Abstract

The lifetimes of the individual fluorescing lines from the terbium-doped dipicolinic acid (DPA) complex have been measured and reported, for the first time to our knowledge. These lifetimes have been measured as a function of terbium and dipicolinic acid concentration, solvent pH, and solvent composition for water, HCl, and sodium acetate buffer solutions. Fluorescence lifetimes over the range from 0.75 to 1.07ms were measured. The maximum fluorescence was obtained for distilled water solutions.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. E. Alcamo, Fundamentals of Microbiology (Addison-Wesley, 1984).
  2. D. V. Lim, Microbiology (WCB/McGraw-Hill, 1998).
    [PubMed]
  3. G. W. Gould and A. Hurst, The Bacterial Spore (Academic, 1969).
  4. A. Ponce, “Live/dead bacterial spore assay using DPA-triggered Tb luminescence,” NASA Tech Brief 27, NPO-30444 (NASA, 2003).
  5. V. Sivaprakasam and D. Killinger, “Multiple UV wavelength excitation and fluorescence of bioaerosols,” Appl. Opt. 42, 6739-6746 (2003).
    [CrossRef] [PubMed]
  6. D. L. Andrews, Applied Laser Spectroscopy (VCH, 1992).
  7. G. G. Guilbault, Practical Fluorescence (Marcel Dekker, 1973).
  8. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).
    [CrossRef]
  9. D. L. Rosen, “Bacterial spore detection and quantification methods,” U.S. patent 5,876,960 (2 March 1999).
  10. D. L. Rosen, C. Sharpless, and L. B. McGown, “Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence,” Anal. Chem. 69, 1082-1085(1997).
    [CrossRef]
  11. P. M. Pellegrino, N. F. Fell, Jr., and J. B. Gillespie, “Enhanced spore detection using dipicolinate extraction techniques,” Anal. Chim. Acta 455, 167-177 (2002).
    [CrossRef]
  12. F. S. Richardson, “Terbium(III) and europium(III) ions as luminescent probes and stains for biomolecular systems,” Chem. Rev. 82, 541-552 (1982).
    [CrossRef]
  13. A. A. Hindle and E. A. H. Hall, “Dipicolinic acid (DPA) assay revisited and appraised for spore detection,” Analyst (Amsterdam) 124, 1599-1604 (1999).
  14. P. Pellegrino, N. F. Fell Jr., D. L. Rosen, and J. B. Gillespie, “Bacterial endospore detection using terbium dipicolinate photoluminescence in the presence of chemical and biological materials,” Anal. Chem. 70, 1755-1760 (1998).
    [CrossRef] [PubMed]
  15. P. Jonsson, F. Kullander, M. Nordstrand, T. Tjärnhage, P. Wästerby, and M. L. Lindgren, “Development of fluorescence-based point detector for biological sensing,” Proc. SPIE 5617, 60-74 (2004).
    [CrossRef]
  16. M. L. Cable, J. P. Kirby, K. Sorasaenee, H. B. Gray, and A. Ponce, “Bacterial spore detection by [Tb3+ (macrocycle)(dipicolinate)] luminescence,” J. Am. Chem. Soc. 129, 1474-1475 (2007).
    [CrossRef] [PubMed]
  17. D. L. Rosen, “Airborne bacterial endospores detected by use of an impinger containing aqueous terbium chloride,” Appl. Opt. 45, 3152-3157 (2006).
    [CrossRef] [PubMed]
  18. W. S. Barney, “System and method for bioaerosol discrimination by time-resolved fluorescence,” U.S. patent 7,060,992 (13 June 2006).
  19. A. Makoui, “Transient fluorescence spectroscopy and laser induced fluorescence lifetimes of terbium doped dipicolinic acid,” Doctoral dissertation (University of South Florida, 2007).
  20. G. F. Kirkbright and M. Sargent, Atomic Absorption and Fluorescence Spectroscopy (Academic, 1974).
  21. D. L. Rosen and S. Niles, “Chelation number of terbium dipicolinate: effects on photoluminescence lifetime and intensity,” Appl. Spectrosc. 55, 208-216 (2001).
    [CrossRef]
  22. A. S. Chauvin, F. Gumy, D. Imbert, and J. G. Bünzli, “Europium and terbium tris(dipicolinates) as secondary standards for quantum yield determination,” Spectrosc. Lett. 37, 517-532 (2004).
    [CrossRef]
  23. D. Toptygin, “Effects of the solvent refractive index and its dispersion on the radiative decay rate and extinction coefficient of a fluorescent solute,” J. Fluoresc. 13, 201-219(2003).
    [CrossRef]
  24. H. Lil, D. Ahmasi Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Detection of chemicals at a standoff >10 m distance based on single-beam coherent anti-Stokes Raman scattering,” in Laser Applications to Chemical, Security and Environmental Analysis (LACSEA) (Optical Society of America, 2008), paper LThB2.
  25. A. V. Sharikova and D. K. Killinger, “Laser- and UV-LED-induced fluorescence detection of drinking water and water-dissolved organics,” in Laser Applications to Chemical, Security and Environmental Analysis (LACSEA) (Optical Society of America, 2008), paper JMA34.

2007 (1)

M. L. Cable, J. P. Kirby, K. Sorasaenee, H. B. Gray, and A. Ponce, “Bacterial spore detection by [Tb3+ (macrocycle)(dipicolinate)] luminescence,” J. Am. Chem. Soc. 129, 1474-1475 (2007).
[CrossRef] [PubMed]

2006 (1)

2004 (2)

P. Jonsson, F. Kullander, M. Nordstrand, T. Tjärnhage, P. Wästerby, and M. L. Lindgren, “Development of fluorescence-based point detector for biological sensing,” Proc. SPIE 5617, 60-74 (2004).
[CrossRef]

A. S. Chauvin, F. Gumy, D. Imbert, and J. G. Bünzli, “Europium and terbium tris(dipicolinates) as secondary standards for quantum yield determination,” Spectrosc. Lett. 37, 517-532 (2004).
[CrossRef]

2003 (2)

D. Toptygin, “Effects of the solvent refractive index and its dispersion on the radiative decay rate and extinction coefficient of a fluorescent solute,” J. Fluoresc. 13, 201-219(2003).
[CrossRef]

V. Sivaprakasam and D. Killinger, “Multiple UV wavelength excitation and fluorescence of bioaerosols,” Appl. Opt. 42, 6739-6746 (2003).
[CrossRef] [PubMed]

2002 (1)

P. M. Pellegrino, N. F. Fell, Jr., and J. B. Gillespie, “Enhanced spore detection using dipicolinate extraction techniques,” Anal. Chim. Acta 455, 167-177 (2002).
[CrossRef]

2001 (1)

1999 (1)

A. A. Hindle and E. A. H. Hall, “Dipicolinic acid (DPA) assay revisited and appraised for spore detection,” Analyst (Amsterdam) 124, 1599-1604 (1999).

1998 (1)

P. Pellegrino, N. F. Fell Jr., D. L. Rosen, and J. B. Gillespie, “Bacterial endospore detection using terbium dipicolinate photoluminescence in the presence of chemical and biological materials,” Anal. Chem. 70, 1755-1760 (1998).
[CrossRef] [PubMed]

1997 (1)

D. L. Rosen, C. Sharpless, and L. B. McGown, “Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence,” Anal. Chem. 69, 1082-1085(1997).
[CrossRef]

1982 (1)

F. S. Richardson, “Terbium(III) and europium(III) ions as luminescent probes and stains for biomolecular systems,” Chem. Rev. 82, 541-552 (1982).
[CrossRef]

Alcamo, I. E.

I. E. Alcamo, Fundamentals of Microbiology (Addison-Wesley, 1984).

Andrews, D. L.

D. L. Andrews, Applied Laser Spectroscopy (VCH, 1992).

Barney, W. S.

W. S. Barney, “System and method for bioaerosol discrimination by time-resolved fluorescence,” U.S. patent 7,060,992 (13 June 2006).

Bünzli, J. G.

A. S. Chauvin, F. Gumy, D. Imbert, and J. G. Bünzli, “Europium and terbium tris(dipicolinates) as secondary standards for quantum yield determination,” Spectrosc. Lett. 37, 517-532 (2004).
[CrossRef]

Cable, M. L.

M. L. Cable, J. P. Kirby, K. Sorasaenee, H. B. Gray, and A. Ponce, “Bacterial spore detection by [Tb3+ (macrocycle)(dipicolinate)] luminescence,” J. Am. Chem. Soc. 129, 1474-1475 (2007).
[CrossRef] [PubMed]

Chauvin, A. S.

A. S. Chauvin, F. Gumy, D. Imbert, and J. G. Bünzli, “Europium and terbium tris(dipicolinates) as secondary standards for quantum yield determination,” Spectrosc. Lett. 37, 517-532 (2004).
[CrossRef]

Dantus, M.

H. Lil, D. Ahmasi Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Detection of chemicals at a standoff >10 m distance based on single-beam coherent anti-Stokes Raman scattering,” in Laser Applications to Chemical, Security and Environmental Analysis (LACSEA) (Optical Society of America, 2008), paper LThB2.

Fell, N. F.

P. M. Pellegrino, N. F. Fell, Jr., and J. B. Gillespie, “Enhanced spore detection using dipicolinate extraction techniques,” Anal. Chim. Acta 455, 167-177 (2002).
[CrossRef]

P. Pellegrino, N. F. Fell Jr., D. L. Rosen, and J. B. Gillespie, “Bacterial endospore detection using terbium dipicolinate photoluminescence in the presence of chemical and biological materials,” Anal. Chem. 70, 1755-1760 (1998).
[CrossRef] [PubMed]

Gillespie, J. B.

P. M. Pellegrino, N. F. Fell, Jr., and J. B. Gillespie, “Enhanced spore detection using dipicolinate extraction techniques,” Anal. Chim. Acta 455, 167-177 (2002).
[CrossRef]

P. Pellegrino, N. F. Fell Jr., D. L. Rosen, and J. B. Gillespie, “Bacterial endospore detection using terbium dipicolinate photoluminescence in the presence of chemical and biological materials,” Anal. Chem. 70, 1755-1760 (1998).
[CrossRef] [PubMed]

Gould, G. W.

G. W. Gould and A. Hurst, The Bacterial Spore (Academic, 1969).

Gray, H. B.

M. L. Cable, J. P. Kirby, K. Sorasaenee, H. B. Gray, and A. Ponce, “Bacterial spore detection by [Tb3+ (macrocycle)(dipicolinate)] luminescence,” J. Am. Chem. Soc. 129, 1474-1475 (2007).
[CrossRef] [PubMed]

Guilbault, G. G.

G. G. Guilbault, Practical Fluorescence (Marcel Dekker, 1973).

Gumy, F.

A. S. Chauvin, F. Gumy, D. Imbert, and J. G. Bünzli, “Europium and terbium tris(dipicolinates) as secondary standards for quantum yield determination,” Spectrosc. Lett. 37, 517-532 (2004).
[CrossRef]

Hall, E. A. H.

A. A. Hindle and E. A. H. Hall, “Dipicolinic acid (DPA) assay revisited and appraised for spore detection,” Analyst (Amsterdam) 124, 1599-1604 (1999).

Harris, D. Ahmasi

H. Lil, D. Ahmasi Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Detection of chemicals at a standoff >10 m distance based on single-beam coherent anti-Stokes Raman scattering,” in Laser Applications to Chemical, Security and Environmental Analysis (LACSEA) (Optical Society of America, 2008), paper LThB2.

Hindle, A. A.

A. A. Hindle and E. A. H. Hall, “Dipicolinic acid (DPA) assay revisited and appraised for spore detection,” Analyst (Amsterdam) 124, 1599-1604 (1999).

Hurst, A.

G. W. Gould and A. Hurst, The Bacterial Spore (Academic, 1969).

Imbert, D.

A. S. Chauvin, F. Gumy, D. Imbert, and J. G. Bünzli, “Europium and terbium tris(dipicolinates) as secondary standards for quantum yield determination,” Spectrosc. Lett. 37, 517-532 (2004).
[CrossRef]

Jonsson, P.

P. Jonsson, F. Kullander, M. Nordstrand, T. Tjärnhage, P. Wästerby, and M. L. Lindgren, “Development of fluorescence-based point detector for biological sensing,” Proc. SPIE 5617, 60-74 (2004).
[CrossRef]

Killinger, D.

Killinger, D. K.

A. V. Sharikova and D. K. Killinger, “Laser- and UV-LED-induced fluorescence detection of drinking water and water-dissolved organics,” in Laser Applications to Chemical, Security and Environmental Analysis (LACSEA) (Optical Society of America, 2008), paper JMA34.

Kirby, J. P.

M. L. Cable, J. P. Kirby, K. Sorasaenee, H. B. Gray, and A. Ponce, “Bacterial spore detection by [Tb3+ (macrocycle)(dipicolinate)] luminescence,” J. Am. Chem. Soc. 129, 1474-1475 (2007).
[CrossRef] [PubMed]

Kirkbright, G. F.

G. F. Kirkbright and M. Sargent, Atomic Absorption and Fluorescence Spectroscopy (Academic, 1974).

Kullander, F.

P. Jonsson, F. Kullander, M. Nordstrand, T. Tjärnhage, P. Wästerby, and M. L. Lindgren, “Development of fluorescence-based point detector for biological sensing,” Proc. SPIE 5617, 60-74 (2004).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).
[CrossRef]

Lil, H.

H. Lil, D. Ahmasi Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Detection of chemicals at a standoff >10 m distance based on single-beam coherent anti-Stokes Raman scattering,” in Laser Applications to Chemical, Security and Environmental Analysis (LACSEA) (Optical Society of America, 2008), paper LThB2.

Lim, D. V.

D. V. Lim, Microbiology (WCB/McGraw-Hill, 1998).
[PubMed]

Lindgren, M. L.

P. Jonsson, F. Kullander, M. Nordstrand, T. Tjärnhage, P. Wästerby, and M. L. Lindgren, “Development of fluorescence-based point detector for biological sensing,” Proc. SPIE 5617, 60-74 (2004).
[CrossRef]

Lozovoy, V. V.

H. Lil, D. Ahmasi Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Detection of chemicals at a standoff >10 m distance based on single-beam coherent anti-Stokes Raman scattering,” in Laser Applications to Chemical, Security and Environmental Analysis (LACSEA) (Optical Society of America, 2008), paper LThB2.

Makoui, A.

A. Makoui, “Transient fluorescence spectroscopy and laser induced fluorescence lifetimes of terbium doped dipicolinic acid,” Doctoral dissertation (University of South Florida, 2007).

McGown, L. B.

D. L. Rosen, C. Sharpless, and L. B. McGown, “Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence,” Anal. Chem. 69, 1082-1085(1997).
[CrossRef]

Niles, S.

Nordstrand, M.

P. Jonsson, F. Kullander, M. Nordstrand, T. Tjärnhage, P. Wästerby, and M. L. Lindgren, “Development of fluorescence-based point detector for biological sensing,” Proc. SPIE 5617, 60-74 (2004).
[CrossRef]

Pellegrino, P.

P. Pellegrino, N. F. Fell Jr., D. L. Rosen, and J. B. Gillespie, “Bacterial endospore detection using terbium dipicolinate photoluminescence in the presence of chemical and biological materials,” Anal. Chem. 70, 1755-1760 (1998).
[CrossRef] [PubMed]

Pellegrino, P. M.

P. M. Pellegrino, N. F. Fell, Jr., and J. B. Gillespie, “Enhanced spore detection using dipicolinate extraction techniques,” Anal. Chim. Acta 455, 167-177 (2002).
[CrossRef]

Ponce, A.

M. L. Cable, J. P. Kirby, K. Sorasaenee, H. B. Gray, and A. Ponce, “Bacterial spore detection by [Tb3+ (macrocycle)(dipicolinate)] luminescence,” J. Am. Chem. Soc. 129, 1474-1475 (2007).
[CrossRef] [PubMed]

A. Ponce, “Live/dead bacterial spore assay using DPA-triggered Tb luminescence,” NASA Tech Brief 27, NPO-30444 (NASA, 2003).

Richardson, F. S.

F. S. Richardson, “Terbium(III) and europium(III) ions as luminescent probes and stains for biomolecular systems,” Chem. Rev. 82, 541-552 (1982).
[CrossRef]

Rosen, D. L.

D. L. Rosen, “Airborne bacterial endospores detected by use of an impinger containing aqueous terbium chloride,” Appl. Opt. 45, 3152-3157 (2006).
[CrossRef] [PubMed]

D. L. Rosen and S. Niles, “Chelation number of terbium dipicolinate: effects on photoluminescence lifetime and intensity,” Appl. Spectrosc. 55, 208-216 (2001).
[CrossRef]

P. Pellegrino, N. F. Fell Jr., D. L. Rosen, and J. B. Gillespie, “Bacterial endospore detection using terbium dipicolinate photoluminescence in the presence of chemical and biological materials,” Anal. Chem. 70, 1755-1760 (1998).
[CrossRef] [PubMed]

D. L. Rosen, C. Sharpless, and L. B. McGown, “Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence,” Anal. Chem. 69, 1082-1085(1997).
[CrossRef]

D. L. Rosen, “Bacterial spore detection and quantification methods,” U.S. patent 5,876,960 (2 March 1999).

Sargent, M.

G. F. Kirkbright and M. Sargent, Atomic Absorption and Fluorescence Spectroscopy (Academic, 1974).

Sharikova, A. V.

A. V. Sharikova and D. K. Killinger, “Laser- and UV-LED-induced fluorescence detection of drinking water and water-dissolved organics,” in Laser Applications to Chemical, Security and Environmental Analysis (LACSEA) (Optical Society of America, 2008), paper JMA34.

Sharpless, C.

D. L. Rosen, C. Sharpless, and L. B. McGown, “Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence,” Anal. Chem. 69, 1082-1085(1997).
[CrossRef]

Sivaprakasam, V.

Sorasaenee, K.

M. L. Cable, J. P. Kirby, K. Sorasaenee, H. B. Gray, and A. Ponce, “Bacterial spore detection by [Tb3+ (macrocycle)(dipicolinate)] luminescence,” J. Am. Chem. Soc. 129, 1474-1475 (2007).
[CrossRef] [PubMed]

Tjärnhage, T.

P. Jonsson, F. Kullander, M. Nordstrand, T. Tjärnhage, P. Wästerby, and M. L. Lindgren, “Development of fluorescence-based point detector for biological sensing,” Proc. SPIE 5617, 60-74 (2004).
[CrossRef]

Toptygin, D.

D. Toptygin, “Effects of the solvent refractive index and its dispersion on the radiative decay rate and extinction coefficient of a fluorescent solute,” J. Fluoresc. 13, 201-219(2003).
[CrossRef]

Wästerby, P.

P. Jonsson, F. Kullander, M. Nordstrand, T. Tjärnhage, P. Wästerby, and M. L. Lindgren, “Development of fluorescence-based point detector for biological sensing,” Proc. SPIE 5617, 60-74 (2004).
[CrossRef]

Wrzesinski, P. J.

H. Lil, D. Ahmasi Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Detection of chemicals at a standoff >10 m distance based on single-beam coherent anti-Stokes Raman scattering,” in Laser Applications to Chemical, Security and Environmental Analysis (LACSEA) (Optical Society of America, 2008), paper LThB2.

Xu, B.

H. Lil, D. Ahmasi Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Detection of chemicals at a standoff >10 m distance based on single-beam coherent anti-Stokes Raman scattering,” in Laser Applications to Chemical, Security and Environmental Analysis (LACSEA) (Optical Society of America, 2008), paper LThB2.

Anal. Chem. (2)

D. L. Rosen, C. Sharpless, and L. B. McGown, “Bacterial spore detection and determination by use of terbium dipicolinate photoluminescence,” Anal. Chem. 69, 1082-1085(1997).
[CrossRef]

P. Pellegrino, N. F. Fell Jr., D. L. Rosen, and J. B. Gillespie, “Bacterial endospore detection using terbium dipicolinate photoluminescence in the presence of chemical and biological materials,” Anal. Chem. 70, 1755-1760 (1998).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

P. M. Pellegrino, N. F. Fell, Jr., and J. B. Gillespie, “Enhanced spore detection using dipicolinate extraction techniques,” Anal. Chim. Acta 455, 167-177 (2002).
[CrossRef]

Analyst (Amsterdam) (1)

A. A. Hindle and E. A. H. Hall, “Dipicolinic acid (DPA) assay revisited and appraised for spore detection,” Analyst (Amsterdam) 124, 1599-1604 (1999).

Appl. Opt. (2)

Appl. Spectrosc. (1)

Chem. Rev. (1)

F. S. Richardson, “Terbium(III) and europium(III) ions as luminescent probes and stains for biomolecular systems,” Chem. Rev. 82, 541-552 (1982).
[CrossRef]

J. Am. Chem. Soc. (1)

M. L. Cable, J. P. Kirby, K. Sorasaenee, H. B. Gray, and A. Ponce, “Bacterial spore detection by [Tb3+ (macrocycle)(dipicolinate)] luminescence,” J. Am. Chem. Soc. 129, 1474-1475 (2007).
[CrossRef] [PubMed]

J. Fluoresc. (1)

D. Toptygin, “Effects of the solvent refractive index and its dispersion on the radiative decay rate and extinction coefficient of a fluorescent solute,” J. Fluoresc. 13, 201-219(2003).
[CrossRef]

Proc. SPIE (1)

P. Jonsson, F. Kullander, M. Nordstrand, T. Tjärnhage, P. Wästerby, and M. L. Lindgren, “Development of fluorescence-based point detector for biological sensing,” Proc. SPIE 5617, 60-74 (2004).
[CrossRef]

Spectrosc. Lett. (1)

A. S. Chauvin, F. Gumy, D. Imbert, and J. G. Bünzli, “Europium and terbium tris(dipicolinates) as secondary standards for quantum yield determination,” Spectrosc. Lett. 37, 517-532 (2004).
[CrossRef]

Other (13)

H. Lil, D. Ahmasi Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Detection of chemicals at a standoff >10 m distance based on single-beam coherent anti-Stokes Raman scattering,” in Laser Applications to Chemical, Security and Environmental Analysis (LACSEA) (Optical Society of America, 2008), paper LThB2.

A. V. Sharikova and D. K. Killinger, “Laser- and UV-LED-induced fluorescence detection of drinking water and water-dissolved organics,” in Laser Applications to Chemical, Security and Environmental Analysis (LACSEA) (Optical Society of America, 2008), paper JMA34.

W. S. Barney, “System and method for bioaerosol discrimination by time-resolved fluorescence,” U.S. patent 7,060,992 (13 June 2006).

A. Makoui, “Transient fluorescence spectroscopy and laser induced fluorescence lifetimes of terbium doped dipicolinic acid,” Doctoral dissertation (University of South Florida, 2007).

G. F. Kirkbright and M. Sargent, Atomic Absorption and Fluorescence Spectroscopy (Academic, 1974).

D. L. Andrews, Applied Laser Spectroscopy (VCH, 1992).

G. G. Guilbault, Practical Fluorescence (Marcel Dekker, 1973).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).
[CrossRef]

D. L. Rosen, “Bacterial spore detection and quantification methods,” U.S. patent 5,876,960 (2 March 1999).

I. E. Alcamo, Fundamentals of Microbiology (Addison-Wesley, 1984).

D. V. Lim, Microbiology (WCB/McGraw-Hill, 1998).
[PubMed]

G. W. Gould and A. Hurst, The Bacterial Spore (Academic, 1969).

A. Ponce, “Live/dead bacterial spore assay using DPA-triggered Tb luminescence,” NASA Tech Brief 27, NPO-30444 (NASA, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup. Abbreviations defined in text.

Fig. 2
Fig. 2

(a) Fluorescence intensity as a function of time and (b) semi-log plot of the normalized fluorescence decay lines from [ 50 μM ] DPA with [ 50 μM ] TbCl 3 in distilled water ( f chopper = 50 Hz ).

Fig. 3
Fig. 3

Lifetimes as a function of DPA and TbCl 3 concentration in distilled water. A sample error bar is shown in each of the figures at around the [ 25 μM ] DPA with [ 5 μM ] TbCl 3 .

Fig. 4
Fig. 4

Plots of lifetime as a function of DPA and TbCl 3 concentration in [ 0.01 M ] HCl.

Fig. 5
Fig. 5

Plots of lifetime as a function of DPA and TbCl 3 concentration in [ 1 M ] SAB.

Fig. 6
Fig. 6

Maximum fluorescence intensities (chopper open) from solutions of [ 50 μM ] DPA with [ 50 μM ].

Fig. 7
Fig. 7

Maximum fluorescence intensities (chopper open) for solutions in [ 1 M ] SAB.

Fig. 8
Fig. 8

Maximum fluorescence intensities (chopper open) for solutions in distilled water.

Fig. 9
Fig. 9

Maximum fluorescence intensities (chopper open) for solutions in [ 0.01 M ] HCl.

Tables (1)

Tables Icon

Table 1 Fluorescence Lifetimes of Solutions of [ 50 μM ] DPA with [ 50 μM ] TbCl 3 .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I F = I o A η Ω 4 π ,
η = τ τ n .

Metrics