien für abstimmbare Laserabsorptionsspektrometer,” VDI-Ber. 1959, 137-148 (2006).

H. Teichert, T. Fernholz, and V. Ebert, “In-situ measurement of CO, H2O and gas temperature in a lignite-fired power-plant,” Appl. Opt. 42, 2043-2051 (2003).
[CrossRef] [PubMed]

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, and H. Jaritz, “Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant,” Proc. Combust. Inst. 28, 423-430(2000).
[CrossRef]

Fisher, B. T.

S. Wagner, B. T. Fisher, J. W. Fleming, and V. Ebert, “TDLAS based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst. 32, 839-846 (2009).
[CrossRef]

A. R. Awtry, B. T. Fisher, R. A. Moffat, V. Ebert, and J. W. Fleming, “Simultaneous diode laser based in situ quantification of oxygen, carbon monoxide, water vapor, and liquid water in a dense water mist environment,” Proc. Combust. Inst. 31, 799-806 (2006).
[CrossRef]

Flaud, J. M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, J. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Fleming, J. W.

S. Wagner, B. T. Fisher, J. W. Fleming, and V. Ebert, “TDLAS based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst. 32, 839-846 (2009).
[CrossRef]

A. R. Awtry, B. T. Fisher, R. A. Moffat, V. Ebert, and J. W. Fleming, “Simultaneous diode laser based in situ quantification of oxygen, carbon monoxide, water vapor, and liquid water in a dense water mist environment,” Proc. Combust. Inst. 31, 799-806 (2006).
[CrossRef]

Flesch, G. J.

Fujiwara, T.

Gagliardi, G.

Galatry, L.

L. Galatry, “Simultaneous effect of doppler and foreign gastions of broadening on spectral lines,” Phys. Rev. 122, 1218-1223 (1961).
[CrossRef]

Gamache, R. R.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, J. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Garnache, A.

Gianfrani, L.

Giesemann, C.

V. Ebert, H. Teichert, C. Giesemann, H. Saathoff, and U. Schurath, “Fiber-coupled in situ-laser absorption spectrometer for the selective detection of water vapor traces down to the ppb-level,” Tech. Mess. 72, 23-30 (2005).
[CrossRef]

W. Gurlit, J. P. Burrows, R. Zimmermann, U. Platt, C. Giesemann, J. Wolfrum, and V. Ebert, “Lightweight diode laser spectrometer CHILD (Compact High-altitude In-situ Laser Diode) for balloonborne measurements of water vapor and methane,” Appl. Opt. 44, 91-102 (2005).
[PubMed]

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, and H. Jaritz, “Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant,” Proc. Combust. Inst. 28, 423-430(2000).
[CrossRef]

Goldman, A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, J. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Griffiths, A. D.

Gruber, M. R.

Gurlit, W.

Haberle, R.

Hanson, R. K.

A. Farooq, J. B. Jeffries, and R. K. Hanson, “In situ combustion measurements of H2O and temperature near 2.5 μm using tunable diode laser absorption,” Meas. Sci. Technol. 19, 075604 (2008).
[CrossRef]

X. Liu, J. B. Jeffries, R. K. Hanson, K. M. Hinckley, and M. A. Woodmansee, “Development of a tuneable diode laser sensor for measurements of gas turbine exhaust temperature,” Appl. Phys. B 82, 196-478 (2006).
[CrossRef]

J. T. C. Liu, G. B. Rieker, J. Jeffries, M. R. Gruber, C. D. Carter, T. Mathur, and R. K. Hanson, “Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor,” Appl. Opt. 44, 6701-6711 (2005).
[CrossRef] [PubMed]

X. Zhou, X. J. B. Liu, and R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases using a single tuneable diode laser,” Meas. Sci. Technol. 14, 1459-1468 (2003).
[CrossRef]

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O and NH3 near 2.0 μm,” Appl. Phys. B 67, 283-288 (1998).
[CrossRef]

M. P. Arroyo, S. Langlois, and R. K. Hanson, “Diode-laser absorption technique for simultaneous measurements of multiple gasdynamic parameters in high-speed flows containing water vapor,” Appl. Opt. 33, 3296-3307 (1994).
[CrossRef] [PubMed]

R. K. Hanson and J. Jeffries, “Diode laser sensors for ground testing,” AIAA paper 3441 (American Institute of Aeronautics and Astronautics, 2006).

Hartmann, J. M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, J. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Hildebrandt, L.

E. Schlosser, J. Wolfrum, L. Hildebrandt, H. Seifert, B. Oser, and V. Ebert, “Diode laser based in situ detection of alkali atoms: development of a new method for determination of residence time distribution in combustion plants,” Appl. Phys. B 75, 237-247 (2002).
[CrossRef]

Hinckley, K. M.

X. Liu, J. B. Jeffries, R. K. Hanson, K. M. Hinckley, and M. A. Woodmansee, “Development of a tuneable diode laser sensor for measurements of gas turbine exhaust temperature,” Appl. Phys. B 82, 196-478 (2006).
[CrossRef]

Hindle, F. P.

F. P. Hindle, S. J. Carey, K. B. Ozanyan, D. E. Winterbone, E. Clough, and H. McCann, “Near infra-red chemical species tomography of sprays of volatile hydrocarbons,” Tech. Mess. 7-8, 352-357 (2002).
[CrossRef]

Hinkley, E. D.

E. D. Hinkley and P. L. Kelley, “Detection of air pollutants with tunable diode lasers,” Science 171, 635-639 (1971).
[CrossRef] [PubMed]

Houwing, A. F. P.

Hunsmann, S.

S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “High resolution measurements of absolute water transpiration rates from plant leaves via 1.37 μm tunable diode laser absorption spectroscopy (TDLAS),” Appl. Phys. B 92, 393-401 (2008).
[CrossRef]

S. Hunsmann, G. Wagner, H. Saathoff, O. Möhler, U. Schurath, and V. Ebert, “Messung der Temperaturabhängigkeit der Linienstärken und Druckverbreiterungskoeffizienten von H2O-Absorptionslinien im 1.4 μm-Band,” VDI-Ber. 1959, 149-164 (2006).

B. Zaitone, G. Castanet, N. Damaschke, C. Tropea, S. Hunsmann, and V. Ebert, “Evaporation of an acoustically levitated droplet,” presented at the 10th International Congress on Liquid Atomization and Spray Systems, ICLASS-2006, 27 August-1 September, Kyoto, Japan, 2006.

Jacquemart, D.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, J. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Jaritz, H.

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, and H. Jaritz, “Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant,” Proc. Combust. Inst. 28, 423-430(2000).
[CrossRef]

Jeffries, J.

Jeffries, J. B.

A. Farooq, J. B. Jeffries, and R. K. Hanson, “In situ combustion measurements of H2O and temperature near 2.5 μm using tunable diode laser absorption,” Meas. Sci. Technol. 19, 075604 (2008).
[CrossRef]

X. Liu, J. B. Jeffries, R. K. Hanson, K. M. Hinckley, and M. A. Woodmansee, “Development of a tuneable diode laser sensor for measurements of gas turbine exhaust temperature,” Appl. Phys. B 82, 196-478 (2006).
[CrossRef]

Joly, L.

G. Durry, L. Joly, T. Le Barbu, B. Parvitte, and V. Zéninari, “Laser diode spectroscopy of the H2O isotopologues in the 2.64 micron region for the in situ monitoring of the Martian atmosphere,” Infrared Phys. Technol. 51, 229-235 (2008).
[CrossRef]

Jones, H.

H. Jones, “Stomatal control of photosynthesis and transpiration,” J. Exp. Bot. 49, 387-398 (1998).
[CrossRef]

Jucks, K. W.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, J. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Kababian, P. L.

Kelley, P. L.

E. D. Hinkley and P. L. Kelley, “Detection of air pollutants with tunable diode lasers,” Science 171, 635-639 (1971).
[CrossRef] [PubMed]

Kerstel, E.

Kessler, W. J.

D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, and J. D. W. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near-IR diode laser hygrometer,” Appl. Phys. B 67, 275-282 (1998).
[CrossRef]

Kleffmann, J.

P. Wiesen, J. Kleffmann, R. Kurtenbach, and K. H. Becker, “Emission of nitrous oxide and methane from aero engines: monitoring by tunable diode laser spectroscopy,” Infrared Phys. Technol. 37, 75-81 (1996).
[CrossRef]

Koeth, J.

Kolb, C. E.

Kolb, T.

V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, and J. Wolfrum, “High sensitivity in-situ CO-detection in a 3 MWth rotary kiln for special waste incineration using new 2.3 μm distributed feedback diode lasers,” Proc. Combust. Inst. 30, 1611-1618 (2005).
[CrossRef]

Komurasaki, K.

Krall, J. P.

R. W. Pearcy, J. P. Krall, and G. F. Sassenrath-Cole, “Photosynthesis if fluctuating light environment,” in Photosynthesis and the Environment, N. R. Baker, ed. (Kluwer Academic, 1996).

Kurtenbach, R.

P. Wiesen, J. Kleffmann, R. Kurtenbach, and K. H. Becker, “Emission of nitrous oxide and methane from aero engines: monitoring by tunable diode laser spectroscopy,” Infrared Phys. Technol. 37, 75-81 (1996).
[CrossRef]

Langlois, S.

Levenberg, K.

K. Levenberg, “A method for the solution of certain problems in least squares,” Q. Appl. Math 2, 164-168 (1944).

Liu, J. T. C.

Liu, X.

X. Liu, J. B. Jeffries, R. K. Hanson, K. M. Hinckley, and M. A. Woodmansee, “Development of a tuneable diode laser sensor for measurements of gas turbine exhaust temperature,” Appl. Phys. B 82, 196-478 (2006).
[CrossRef]

Liu, X. J. B.

X. Zhou, X. J. B. Liu, and R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases using a single tuneable diode laser,” Meas. Sci. Technol. 14, 1459-1468 (2003).
[CrossRef]

Lübken, F.

Mackay, G. I.

H. I. Schiff, G. I. Mackay, and J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed., Vol. 127 of Chemical Analysis (Wiley, 1994), Chap. 5.

Magill, J. C.

D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, and J. D. W. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near-IR diode laser hygrometer,” Appl. Phys. B 67, 275-282 (1998).
[CrossRef]

Maki, A. G.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, J. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Mandin, J. Y.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, J. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Mansour, K.

Marquardt, D.

D. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 11, 431-441 (1963).
[CrossRef]

Massie, S. T.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, J. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Mathur, T.

May, R. D.

R. D. May, “Open-path, near-infrared tunable diode laser spectrometer for atmospheric measurements of H2O,” J. Geophys. Res. 103, 19161-19172 (1998).
[CrossRef]

McCann, H.

F. P. Hindle, S. J. Carey, K. B. Ozanyan, D. E. Winterbone, E. Clough, and H. McCann, “Near infra-red chemical species tomography of sprays of volatile hydrocarbons,” Tech. Mess. 7-8, 352-357 (2002).
[CrossRef]

McManus, B.

P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, “Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy,” J. Chem. Phys. 121, 9964-9970 (2004).
[CrossRef] [PubMed]

J. Wormhoudt, J. Shorter, B. McManus, P. L. Kababian, M. Zahniser, W. M. Davis, E. R. Cespedes, and C. E. Kolb, “Tunable infrared laser detection of pyrolysis products of explosive in soils,” Appl. Opt. 35, 3992-3997 (1996).
[CrossRef] [PubMed]

Melling, A.

B. Schirmer, A. Melling, and G. Brenn, “Experimental investigation of the water vapor concentration near phase boundaries with evaporation,” Meas. Sci. Technol. 15, 1671-1682 (2004).
[CrossRef]

Mihalcea, R. M.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O and NH3 near 2.0 μm,” Appl. Phys. B 67, 283-288 (1998).
[CrossRef]

Moffat, R. A.

A. R. Awtry, B. T. Fisher, R. A. Moffat, V. Ebert, and J. W. Fleming, “Simultaneous diode laser based in situ quantification of oxygen, carbon monoxide, water vapor, and liquid water in a dense water mist environment,” Proc. Combust. Inst. 31, 799-806 (2006).
[CrossRef]

Möhler, O.

S. Hunsmann, G. Wagner, H. Saathoff, O. Möhler, U. Schurath, and V. Ebert, “Messung der Temperaturabhängigkeit der Linienstärken und Druckverbreiterungskoeffizienten von H2O-Absorptionslinien im 1.4 μm-Band,” VDI-Ber. 1959, 149-164 (2006).

Monteith, J. L.

J. L. Monteith and M. Unsworth, Principles of Environmental Physics (Academic, 2008).

Nelson, D.

P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, “Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy,” J. Chem. Phys. 121, 9964-9970 (2004).
[CrossRef] [PubMed]

Orphal, J.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, J. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Oser, B.

E. Schlosser, J. Wolfrum, L. Hildebrandt, H. Seifert, B. Oser, and V. Ebert, “Diode laser based in situ detection of alkali atoms: development of a new method for determination of residence time distribution in combustion plants,” Appl. Phys. B 75, 237-247 (2002).
[CrossRef]

Ouvrard, O.

Ozanyan, K. B.

F. P. Hindle, S. J. Carey, K. B. Ozanyan, D. E. Winterbone, E. Clough, and H. McCann, “Near infra-red chemical species tomography of sprays of volatile hydrocarbons,” Tech. Mess. 7-8, 352-357 (2002).
[CrossRef]

Paci, P.

P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, “Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy,” J. Chem. Phys. 121, 9964-9970 (2004).
[CrossRef] [PubMed]

Parvitte, B.

G. Durry, L. Joly, T. Le Barbu, B. Parvitte, and V. Zéninari, “Laser diode spectroscopy of the H2O isotopologues in the 2.64 micron region for the in situ monitoring of the Martian atmosphere,” Infrared Phys. Technol. 51, 229-235 (2008).
[CrossRef]

Pearcy, R. W.

R. W. Pearcy, J. P. Krall, and G. F. Sassenrath-Cole, “Photosynthesis if fluctuating light environment,” in Photosynthesis and the Environment, N. R. Baker, ed. (Kluwer Academic, 1996).

Perrin, A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, J. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Pitz, H.

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, and H. Jaritz, “Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant,” Proc. Combust. Inst. 28, 423-430(2000).
[CrossRef]

Platt, U.

Rascher, U.

S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “High resolution measurements of absolute water transpiration rates from plant leaves via 1.37 μm tunable diode laser absorption spectroscopy (TDLAS),” Appl. Phys. B 92, 393-401 (2008).
[CrossRef]

Rautian, S. G.

S. G. Rautian and I. C. Sobel'man, “The Effect of collisions on the Dopplerbroadening of spectral lines,” Sov. Phys. Usp. 9, 701-716 (1967).
[CrossRef]

Riedel, W. J.

Rieker, G. B.

Rinsland, C. P.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, J. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Romanini, D.

Rothman, L. S.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, J. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Rouillard, Y.

Saathoff, H.

S. Hunsmann, G. Wagner, H. Saathoff, O. Möhler, U. Schurath, and V. Ebert, “Messung der Temperaturabhängigkeit der Linienstärken und Druckverbreiterungskoeffizienten von H2O-Absorptionslinien im 1.4 μm-Band,” VDI-Ber. 1959, 149-164 (2006).

V. Ebert, H. Teichert, C. Giesemann, H. Saathoff, and U. Schurath, “Fiber-coupled in situ-laser absorption spectrometer for the selective detection of water vapor traces down to the ppb-level,” Tech. Mess. 72, 23-30 (2005).
[CrossRef]

Salhi, A.

Sassenrath-Cole, G. F.

R. W. Pearcy, J. P. Krall, and G. F. Sassenrath-Cole, “Photosynthesis if fluctuating light environment,” in Photosynthesis and the Environment, N. R. Baker, ed. (Kluwer Academic, 1996).

Schiff, H. I.

H. I. Schiff, G. I. Mackay, and J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed., Vol. 127 of Chemical Analysis (Wiley, 1994), Chap. 5.

Schirmer, B.

B. Schirmer, A. Melling, and G. Brenn, “Experimental investigation of the water vapor concentration near phase boundaries with evaporation,” Meas. Sci. Technol. 15, 1671-1682 (2004).
[CrossRef]

Schlosser, E.

E. Schlosser, J. Wolfrum, L. Hildebrandt, H. Seifert, B. Oser, and V. Ebert, “Diode laser based in situ detection of alkali atoms: development of a new method for determination of residence time distribution in combustion plants,” Appl. Phys. B 75, 237-247 (2002).
[CrossRef]

Schulz, C.

C. Schulz, A. Dreizler, V. Ebert, and J. Wolfrum, “Combustion diagnostics,” in Springer Handbook of Experimental Fluid Dynamics, C. Tropea, J. Foss, and A. Yarin, eds. (Springer, 2006), pp. 1241-1316.

Schurath, U.

S. Hunsmann, G. Wagner, H. Saathoff, O. Möhler, U. Schurath, and V. Ebert, “Messung der Temperaturabhängigkeit der Linienstärken und Druckverbreiterungskoeffizienten von H2O-Absorptionslinien im 1.4 μm-Band,” VDI-Ber. 1959, 149-164 (2006).

V. Ebert, H. Teichert, C. Giesemann, H. Saathoff, and U. Schurath, “Fiber-coupled in situ-laser absorption spectrometer for the selective detection of water vapor traces down to the ppb-level,” Tech. Mess. 72, 23-30 (2005).
[CrossRef]

Schurr, U.

S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “High resolution measurements of absolute water transpiration rates from plant leaves via 1.37 μm tunable diode laser absorption spectroscopy (TDLAS),” Appl. Phys. B 92, 393-401 (2008).
[CrossRef]

Seifert, H.

V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, and J. Wolfrum, “High sensitivity in-situ CO-detection in a 3 MWth rotary kiln for special waste incineration using new 2.3 μm distributed feedback diode lasers,” Proc. Combust. Inst. 30, 1611-1618 (2005).
[CrossRef]

E. Schlosser, J. Wolfrum, L. Hildebrandt, H. Seifert, B. Oser, and V. Ebert, “Diode laser based in situ detection of alkali atoms: development of a new method for determination of residence time distribution in combustion plants,” Appl. Phys. B 75, 237-247 (2002).
[CrossRef]

Seufert, J.

Shorter, J.

P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, “Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy,” J. Chem. Phys. 121, 9964-9970 (2004).
[CrossRef] [PubMed]

J. Wormhoudt, J. Shorter, B. McManus, P. L. Kababian, M. Zahniser, W. M. Davis, E. R. Cespedes, and C. E. Kolb, “Tunable infrared laser detection of pyrolysis products of explosive in soils,” Appl. Opt. 35, 3992-3997 (1996).
[CrossRef] [PubMed]

Smith, M. A. H.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, J. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Sobel'man, I. C.

S. G. Rautian and I. C. Sobel'man, “The Effect of collisions on the Dopplerbroadening of spectral lines,” Sov. Phys. Usp. 9, 701-716 (1967).
[CrossRef]

Sonnenfroh, D. M.

D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, and J. D. W. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near-IR diode laser hygrometer,” Appl. Phys. B 67, 275-282 (1998).
[CrossRef]

Strauch, P.

V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, and J. Wolfrum, “High sensitivity in-situ CO-detection in a 3 MWth rotary kiln for special waste incineration using new 2.3 μm distributed feedback diode lasers,” Proc. Combust. Inst. 30, 1611-1618 (2005).
[CrossRef]

Tanimura, S.

P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, “Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy,” J. Chem. Phys. 121, 9964-9970 (2004).
[CrossRef] [PubMed]

Tarsitano, C. G.

Teichert, H.

V. Ebert, H. Teichert, C. Giesemann, H. Saathoff, and U. Schurath, “Fiber-coupled in situ-laser absorption spectrometer for the selective detection of water vapor traces down to the ppb-level,” Tech. Mess. 72, 23-30 (2005).
[CrossRef]

V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, and J. Wolfrum, “High sensitivity in-situ CO-detection in a 3 MWth rotary kiln for special waste incineration using new 2.3 μm distributed feedback diode lasers,” Proc. Combust. Inst. 30, 1611-1618 (2005).
[CrossRef]

H. Teichert, T. Fernholz, and V. Ebert, “In-situ measurement of CO, H2O and gas temperature in a lignite-fired power-plant,” Appl. Opt. 42, 2043-2051 (2003).
[CrossRef] [PubMed]

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, and H. Jaritz, “Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant,” Proc. Combust. Inst. 28, 423-430(2000).
[CrossRef]

Tennyson, J.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, J. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Tolchenov, R. N.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, J. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Toth, R. A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, J. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Tropea, C.

B. Zaitone, G. Castanet, N. Damaschke, C. Tropea, S. Hunsmann, and V. Ebert, “Evaporation of an acoustically levitated droplet,” presented at the 10th International Congress on Liquid Atomization and Spray Systems, ICLASS-2006, 27 August-1 September, Kyoto, Japan, 2006.

Unsworth, M.

J. L. Monteith and M. Unsworth, Principles of Environmental Physics (Academic, 2008).

Upschulte, B. L.

D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, and J. D. W. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near-IR diode laser hygrometer,” Appl. Phys. B 67, 275-282 (1998).
[CrossRef]

van Burgel, M.

Varanasi, P.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, J. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Varghese, P. L.

Vicet, A.

Villareal, R.

Vogel, P.

P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the a-band with vertical-cavity-surface-emitting lasers,” Appl. Phys. B 72, 127-135 (2001).

von Lucke, H.

Wagner, G.

S. Hunsmann, G. Wagner, H. Saathoff, O. Möhler, U. Schurath, and V. Ebert, “Messung der Temperaturabhängigkeit der Linienstärken und Druckverbreiterungskoeffizienten von H2O-Absorptionslinien im 1.4 μm-Band,” VDI-Ber. 1959, 149-164 (2006).

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, J. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Wagner, S.

S. Wagner, B. T. Fisher, J. W. Fleming, and V. Ebert, “TDLAS based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst. 32, 839-846 (2009).
[CrossRef]

S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “High resolution measurements of absolute water transpiration rates from plant leaves via 1.37 μm tunable diode laser absorption spectroscopy (TDLAS),” Appl. Phys. B 92, 393-401 (2008).
[CrossRef]

Webber, M. E.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O and NH3 near 2.0 μm,” Appl. Phys. B 67, 283-288 (1998).
[CrossRef]

Webster, C. R.

Werner, R.

Wiesen, P.

P. Wiesen, J. Kleffmann, R. Kurtenbach, and K. H. Becker, “Emission of nitrous oxide and methane from aero engines: monitoring by tunable diode laser spectroscopy,” Infrared Phys. Technol. 37, 75-81 (1996).
[CrossRef]

Winterbone, D. E.

F. P. Hindle, S. J. Carey, K. B. Ozanyan, D. E. Winterbone, E. Clough, and H. McCann, “Near infra-red chemical species tomography of sprays of volatile hydrocarbons,” Tech. Mess. 7-8, 352-357 (2002).
[CrossRef]

Wolf, H.

Wolfrum, J.

W. Gurlit, J. P. Burrows, R. Zimmermann, U. Platt, C. Giesemann, J. Wolfrum, and V. Ebert, “Lightweight diode laser spectrometer CHILD (Compact High-altitude In-situ Laser Diode) for balloonborne measurements of water vapor and methane,” Appl. Opt. 44, 91-102 (2005).
[PubMed]

V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, and J. Wolfrum, “High sensitivity in-situ CO-detection in a 3 MWth rotary kiln for special waste incineration using new 2.3 μm distributed feedback diode lasers,” Proc. Combust. Inst. 30, 1611-1618 (2005).
[CrossRef]

E. Schlosser, J. Wolfrum, L. Hildebrandt, H. Seifert, B. Oser, and V. Ebert, “Diode laser based in situ detection of alkali atoms: development of a new method for determination of residence time distribution in combustion plants,” Appl. Phys. B 75, 237-247 (2002).
[CrossRef]

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, and H. Jaritz, “Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant,” Proc. Combust. Inst. 28, 423-430(2000).
[CrossRef]

V. Ebert and J. Wolfrum, “Absorption spectroscopy,” in Optical Measurements--Techniques and Applications, F. Mayinger and O. Feldmann, eds. (Springer-Verlag, 2001), pp. 227-265.

C. Schulz, A. Dreizler, V. Ebert, and J. Wolfrum, “Combustion diagnostics,” in Springer Handbook of Experimental Fluid Dynamics, C. Tropea, J. Foss, and A. Yarin, eds. (Springer, 2006), pp. 1241-1316.

Woodmansee, M. A.

X. Liu, J. B. Jeffries, R. K. Hanson, K. M. Hinckley, and M. A. Woodmansee, “Development of a tuneable diode laser sensor for measurements of gas turbine exhaust temperature,” Appl. Phys. B 82, 196-478 (2006).
[CrossRef]

Wormhoudt, J.

Wunderle, K.

S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “High resolution measurements of absolute water transpiration rates from plant leaves via 1.37 μm tunable diode laser absorption spectroscopy (TDLAS),” Appl. Phys. B 92, 393-401 (2008).
[CrossRef]

K. Wunderle, T. Fernholz, and V. Ebert, “Selektion optimaler Absorptionslinien für abstimmbare Laserabsorptionsspektrometer,” VDI-Ber. 1959, 137-148 (2006).

Wyslouzil, B. E.

P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, “Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy,” J. Chem. Phys. 121, 9964-9970 (2004).
[CrossRef] [PubMed]

Zahniser, M.

P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, “Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy,” J. Chem. Phys. 121, 9964-9970 (2004).
[CrossRef] [PubMed]

J. Wormhoudt, J. Shorter, B. McManus, P. L. Kababian, M. Zahniser, W. M. Davis, E. R. Cespedes, and C. E. Kolb, “Tunable infrared laser detection of pyrolysis products of explosive in soils,” Appl. Opt. 35, 3992-3997 (1996).
[CrossRef] [PubMed]

Zaitone, B.

B. Zaitone, G. Castanet, N. Damaschke, C. Tropea, S. Hunsmann, and V. Ebert, “Evaporation of an acoustically levitated droplet,” presented at the 10th International Congress on Liquid Atomization and Spray Systems, ICLASS-2006, 27 August-1 September, Kyoto, Japan, 2006.

Zéninari, V.

G. Durry, L. Joly, T. Le Barbu, B. Parvitte, and V. Zéninari, “Laser diode spectroscopy of the H2O isotopologues in the 2.64 micron region for the in situ monitoring of the Martian atmosphere,” Infrared Phys. Technol. 51, 229-235 (2008).
[CrossRef]

Zhang, F.-Y.

Zhou, X.

X. Zhou, X. J. B. Liu, and R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases using a single tuneable diode laser,” Meas. Sci. Technol. 14, 1459-1468 (2003).
[CrossRef]

Zimmermann, R.

Zvinevich, Y.

P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, “Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy,” J. Chem. Phys. 121, 9964-9970 (2004).
[CrossRef] [PubMed]

Appl. Opt.

H. Teichert, T. Fernholz, and V. Ebert, “In-situ measurement of CO, H2O and gas temperature in a lignite-fired power-plant,” Appl. Opt. 42, 2043-2051 (2003).
[CrossRef] [PubMed]

M. P. Arroyo, S. Langlois, and R. K. Hanson, “Diode-laser absorption technique for simultaneous measurements of multiple gasdynamic parameters in high-speed flows containing water vapor,” Appl. Opt. 33, 3296-3307 (1994).
[CrossRef] [PubMed]

A. D. Griffiths and A. F. P. Houwing, “Diode laser absorption spectroscopy of water vapor in a scramjet combustor,” Appl. Opt. 44, 6653-6659 (2005).
[CrossRef] [PubMed]

J. Wormhoudt, J. Shorter, B. McManus, P. L. Kababian, M. Zahniser, W. M. Davis, E. R. Cespedes, and C. E. Kolb, “Tunable infrared laser detection of pyrolysis products of explosive in soils,” Appl. Opt. 35, 3992-3997 (1996).
[CrossRef] [PubMed]

W. Gurlit, J. P. Burrows, R. Zimmermann, U. Platt, C. Giesemann, J. Wolfrum, and V. Ebert, “Lightweight diode laser spectrometer CHILD (Compact High-altitude In-situ Laser Diode) for balloonborne measurements of water vapor and methane,” Appl. Opt. 44, 91-102 (2005).
[PubMed]

F. Lübken, F. Dingler, H. von Lucke, J. Anders, W. J. Riedel, and H. Wolf, “MASERATI: a RocketBorne Tunable Diode Laser Absorption Spectrometer,” Appl. Opt. 38, 5338-5349(1999).
[CrossRef]

A. Salhi, D. Barat, D. Romanini, Y. Rouillard, O. Ouvrard, R. Werner, J. Seufert, J. Koeth, A. Vicet, and A. Garnache, “Single-frequency Sb-based distributed-feedback lasers emitting at 2.3 μm above room-temperature for application in tunable diode laser absorption spectroscopy,” Appl. Opt. 45, 4957-4965 (2006).
[CrossRef] [PubMed]

J. T. C. Liu, G. B. Rieker, J. Jeffries, M. R. Gruber, C. D. Carter, T. Mathur, and R. K. Hanson, “Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor,” Appl. Opt. 44, 6701-6711 (2005).
[CrossRef] [PubMed]

C. R. Webster, G. J. Flesch, K. Mansour, R. Haberle, and J. Baumann, “Mars laser hygrometer,” Appl. Opt. 43, 4436-4445 (2004).
[CrossRef] [PubMed]

C. G. Tarsitano and C. R. Webster, “Multilaser Herriott cell for planetary tunable laser spectrometers,” Appl. Opt. 46, 6923-6935 (2007).
[CrossRef] [PubMed]

R. Villareal and P. L. Varghese, “Frequency-resolved absorption tomography with tunable diode lasers,” Appl. Opt. 44, 6786-6795 (2005).
[CrossRef]

F.-Y. Zhang, T. Fujiwara, and K. Komurasaki, “Diode-laser tomography for arcjet plume reconstruction,” Appl. Opt. 40, 957-946 (2001).
[CrossRef]

Appl. Phys. B

D. M. Sonnenfroh, W. J. Kessler, J. C. Magill, B. L. Upschulte, M. G. Allen, and J. D. W. Barrick, “In-situ sensing of tropospheric water vapor using an airborne near-IR diode laser hygrometer,” Appl. Phys. B 67, 275-282 (1998).
[CrossRef]

X. Liu, J. B. Jeffries, R. K. Hanson, K. M. Hinckley, and M. A. Woodmansee, “Development of a tuneable diode laser sensor for measurements of gas turbine exhaust temperature,” Appl. Phys. B 82, 196-478 (2006).
[CrossRef]

S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “High resolution measurements of absolute water transpiration rates from plant leaves via 1.37 μm tunable diode laser absorption spectroscopy (TDLAS),” Appl. Phys. B 92, 393-401 (2008).
[CrossRef]

E. Schlosser, J. Wolfrum, L. Hildebrandt, H. Seifert, B. Oser, and V. Ebert, “Diode laser based in situ detection of alkali atoms: development of a new method for determination of residence time distribution in combustion plants,” Appl. Phys. B 75, 237-247 (2002).
[CrossRef]

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O and NH3 near 2.0 μm,” Appl. Phys. B 67, 283-288 (1998).
[CrossRef]

P. Vogel and V. Ebert, “Near shot noise detection of oxygen in the a-band with vertical-cavity-surface-emitting lasers,” Appl. Phys. B 72, 127-135 (2001).

Infrared Phys. Technol.

P. Wiesen, J. Kleffmann, R. Kurtenbach, and K. H. Becker, “Emission of nitrous oxide and methane from aero engines: monitoring by tunable diode laser spectroscopy,” Infrared Phys. Technol. 37, 75-81 (1996).
[CrossRef]

G. Durry, L. Joly, T. Le Barbu, B. Parvitte, and V. Zéninari, “Laser diode spectroscopy of the H2O isotopologues in the 2.64 micron region for the in situ monitoring of the Martian atmosphere,” Infrared Phys. Technol. 51, 229-235 (2008).
[CrossRef]

J. Chem. Phys.

P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, “Spatially resolved gas phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy,” J. Chem. Phys. 121, 9964-9970 (2004).
[CrossRef] [PubMed]

J. Exp. Bot.

H. Jones, “Stomatal control of photosynthesis and transpiration,” J. Exp. Bot. 49, 387-398 (1998).
[CrossRef]

J. Geophys. Res.

R. D. May, “Open-path, near-infrared tunable diode laser spectrometer for atmospheric measurements of H2O,” J. Geophys. Res. 103, 19161-19172 (1998).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

B. H. Armstrong, “Spectrum line profiles: the Voigt function,” J. Quant. Spectrosc. Radiat. Transfer 7, 61-88 (1967).
[CrossRef]

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, J. Chackerian, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J. M. Flaud, R. R. Gamache, A. Goldman, J. M. Hartmann, K. W. Jucks, A. G. Maki, J. Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Meas. Sci. Technol.

B. Schirmer, A. Melling, and G. Brenn, “Experimental investigation of the water vapor concentration near phase boundaries with evaporation,” Meas. Sci. Technol. 15, 1671-1682 (2004).
[CrossRef]

A. Farooq, J. B. Jeffries, and R. K. Hanson, “In situ combustion measurements of H2O and temperature near 2.5 μm using tunable diode laser absorption,” Meas. Sci. Technol. 19, 075604 (2008).
[CrossRef]

X. Zhou, X. J. B. Liu, and R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases using a single tuneable diode laser,” Meas. Sci. Technol. 14, 1459-1468 (2003).
[CrossRef]

Opt. Express

Phys. Rev.

L. Galatry, “Simultaneous effect of doppler and foreign gastions of broadening on spectral lines,” Phys. Rev. 122, 1218-1223 (1961).
[CrossRef]

Proc. Combust. Inst.

V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, and J. Wolfrum, “High sensitivity in-situ CO-detection in a 3 MWth rotary kiln for special waste incineration using new 2.3 μm distributed feedback diode lasers,” Proc. Combust. Inst. 30, 1611-1618 (2005).
[CrossRef]

A. R. Awtry, B. T. Fisher, R. A. Moffat, V. Ebert, and J. W. Fleming, “Simultaneous diode laser based in situ quantification of oxygen, carbon monoxide, water vapor, and liquid water in a dense water mist environment,” Proc. Combust. Inst. 31, 799-806 (2006).
[CrossRef]

S. Wagner, B. T. Fisher, J. W. Fleming, and V. Ebert, “TDLAS based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames,” Proc. Combust. Inst. 32, 839-846 (2009).
[CrossRef]

V. Ebert, T. Fernholz, C. Giesemann, H. Pitz, H. Teichert, J. Wolfrum, and H. Jaritz, “Simultaneous diode-laser-based in situ detection of multiple species and temperature in a gas-fired power plant,” Proc. Combust. Inst. 28, 423-430(2000).
[CrossRef]

Q. Appl. Math

K. Levenberg, “A method for the solution of certain problems in least squares,” Q. Appl. Math 2, 164-168 (1944).

Science

E. D. Hinkley and P. L. Kelley, “Detection of air pollutants with tunable diode lasers,” Science 171, 635-639 (1971).
[CrossRef] [PubMed]

SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.

D. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 11, 431-441 (1963).
[CrossRef]

Sov. Phys. Usp.

S. G. Rautian and I. C. Sobel'man, “The Effect of collisions on the Dopplerbroadening of spectral lines,” Sov. Phys. Usp. 9, 701-716 (1967).
[CrossRef]

Tech. Mess.

V. Ebert, H. Teichert, C. Giesemann, H. Saathoff, and U. Schurath, “Fiber-coupled in situ-laser absorption spectrometer for the selective detection of water vapor traces down to the ppb-level,” Tech. Mess. 72, 23-30 (2005).
[CrossRef]

F. P. Hindle, S. J. Carey, K. B. Ozanyan, D. E. Winterbone, E. Clough, and H. McCann, “Near infra-red chemical species tomography of sprays of volatile hydrocarbons,” Tech. Mess. 7-8, 352-357 (2002).
[CrossRef]

VDI-Ber.

K. Wunderle, T. Fernholz, and V. Ebert, “Selektion optimaler Absorptionslinien für abstimmbare Laserabsorptionsspektrometer,” VDI-Ber. 1959, 137-148 (2006).

S. Hunsmann, G. Wagner, H. Saathoff, O. Möhler, U. Schurath, and V. Ebert, “Messung der Temperaturabhängigkeit der Linienstärken und Druckverbreiterungskoeffizienten von H2O-Absorptionslinien im 1.4 μm-Band,” VDI-Ber. 1959, 149-164 (2006).

Other

J. L. Monteith and M. Unsworth, Principles of Environmental Physics (Academic, 2008).

R. W. Pearcy, J. P. Krall, and G. F. Sassenrath-Cole, “Photosynthesis if fluctuating light environment,” in Photosynthesis and the Environment, N. R. Baker, ed. (Kluwer Academic, 1996).

B. Zaitone, G. Castanet, N. Damaschke, C. Tropea, S. Hunsmann, and V. Ebert, “Evaporation of an acoustically levitated droplet,” presented at the 10th International Congress on Liquid Atomization and Spray Systems, ICLASS-2006, 27 August-1 September, Kyoto, Japan, 2006.

H. I. Schiff, G. I. Mackay, and J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed., Vol. 127 of Chemical Analysis (Wiley, 1994), Chap. 5.

C. Schulz, A. Dreizler, V. Ebert, and J. Wolfrum, “Combustion diagnostics,” in Springer Handbook of Experimental Fluid Dynamics, C. Tropea, J. Foss, and A. Yarin, eds. (Springer, 2006), pp. 1241-1316.

V. Ebert and J. Wolfrum, “Absorption spectroscopy,” in Optical Measurements--Techniques and Applications, F. Mayinger and O. Feldmann, eds. (Springer-Verlag, 2001), pp. 227-265.

R. K. Hanson and J. Jeffries, “Diode laser sensors for ground testing,” AIAA paper 3441 (American Institute of Aeronautics and Astronautics, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Near-IR absorption bands of the H 2 O molecule (at 296 K ) between 1000 and 3000 nm (according to HITRAN 2004). In this paper we focus on the ν 1 , ν 3 fundamental vibrational band at 2.7 μm .

Fig. 2
Fig. 2

Measured beam profile of the 2.7 μm DFB-DL, acquired at a distance of 7 mm , showing the intensity distribution of the TEM 00 mode.

Fig. 3
Fig. 3

Emission spectrum of the 2.7 μm DFB diode laser, recorded using a FT-IR spectrometer with 0.07 cm 1 spectral resolution, indicates a good SMSR of 28 dB .

Fig. 4
Fig. 4

Lines: HITRAN simulated spectrum for 29% relative humidity H 2 O and 380 ppm CO 2 ( 296 K , 1 bar , 10 cm path). Squares and dashed line: measured static temperature tuning ( 0.39 nm / K ) of the 2763 nm DFB diode laser using a 0.07 cm 1 resolution FT-IR.

Fig. 5
Fig. 5

Experimental determination of the dynamic tuning coefficient for the 2763 μm DFB diode laser.

Fig. 6
Fig. 6

Typical unprocessed detector signal for ambient conditions and 2761.97 nm , 139.8 Hz modulation frequency, and 9.8 cm absorption path.

Fig. 7
Fig. 7

Processed absorption profile of Fig. 6. Considering the mainly noise dominated part of the residuum (gray shaded) with a standard deviation ( 1 σ ) of 2.5 10 4 we estimate at a peak OD of 0.85, a signal-to-noise-ratio S / N * of 3400, which corresponds to a normalized concentration resolution Δ c * of 312 ppb m .

Fig. 8
Fig. 8

Schematic of the spectrometer setup used for 1D spatially resolved water vapor measurements over a heterogeneous laminar flow phantom.

Fig. 9
Fig. 9

Grayscale coded, vertically stacked fitting residuals as a function of scan number/time to investigate the temporal stability of the spatially scanning spectrometer (left). The stable structure on the left plot allows a background subtraction of the averaged residual (right plot). This yields a noise dominated residual level to 7.7 10 4 . The individual scan No. 120 (extracted at the marked line) is shown before and after the subtraction, clearly indicating the positive effect of the background subtraction procedure.

Fig. 10
Fig. 10

Laterally resolved H 2 O vapor profile around a N 2 jet that is formed by a 4 mm diameter nozzle (gray area) and injected in a homogeneous laminar flow of humidified air (with 12 , 350 ppm = 45.2 % relative humidity) of the same flow velocity.

Fig. 11
Fig. 11

Schematic setup of the boundary layer measurement. The leaf is mechanically fixed in a frame and illuminated by photosynthetic actinic light [parabolic aluminized reflector (PAR) light] to trigger the leaf’s metabolism and hence the transpiration. The vertical scanning spectrometer probed the H 2 O boundary layer underneath the leaf (where most stomata are found) in a distance from 0.7 mm to 11 mm beneath the plant leaf.

Fig. 12
Fig. 12

Measurement of the leaf’s boundary layer under a sudden illumination change. Shown are the raw H 2 O concentration data (without leakage correction) taken by an oscillatory up–down movement of the spectrometer. The average time for a full up–down movement was 12 min, and the spatial scanning range was 11 mm , with a step size of 0.2 mm . The ascending branches denote a spectrometer movement towards the leaf, while the maxima and minima of the H 2 O concentration indicate the upper (close to leaf) and lower turning points of the spectrometer.

Fig. 13
Fig. 13

Temporal evolution of the vertical relative H 2 O profile beneath an E. pinnatum leaf. The vertical scanning range reaches from 0.7 to 11 mm beneath the leaf surface (i.e., vertical position = 0 ). A steady state boundary layer with an average concentration gradient of 70 ppm / mm is detected after 30 approximately min.

Fig. 14
Fig. 14

Temporal evolution of the relative H 2 O concentration near the leaf surface (distance 0.7 mm ) after a light stimulus.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( ν , t ) = I 0 ( ν ) Tr ( t ) exp ( S ( T ) ϕ ( ν ν 0 ) n L ) + E ( t ) ,
n = 1 S ( T ) L ln I ( ν , t ) E ( t ) Tr ( t ) I 0 ( ν ) ν t d t .

Metrics