Abstract

A CW tunable 10.6μm CO2 laser differential absorption lidar (DIAL) system has been developed, for the first time to our knowledge, for the remote sensing of triacetone triperoxide (TATP) gas vapors, which have strong absorption lines at several wavelengths, including 3.3, 8.3, and 10.6μm. The DIAL laser beam was transmitted through an enclosed absorption cell containing TATP or SF6, and backscattered returns were measured from a retroreflector array target at ranges of 5100m. DIAL sensitivity for the detection of TATP was about 0.5ng/μl [52partsin106(ppm)] for a 0.3m path.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. R. Murray and J. E. Laan, “Remote measurement of ethylene using a CO2 differential-absorption lidar,” Appl. Opt. 17, 814-817 (1978).
    [CrossRef] [PubMed]
  2. J. R. Quagliano, P. O. Stoutland, and R. R. Petrin, “Quantitative chemical identification of four gases in remote infrared (9-11 μm) differential absorption lidar experiments,” Appl. Opt. 36, 1915-1927 (1997).
    [CrossRef] [PubMed]
  3. D. K. Killinger and N. Menyuk, “Laser remote sensing of the atmosphere,” Science 235, 37-45 (1987).
    [CrossRef] [PubMed]
  4. Markus W. Sigrist, Air Monitoring by Spectroscopic Techniques (Wiley, 1994).
  5. W. B. Grant, “Lidar for atmospheric and hydrospheric studies,” in Tunable Laser Applications, F. J. Duarte, ed. (Marcel Dekker, 1995), pp. 213-305.
  6. M. J. T. Milton, T. D. Gardiner, F. Molero, and J. Galech, “Injection-seeded optical parametric oscillator for range-resolved DIAL measurements of atmospheric methane,” Opt. Commun. 142, 153-160 (1997).
    [CrossRef]
  7. J. A. Shaw, N. L. Seldomridge, D. L. Dunkle, P. W. Nugent, L. H. Spangler, J. J. Bromenshenk, C. B. Henderson, J. H. Churnside, and J. J. Wilson, “Polarization lidar measurements of honey bees in flight for locating land mines,” Opt. Express 13, 5853-5863 (2005).
    [CrossRef] [PubMed]
  8. V. V. Vaicikauskas, V. Kabelka, Z. Kuprionis, V. Svedas, M. Kaucikas, and E. K. Maldutis, “Infrared DIAL system for remote sensing of hazardous chemical agents,” Proc. SPIE 5613, 21-28 (2004).
    [CrossRef]
  9. V. Vaicikauskas, M. Kaucikas, V. Svedas, and Z. Kuprionis, “Mobile spectroscopic system for trace gas detection using a tunable mid-IR laser,” Rev. Sci. Instrum. 78, 023106(2007).
    [CrossRef] [PubMed]
  10. C. Bauer, U. Willer, A. Sharma, and W. Schade, “A new photonic sensor device for TATP detection,” in Laser Applications for Chemical, Security and Environmental Analysis (Optical Society of America, 2008), paper LThB3.
  11. I. Dunayevskiy, A. Tsekoun, M. Prasanna, Rowel Go, C. Kumar, and N. Patel, “High-sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone,” Appl. Opt. 46, 6397-6406 (2007).
    [CrossRef] [PubMed]
  12. R. Matyas, J. Pachman, and H.-G. Ang, “Study of TATP: spontaneous transformation of TATP to DADP,” Propellants Explos. Pyrotech. 33, 89-91 (2008).
    [CrossRef]
  13. D. Armitt, P. Zimmermann, and S. Ellis-Steinborner, “Gas chromatography/mass spectrometry analysis of triacetone triperoxide (TATP) degradation products,” Rapid Commun. Mass Spectrum 22, 950-958 (2008).
    [CrossRef]
  14. R. Matyas and J. Pachman, “Thermal stability of triacetone triperoxide,” Sci. Tech. Energetic Materials 68, 111-116(2007).
  15. J. C. Oxyley, L. James, J. L.Smith, K. Shinde, and J. Morgan, “Determination of the vapor density of triacetone triperoxide (TATP) using a gas chromatography headspace technique,” Propellants Explos., Pyrotech. 30, 127-130 (2005).
    [CrossRef]
  16. A. J. Bellamy, “Triacetone triperoxide: its chemicaldestruction,” J. Forensic Sci. 44, 603-608 (1999).
  17. C. K. N. Patel and R. E. Slusher, “Self- induced transparency in gases,” Phys. Rev. Lett. 19, 1019-1022 (1967).
    [CrossRef]
  18. L. Lyman, G. R. Anderson, A. Fisher, and B. J. Feldman, “Absorption of pulsed CO2--laser radiation by SF6 at 140 K,” Opt. Lett. 3, 238-240 (1978).
    [CrossRef] [PubMed]
  19. H. R. Carlon, “Infrared absorption coefficients (3-15 μm) for sulphur hexafluoride (SF6) and freon (CCl2F2),” Appl. Opt. 18, 1474-1475 (1979).
    [CrossRef] [PubMed]
  20. E. E. Uthe, “Airborne CO2DIAL measurement of atmospheric tracer gas concentration distributions,” Appl. Opt. 25, 2492-2498 (1986).
    [CrossRef] [PubMed]
  21. NIST Standard Reference Database 79: Infrared Database.

2008

R. Matyas, J. Pachman, and H.-G. Ang, “Study of TATP: spontaneous transformation of TATP to DADP,” Propellants Explos. Pyrotech. 33, 89-91 (2008).
[CrossRef]

D. Armitt, P. Zimmermann, and S. Ellis-Steinborner, “Gas chromatography/mass spectrometry analysis of triacetone triperoxide (TATP) degradation products,” Rapid Commun. Mass Spectrum 22, 950-958 (2008).
[CrossRef]

2007

R. Matyas and J. Pachman, “Thermal stability of triacetone triperoxide,” Sci. Tech. Energetic Materials 68, 111-116(2007).

V. Vaicikauskas, M. Kaucikas, V. Svedas, and Z. Kuprionis, “Mobile spectroscopic system for trace gas detection using a tunable mid-IR laser,” Rev. Sci. Instrum. 78, 023106(2007).
[CrossRef] [PubMed]

I. Dunayevskiy, A. Tsekoun, M. Prasanna, Rowel Go, C. Kumar, and N. Patel, “High-sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone,” Appl. Opt. 46, 6397-6406 (2007).
[CrossRef] [PubMed]

2005

J. A. Shaw, N. L. Seldomridge, D. L. Dunkle, P. W. Nugent, L. H. Spangler, J. J. Bromenshenk, C. B. Henderson, J. H. Churnside, and J. J. Wilson, “Polarization lidar measurements of honey bees in flight for locating land mines,” Opt. Express 13, 5853-5863 (2005).
[CrossRef] [PubMed]

J. C. Oxyley, L. James, J. L.Smith, K. Shinde, and J. Morgan, “Determination of the vapor density of triacetone triperoxide (TATP) using a gas chromatography headspace technique,” Propellants Explos., Pyrotech. 30, 127-130 (2005).
[CrossRef]

2004

V. V. Vaicikauskas, V. Kabelka, Z. Kuprionis, V. Svedas, M. Kaucikas, and E. K. Maldutis, “Infrared DIAL system for remote sensing of hazardous chemical agents,” Proc. SPIE 5613, 21-28 (2004).
[CrossRef]

1999

A. J. Bellamy, “Triacetone triperoxide: its chemicaldestruction,” J. Forensic Sci. 44, 603-608 (1999).

1997

J. R. Quagliano, P. O. Stoutland, and R. R. Petrin, “Quantitative chemical identification of four gases in remote infrared (9-11 μm) differential absorption lidar experiments,” Appl. Opt. 36, 1915-1927 (1997).
[CrossRef] [PubMed]

M. J. T. Milton, T. D. Gardiner, F. Molero, and J. Galech, “Injection-seeded optical parametric oscillator for range-resolved DIAL measurements of atmospheric methane,” Opt. Commun. 142, 153-160 (1997).
[CrossRef]

1987

D. K. Killinger and N. Menyuk, “Laser remote sensing of the atmosphere,” Science 235, 37-45 (1987).
[CrossRef] [PubMed]

1986

1979

1978

1967

C. K. N. Patel and R. E. Slusher, “Self- induced transparency in gases,” Phys. Rev. Lett. 19, 1019-1022 (1967).
[CrossRef]

Anderson, G. R.

Ang, H.-G.

R. Matyas, J. Pachman, and H.-G. Ang, “Study of TATP: spontaneous transformation of TATP to DADP,” Propellants Explos. Pyrotech. 33, 89-91 (2008).
[CrossRef]

Armitt, D.

D. Armitt, P. Zimmermann, and S. Ellis-Steinborner, “Gas chromatography/mass spectrometry analysis of triacetone triperoxide (TATP) degradation products,” Rapid Commun. Mass Spectrum 22, 950-958 (2008).
[CrossRef]

Bauer, C.

C. Bauer, U. Willer, A. Sharma, and W. Schade, “A new photonic sensor device for TATP detection,” in Laser Applications for Chemical, Security and Environmental Analysis (Optical Society of America, 2008), paper LThB3.

Bellamy, A. J.

A. J. Bellamy, “Triacetone triperoxide: its chemicaldestruction,” J. Forensic Sci. 44, 603-608 (1999).

Bromenshenk, J. J.

Carlon, H. R.

Churnside, J. H.

Dunayevskiy, I.

Dunkle, D. L.

Ellis-Steinborner, S.

D. Armitt, P. Zimmermann, and S. Ellis-Steinborner, “Gas chromatography/mass spectrometry analysis of triacetone triperoxide (TATP) degradation products,” Rapid Commun. Mass Spectrum 22, 950-958 (2008).
[CrossRef]

Feldman, B. J.

Fisher, A.

Galech, J.

M. J. T. Milton, T. D. Gardiner, F. Molero, and J. Galech, “Injection-seeded optical parametric oscillator for range-resolved DIAL measurements of atmospheric methane,” Opt. Commun. 142, 153-160 (1997).
[CrossRef]

Gardiner, T. D.

M. J. T. Milton, T. D. Gardiner, F. Molero, and J. Galech, “Injection-seeded optical parametric oscillator for range-resolved DIAL measurements of atmospheric methane,” Opt. Commun. 142, 153-160 (1997).
[CrossRef]

Go, Rowel

Grant, W. B.

W. B. Grant, “Lidar for atmospheric and hydrospheric studies,” in Tunable Laser Applications, F. J. Duarte, ed. (Marcel Dekker, 1995), pp. 213-305.

Henderson, C. B.

James, L.

J. C. Oxyley, L. James, J. L.Smith, K. Shinde, and J. Morgan, “Determination of the vapor density of triacetone triperoxide (TATP) using a gas chromatography headspace technique,” Propellants Explos., Pyrotech. 30, 127-130 (2005).
[CrossRef]

Kabelka, V.

V. V. Vaicikauskas, V. Kabelka, Z. Kuprionis, V. Svedas, M. Kaucikas, and E. K. Maldutis, “Infrared DIAL system for remote sensing of hazardous chemical agents,” Proc. SPIE 5613, 21-28 (2004).
[CrossRef]

Kaucikas, M.

V. Vaicikauskas, M. Kaucikas, V. Svedas, and Z. Kuprionis, “Mobile spectroscopic system for trace gas detection using a tunable mid-IR laser,” Rev. Sci. Instrum. 78, 023106(2007).
[CrossRef] [PubMed]

V. V. Vaicikauskas, V. Kabelka, Z. Kuprionis, V. Svedas, M. Kaucikas, and E. K. Maldutis, “Infrared DIAL system for remote sensing of hazardous chemical agents,” Proc. SPIE 5613, 21-28 (2004).
[CrossRef]

Killinger, D. K.

D. K. Killinger and N. Menyuk, “Laser remote sensing of the atmosphere,” Science 235, 37-45 (1987).
[CrossRef] [PubMed]

Kumar, C.

Kuprionis, Z.

V. Vaicikauskas, M. Kaucikas, V. Svedas, and Z. Kuprionis, “Mobile spectroscopic system for trace gas detection using a tunable mid-IR laser,” Rev. Sci. Instrum. 78, 023106(2007).
[CrossRef] [PubMed]

V. V. Vaicikauskas, V. Kabelka, Z. Kuprionis, V. Svedas, M. Kaucikas, and E. K. Maldutis, “Infrared DIAL system for remote sensing of hazardous chemical agents,” Proc. SPIE 5613, 21-28 (2004).
[CrossRef]

Laan, J. E.

Lyman, L.

Maldutis, E. K.

V. V. Vaicikauskas, V. Kabelka, Z. Kuprionis, V. Svedas, M. Kaucikas, and E. K. Maldutis, “Infrared DIAL system for remote sensing of hazardous chemical agents,” Proc. SPIE 5613, 21-28 (2004).
[CrossRef]

Matyas, R.

R. Matyas, J. Pachman, and H.-G. Ang, “Study of TATP: spontaneous transformation of TATP to DADP,” Propellants Explos. Pyrotech. 33, 89-91 (2008).
[CrossRef]

R. Matyas and J. Pachman, “Thermal stability of triacetone triperoxide,” Sci. Tech. Energetic Materials 68, 111-116(2007).

Menyuk, N.

D. K. Killinger and N. Menyuk, “Laser remote sensing of the atmosphere,” Science 235, 37-45 (1987).
[CrossRef] [PubMed]

Milton, M. J. T.

M. J. T. Milton, T. D. Gardiner, F. Molero, and J. Galech, “Injection-seeded optical parametric oscillator for range-resolved DIAL measurements of atmospheric methane,” Opt. Commun. 142, 153-160 (1997).
[CrossRef]

Molero, F.

M. J. T. Milton, T. D. Gardiner, F. Molero, and J. Galech, “Injection-seeded optical parametric oscillator for range-resolved DIAL measurements of atmospheric methane,” Opt. Commun. 142, 153-160 (1997).
[CrossRef]

Morgan, J.

J. C. Oxyley, L. James, J. L.Smith, K. Shinde, and J. Morgan, “Determination of the vapor density of triacetone triperoxide (TATP) using a gas chromatography headspace technique,” Propellants Explos., Pyrotech. 30, 127-130 (2005).
[CrossRef]

Murray, E. R.

Nugent, P. W.

Oxyley, J. C.

J. C. Oxyley, L. James, J. L.Smith, K. Shinde, and J. Morgan, “Determination of the vapor density of triacetone triperoxide (TATP) using a gas chromatography headspace technique,” Propellants Explos., Pyrotech. 30, 127-130 (2005).
[CrossRef]

Pachman, J.

R. Matyas, J. Pachman, and H.-G. Ang, “Study of TATP: spontaneous transformation of TATP to DADP,” Propellants Explos. Pyrotech. 33, 89-91 (2008).
[CrossRef]

R. Matyas and J. Pachman, “Thermal stability of triacetone triperoxide,” Sci. Tech. Energetic Materials 68, 111-116(2007).

Patel, C. K. N.

C. K. N. Patel and R. E. Slusher, “Self- induced transparency in gases,” Phys. Rev. Lett. 19, 1019-1022 (1967).
[CrossRef]

Patel, N.

Petrin, R. R.

Prasanna, M.

Quagliano, J. R.

Schade, W.

C. Bauer, U. Willer, A. Sharma, and W. Schade, “A new photonic sensor device for TATP detection,” in Laser Applications for Chemical, Security and Environmental Analysis (Optical Society of America, 2008), paper LThB3.

Seldomridge, N. L.

Sharma, A.

C. Bauer, U. Willer, A. Sharma, and W. Schade, “A new photonic sensor device for TATP detection,” in Laser Applications for Chemical, Security and Environmental Analysis (Optical Society of America, 2008), paper LThB3.

Shaw, J. A.

Shinde, K.

J. C. Oxyley, L. James, J. L.Smith, K. Shinde, and J. Morgan, “Determination of the vapor density of triacetone triperoxide (TATP) using a gas chromatography headspace technique,” Propellants Explos., Pyrotech. 30, 127-130 (2005).
[CrossRef]

Sigrist, Markus W.

Markus W. Sigrist, Air Monitoring by Spectroscopic Techniques (Wiley, 1994).

Slusher, R. E.

C. K. N. Patel and R. E. Slusher, “Self- induced transparency in gases,” Phys. Rev. Lett. 19, 1019-1022 (1967).
[CrossRef]

Smith, J. L.

J. C. Oxyley, L. James, J. L.Smith, K. Shinde, and J. Morgan, “Determination of the vapor density of triacetone triperoxide (TATP) using a gas chromatography headspace technique,” Propellants Explos., Pyrotech. 30, 127-130 (2005).
[CrossRef]

Spangler, L. H.

Stoutland, P. O.

Svedas, V.

V. Vaicikauskas, M. Kaucikas, V. Svedas, and Z. Kuprionis, “Mobile spectroscopic system for trace gas detection using a tunable mid-IR laser,” Rev. Sci. Instrum. 78, 023106(2007).
[CrossRef] [PubMed]

V. V. Vaicikauskas, V. Kabelka, Z. Kuprionis, V. Svedas, M. Kaucikas, and E. K. Maldutis, “Infrared DIAL system for remote sensing of hazardous chemical agents,” Proc. SPIE 5613, 21-28 (2004).
[CrossRef]

Tsekoun, A.

Uthe, E. E.

Vaicikauskas, V.

V. Vaicikauskas, M. Kaucikas, V. Svedas, and Z. Kuprionis, “Mobile spectroscopic system for trace gas detection using a tunable mid-IR laser,” Rev. Sci. Instrum. 78, 023106(2007).
[CrossRef] [PubMed]

Vaicikauskas, V. V.

V. V. Vaicikauskas, V. Kabelka, Z. Kuprionis, V. Svedas, M. Kaucikas, and E. K. Maldutis, “Infrared DIAL system for remote sensing of hazardous chemical agents,” Proc. SPIE 5613, 21-28 (2004).
[CrossRef]

Willer, U.

C. Bauer, U. Willer, A. Sharma, and W. Schade, “A new photonic sensor device for TATP detection,” in Laser Applications for Chemical, Security and Environmental Analysis (Optical Society of America, 2008), paper LThB3.

Wilson, J. J.

Zimmermann, P.

D. Armitt, P. Zimmermann, and S. Ellis-Steinborner, “Gas chromatography/mass spectrometry analysis of triacetone triperoxide (TATP) degradation products,” Rapid Commun. Mass Spectrum 22, 950-958 (2008).
[CrossRef]

Appl. Opt.

J. Forensic Sci.

A. J. Bellamy, “Triacetone triperoxide: its chemicaldestruction,” J. Forensic Sci. 44, 603-608 (1999).

Opt. Commun.

M. J. T. Milton, T. D. Gardiner, F. Molero, and J. Galech, “Injection-seeded optical parametric oscillator for range-resolved DIAL measurements of atmospheric methane,” Opt. Commun. 142, 153-160 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

C. K. N. Patel and R. E. Slusher, “Self- induced transparency in gases,” Phys. Rev. Lett. 19, 1019-1022 (1967).
[CrossRef]

Proc. SPIE

V. V. Vaicikauskas, V. Kabelka, Z. Kuprionis, V. Svedas, M. Kaucikas, and E. K. Maldutis, “Infrared DIAL system for remote sensing of hazardous chemical agents,” Proc. SPIE 5613, 21-28 (2004).
[CrossRef]

Propellants Explos. Pyrotech.

R. Matyas, J. Pachman, and H.-G. Ang, “Study of TATP: spontaneous transformation of TATP to DADP,” Propellants Explos. Pyrotech. 33, 89-91 (2008).
[CrossRef]

Propellants Explos., Pyrotech.

J. C. Oxyley, L. James, J. L.Smith, K. Shinde, and J. Morgan, “Determination of the vapor density of triacetone triperoxide (TATP) using a gas chromatography headspace technique,” Propellants Explos., Pyrotech. 30, 127-130 (2005).
[CrossRef]

Rapid Commun. Mass Spectrum

D. Armitt, P. Zimmermann, and S. Ellis-Steinborner, “Gas chromatography/mass spectrometry analysis of triacetone triperoxide (TATP) degradation products,” Rapid Commun. Mass Spectrum 22, 950-958 (2008).
[CrossRef]

Rev. Sci. Instrum.

V. Vaicikauskas, M. Kaucikas, V. Svedas, and Z. Kuprionis, “Mobile spectroscopic system for trace gas detection using a tunable mid-IR laser,” Rev. Sci. Instrum. 78, 023106(2007).
[CrossRef] [PubMed]

Sci. Tech. Energetic Materials

R. Matyas and J. Pachman, “Thermal stability of triacetone triperoxide,” Sci. Tech. Energetic Materials 68, 111-116(2007).

Science

D. K. Killinger and N. Menyuk, “Laser remote sensing of the atmosphere,” Science 235, 37-45 (1987).
[CrossRef] [PubMed]

Other

Markus W. Sigrist, Air Monitoring by Spectroscopic Techniques (Wiley, 1994).

W. B. Grant, “Lidar for atmospheric and hydrospheric studies,” in Tunable Laser Applications, F. J. Duarte, ed. (Marcel Dekker, 1995), pp. 213-305.

C. Bauer, U. Willer, A. Sharma, and W. Schade, “A new photonic sensor device for TATP detection,” in Laser Applications for Chemical, Security and Environmental Analysis (Optical Society of America, 2008), paper LThB3.

NIST Standard Reference Database 79: Infrared Database.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Absorbance spectrum for vapor phase TATP (cell path length of 5 cm ; TATP concentration/partial pressure 8.28 Pa ; 28 ° C ).

Fig. 2
Fig. 2

Schematic of laboratory DIAL/lidar setup.

Fig. 3
Fig. 3

Photograph of laboratory CO 2 laser DIAL system.

Fig. 4
Fig. 4

Qualitative transmission spectra of gaseous SF 6 as a function of wavelength near the R ( 24 ) and P ( 24 ) CO 2 laser lines.

Fig. 5
Fig. 5

DIAL transmission measurements as a function of time for 0.2 Torr of SF 6 ( 5 cm cell) and lidar target range of 100 m . The predicted absorption for the online P ( 24 ) line is shown as a dotted line.

Fig. 6
Fig. 6

DIAL transmission measurements as a function of time for 0.5 Torr of SF 6 ( 5 cm cell) and lidar target range of 100 m . The predicted absorption for the online P ( 24 ) line is shown as a dotted line.

Fig. 7
Fig. 7

Expected transmission spectra of TATP for a 175 cm path length and concentration of 4.3 Pa near the R ( 24 ) and P ( 24 ) CO 2 laser lines.

Fig. 8
Fig. 8

Online DIAL transmission as a function of time showing injection of TATP into a heated 30 cm long absorption cell.

Fig. 9
Fig. 9

DIAL measured TATP concentration inside a heated 30 cm long absorption cell as a function of time.

Metrics