Abstract

Composite films consisting of a ceramic matrix with embedded metal nanoparticles have received increased interest due to their numerous potential applications in the field of optics and optoelectronics. Numerous studies have been dedicated to the fabrication of these composite materials and it has been shown that nanocermet films can be obtained by successive deposition of alternate dielectric and metal films of thicknesses opportunely chosen. In this case, stacks of dielectric layers alternated with layers of metal nanoclusters (NCs) are obtained. However, until now, optical characterization of these kinds of multilayer stack has been used to retrieve mainly qualitative information on the dimension, shape, and geometric distribution of nanoparticles inside the dielectric matrix. An easy-to-handle model that quantitatively links the optical properties to the main features of the NCs embedded in the matrix is presented. This model can be applied to multilayer stacks of dielectric layers alternated with metal NC layers and is shown to be a valid alternative to a recently published model [Nanotechnology 19, 125709 (2008)] that was applied to the case of a three-layer structure (dielectric/metal:dielectric/ dielectric).

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. N. Afonso, J. Solis, R. Serna, J. Gonzalo, J. M. Ballestros, and J. C. G. de Sande, “Pulsed laser deposition of nanocomposite thin films for photonic applications,” Proc. SPIE 3618, 453-464 (1999).
    [CrossRef]
  2. A. Polman, E. Snoeks, G. N. van den Hoven, M. L. Brongersma, R. Serna, J. H. Shin, P. Kik, and E. Radius, “Ion beam synthesis of planar opto-electronic devices,” Nucl. Instrum. Methods Phys. Res. B 106, 393-399 (1995).
    [CrossRef]
  3. R. Joerger, R. Gampp, A. Heinzel, W. Graf, M. Kohl, P. Gantenbein, and P. Oelhafen, “Optical properties of inhomogeneous media,” Solar Energy Mater. Sol. Cells 54, 351-361 (1998).
    [CrossRef]
  4. M. J. Bloemer and J. W. Haus, “Versatile waveguide polarizer incorporating an ultrathin discontinuous silver film,” Appl. Phys. Lett. 61, 1619-1621 (1992).
    [CrossRef]
  5. A. Podlipensky, J. Lange, G. Seiffert, H. Graener, and I. Cravetchi, “Second-harmonic generation from ellipsoidal silver nanoparticles embedded in silica glass,” Opt. Lett. 28, 716-718 (2003).
    [CrossRef] [PubMed]
  6. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  7. H. Takele, H. Greve, C. Pochstein, V. Zaporojtchenko, and F. Faupel, “Plasmonic properties of Ag nanoclusters in various polymer matrices,” Nanotechnology 17, 3499-3505(2006).
    [CrossRef] [PubMed]
  8. J. Toudert, S. Camelio, D. Babonneau, M. F. Denanot, T. Girardeau, J. P. Espinos, F. Yubero, and A. R. Gonzalez-Elipe, “Morphology and surface-plasmon resonance of silver nanoparticles sandwiched between Si3N4 and BN layers,” J. Appl. Phys. 98, 114316 (2005).
    [CrossRef]
  9. S. Camelio, J. Toudert, D. Bobonneau, and T. Girardeau, “Tailoring of the optical properties of Ag:Si3N4 nanocermets by changes of the cluster morphology,” Appl. Phys. B 80, 89-96 (2005).
    [CrossRef]
  10. S. K. Mandal, R. K. Roy, and A. K. Pal, “Effect of particle shape distribution on the surface plasmon resonance of Ag-SiO2 nanocomposite thin films,” J. Phys. D 36, 261-265 (2003).
    [CrossRef]
  11. J. Gonzalo, R. Serna, J. Solís, D. Babonneau, and C. N. Afonso, “Morphological and interaction effects on the surface plasmon resonance of metal nanoparticles,” J. Phys. Condens. Matter 15, S3001-S3010 (2003).
    [CrossRef]
  12. J. P. Barnes, A. K. Petford-Long, R. C. Doole, R. Serna, J. Gonzalo, A. Suarez-Garcia, C. N. Afonso, and D. Hole, “Structural studies of Ag nanocrystals embedded in amorphous Al2O3 grown by pulsed laser deposition,” Nanotechnology 13, 465-470 (2002).
    [CrossRef]
  13. U. Schurmann, H. Takele, V. Zaporojtchenko, and F. Faupel, “Optical and electrical properties of polymer metal nanocomposites prepared by magnetron co-sputtering,” Thin Solid Films 515, 801-804 (2006).
    [CrossRef]
  14. V. S. K. Chakravadhanula, M. Elbahri, U. Schurmann, H. Takele, H. Greve, V. Zaporojtchenko, and F. Faupel, “Equal intensity double plasmon resonance of bimetallic quasi-nanocomposites based on sandwich geometry,” Nanotechnology 19, 225302 (2008).
    [CrossRef] [PubMed]
  15. M. A. García, J. Llopis, and S. E. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol-gel films,” Chem. Phys. Lett. 315, 313-320(1999).
    [CrossRef]
  16. J. C. Pivin, M. A. García, H. Hofmeister, A. Martucci, M. Sendova Massileva, M. Nikolaeva, O. Kaitasov, and J. Llopis, “Optical properties of silver clusters formed by ion irradiation,” Euro. Phys. J. D 20, 251-260 (2002).
    [CrossRef]
  17. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331-1333 (1998).
    [CrossRef]
  18. Z. Q. Sun, D. M. Sun, and T. N. Ruan, “Microstructural and optical absorption properties of Cu-MgF2 nanoparticle cermet film,” Chin. Phys. Lett. 19, 1365-1368 (2002).
    [CrossRef]
  19. J. Toudert, D. Bobonneau, L. Simonot, S. Camelio, and T. Girardeau, “Quantitative modelling of the surface plasmon resonances of metal nanoclusters sandwiched between dielectric layers: the influence of nanocluster size, shape and organization,” Nanotechnology 19, 125709 (2008).
    [CrossRef] [PubMed]
  20. T. Yamaguchi, S. Yoshida, and A. Kimbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films 21, 173-187 (1974).
    [CrossRef]
  21. V. A. Fedotov, V. I. Emel'yanov, K. F. MacDonald, and N. I. Zheludev, “Optical properties of closely packed nanoparticle films: spheroids and nanoshells,” J. Opt. A 6, 155-160 (2004).
    [CrossRef]
  22. H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178-18188 (1993).
    [CrossRef]
  23. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  24. E. D. Palik, Handbook of Optical Constants (Academic, 1985).

2008 (2)

V. S. K. Chakravadhanula, M. Elbahri, U. Schurmann, H. Takele, H. Greve, V. Zaporojtchenko, and F. Faupel, “Equal intensity double plasmon resonance of bimetallic quasi-nanocomposites based on sandwich geometry,” Nanotechnology 19, 225302 (2008).
[CrossRef] [PubMed]

J. Toudert, D. Bobonneau, L. Simonot, S. Camelio, and T. Girardeau, “Quantitative modelling of the surface plasmon resonances of metal nanoclusters sandwiched between dielectric layers: the influence of nanocluster size, shape and organization,” Nanotechnology 19, 125709 (2008).
[CrossRef] [PubMed]

2006 (2)

U. Schurmann, H. Takele, V. Zaporojtchenko, and F. Faupel, “Optical and electrical properties of polymer metal nanocomposites prepared by magnetron co-sputtering,” Thin Solid Films 515, 801-804 (2006).
[CrossRef]

H. Takele, H. Greve, C. Pochstein, V. Zaporojtchenko, and F. Faupel, “Plasmonic properties of Ag nanoclusters in various polymer matrices,” Nanotechnology 17, 3499-3505(2006).
[CrossRef] [PubMed]

2005 (2)

J. Toudert, S. Camelio, D. Babonneau, M. F. Denanot, T. Girardeau, J. P. Espinos, F. Yubero, and A. R. Gonzalez-Elipe, “Morphology and surface-plasmon resonance of silver nanoparticles sandwiched between Si3N4 and BN layers,” J. Appl. Phys. 98, 114316 (2005).
[CrossRef]

S. Camelio, J. Toudert, D. Bobonneau, and T. Girardeau, “Tailoring of the optical properties of Ag:Si3N4 nanocermets by changes of the cluster morphology,” Appl. Phys. B 80, 89-96 (2005).
[CrossRef]

2004 (1)

V. A. Fedotov, V. I. Emel'yanov, K. F. MacDonald, and N. I. Zheludev, “Optical properties of closely packed nanoparticle films: spheroids and nanoshells,” J. Opt. A 6, 155-160 (2004).
[CrossRef]

2003 (3)

S. K. Mandal, R. K. Roy, and A. K. Pal, “Effect of particle shape distribution on the surface plasmon resonance of Ag-SiO2 nanocomposite thin films,” J. Phys. D 36, 261-265 (2003).
[CrossRef]

J. Gonzalo, R. Serna, J. Solís, D. Babonneau, and C. N. Afonso, “Morphological and interaction effects on the surface plasmon resonance of metal nanoparticles,” J. Phys. Condens. Matter 15, S3001-S3010 (2003).
[CrossRef]

A. Podlipensky, J. Lange, G. Seiffert, H. Graener, and I. Cravetchi, “Second-harmonic generation from ellipsoidal silver nanoparticles embedded in silica glass,” Opt. Lett. 28, 716-718 (2003).
[CrossRef] [PubMed]

2002 (3)

J. P. Barnes, A. K. Petford-Long, R. C. Doole, R. Serna, J. Gonzalo, A. Suarez-Garcia, C. N. Afonso, and D. Hole, “Structural studies of Ag nanocrystals embedded in amorphous Al2O3 grown by pulsed laser deposition,” Nanotechnology 13, 465-470 (2002).
[CrossRef]

J. C. Pivin, M. A. García, H. Hofmeister, A. Martucci, M. Sendova Massileva, M. Nikolaeva, O. Kaitasov, and J. Llopis, “Optical properties of silver clusters formed by ion irradiation,” Euro. Phys. J. D 20, 251-260 (2002).
[CrossRef]

Z. Q. Sun, D. M. Sun, and T. N. Ruan, “Microstructural and optical absorption properties of Cu-MgF2 nanoparticle cermet film,” Chin. Phys. Lett. 19, 1365-1368 (2002).
[CrossRef]

1999 (2)

C. N. Afonso, J. Solis, R. Serna, J. Gonzalo, J. M. Ballestros, and J. C. G. de Sande, “Pulsed laser deposition of nanocomposite thin films for photonic applications,” Proc. SPIE 3618, 453-464 (1999).
[CrossRef]

M. A. García, J. Llopis, and S. E. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol-gel films,” Chem. Phys. Lett. 315, 313-320(1999).
[CrossRef]

1998 (2)

R. Joerger, R. Gampp, A. Heinzel, W. Graf, M. Kohl, P. Gantenbein, and P. Oelhafen, “Optical properties of inhomogeneous media,” Solar Energy Mater. Sol. Cells 54, 351-361 (1998).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331-1333 (1998).
[CrossRef]

1995 (1)

A. Polman, E. Snoeks, G. N. van den Hoven, M. L. Brongersma, R. Serna, J. H. Shin, P. Kik, and E. Radius, “Ion beam synthesis of planar opto-electronic devices,” Nucl. Instrum. Methods Phys. Res. B 106, 393-399 (1995).
[CrossRef]

1993 (1)

H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178-18188 (1993).
[CrossRef]

1992 (1)

M. J. Bloemer and J. W. Haus, “Versatile waveguide polarizer incorporating an ultrathin discontinuous silver film,” Appl. Phys. Lett. 61, 1619-1621 (1992).
[CrossRef]

1974 (1)

T. Yamaguchi, S. Yoshida, and A. Kimbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films 21, 173-187 (1974).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Afonso, C. N.

J. Gonzalo, R. Serna, J. Solís, D. Babonneau, and C. N. Afonso, “Morphological and interaction effects on the surface plasmon resonance of metal nanoparticles,” J. Phys. Condens. Matter 15, S3001-S3010 (2003).
[CrossRef]

J. P. Barnes, A. K. Petford-Long, R. C. Doole, R. Serna, J. Gonzalo, A. Suarez-Garcia, C. N. Afonso, and D. Hole, “Structural studies of Ag nanocrystals embedded in amorphous Al2O3 grown by pulsed laser deposition,” Nanotechnology 13, 465-470 (2002).
[CrossRef]

C. N. Afonso, J. Solis, R. Serna, J. Gonzalo, J. M. Ballestros, and J. C. G. de Sande, “Pulsed laser deposition of nanocomposite thin films for photonic applications,” Proc. SPIE 3618, 453-464 (1999).
[CrossRef]

Aussenegg, F. R.

Babonneau, D.

J. Toudert, S. Camelio, D. Babonneau, M. F. Denanot, T. Girardeau, J. P. Espinos, F. Yubero, and A. R. Gonzalez-Elipe, “Morphology and surface-plasmon resonance of silver nanoparticles sandwiched between Si3N4 and BN layers,” J. Appl. Phys. 98, 114316 (2005).
[CrossRef]

J. Gonzalo, R. Serna, J. Solís, D. Babonneau, and C. N. Afonso, “Morphological and interaction effects on the surface plasmon resonance of metal nanoparticles,” J. Phys. Condens. Matter 15, S3001-S3010 (2003).
[CrossRef]

Ballestros, J. M.

C. N. Afonso, J. Solis, R. Serna, J. Gonzalo, J. M. Ballestros, and J. C. G. de Sande, “Pulsed laser deposition of nanocomposite thin films for photonic applications,” Proc. SPIE 3618, 453-464 (1999).
[CrossRef]

Barnes, J. P.

J. P. Barnes, A. K. Petford-Long, R. C. Doole, R. Serna, J. Gonzalo, A. Suarez-Garcia, C. N. Afonso, and D. Hole, “Structural studies of Ag nanocrystals embedded in amorphous Al2O3 grown by pulsed laser deposition,” Nanotechnology 13, 465-470 (2002).
[CrossRef]

Bloemer, M. J.

M. J. Bloemer and J. W. Haus, “Versatile waveguide polarizer incorporating an ultrathin discontinuous silver film,” Appl. Phys. Lett. 61, 1619-1621 (1992).
[CrossRef]

Bobonneau, D.

J. Toudert, D. Bobonneau, L. Simonot, S. Camelio, and T. Girardeau, “Quantitative modelling of the surface plasmon resonances of metal nanoclusters sandwiched between dielectric layers: the influence of nanocluster size, shape and organization,” Nanotechnology 19, 125709 (2008).
[CrossRef] [PubMed]

S. Camelio, J. Toudert, D. Bobonneau, and T. Girardeau, “Tailoring of the optical properties of Ag:Si3N4 nanocermets by changes of the cluster morphology,” Appl. Phys. B 80, 89-96 (2005).
[CrossRef]

Brongersma, M. L.

A. Polman, E. Snoeks, G. N. van den Hoven, M. L. Brongersma, R. Serna, J. H. Shin, P. Kik, and E. Radius, “Ion beam synthesis of planar opto-electronic devices,” Nucl. Instrum. Methods Phys. Res. B 106, 393-399 (1995).
[CrossRef]

Camelio, S.

J. Toudert, D. Bobonneau, L. Simonot, S. Camelio, and T. Girardeau, “Quantitative modelling of the surface plasmon resonances of metal nanoclusters sandwiched between dielectric layers: the influence of nanocluster size, shape and organization,” Nanotechnology 19, 125709 (2008).
[CrossRef] [PubMed]

J. Toudert, S. Camelio, D. Babonneau, M. F. Denanot, T. Girardeau, J. P. Espinos, F. Yubero, and A. R. Gonzalez-Elipe, “Morphology and surface-plasmon resonance of silver nanoparticles sandwiched between Si3N4 and BN layers,” J. Appl. Phys. 98, 114316 (2005).
[CrossRef]

S. Camelio, J. Toudert, D. Bobonneau, and T. Girardeau, “Tailoring of the optical properties of Ag:Si3N4 nanocermets by changes of the cluster morphology,” Appl. Phys. B 80, 89-96 (2005).
[CrossRef]

Chakravadhanula, V. S. K.

V. S. K. Chakravadhanula, M. Elbahri, U. Schurmann, H. Takele, H. Greve, V. Zaporojtchenko, and F. Faupel, “Equal intensity double plasmon resonance of bimetallic quasi-nanocomposites based on sandwich geometry,” Nanotechnology 19, 225302 (2008).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Cravetchi, I.

de Sande, J. C. G.

C. N. Afonso, J. Solis, R. Serna, J. Gonzalo, J. M. Ballestros, and J. C. G. de Sande, “Pulsed laser deposition of nanocomposite thin films for photonic applications,” Proc. SPIE 3618, 453-464 (1999).
[CrossRef]

Denanot, M. F.

J. Toudert, S. Camelio, D. Babonneau, M. F. Denanot, T. Girardeau, J. P. Espinos, F. Yubero, and A. R. Gonzalez-Elipe, “Morphology and surface-plasmon resonance of silver nanoparticles sandwiched between Si3N4 and BN layers,” J. Appl. Phys. 98, 114316 (2005).
[CrossRef]

Doole, R. C.

J. P. Barnes, A. K. Petford-Long, R. C. Doole, R. Serna, J. Gonzalo, A. Suarez-Garcia, C. N. Afonso, and D. Hole, “Structural studies of Ag nanocrystals embedded in amorphous Al2O3 grown by pulsed laser deposition,” Nanotechnology 13, 465-470 (2002).
[CrossRef]

Elbahri, M.

V. S. K. Chakravadhanula, M. Elbahri, U. Schurmann, H. Takele, H. Greve, V. Zaporojtchenko, and F. Faupel, “Equal intensity double plasmon resonance of bimetallic quasi-nanocomposites based on sandwich geometry,” Nanotechnology 19, 225302 (2008).
[CrossRef] [PubMed]

Emel'yanov, V. I.

V. A. Fedotov, V. I. Emel'yanov, K. F. MacDonald, and N. I. Zheludev, “Optical properties of closely packed nanoparticle films: spheroids and nanoshells,” J. Opt. A 6, 155-160 (2004).
[CrossRef]

Espinos, J. P.

J. Toudert, S. Camelio, D. Babonneau, M. F. Denanot, T. Girardeau, J. P. Espinos, F. Yubero, and A. R. Gonzalez-Elipe, “Morphology and surface-plasmon resonance of silver nanoparticles sandwiched between Si3N4 and BN layers,” J. Appl. Phys. 98, 114316 (2005).
[CrossRef]

Faupel, F.

V. S. K. Chakravadhanula, M. Elbahri, U. Schurmann, H. Takele, H. Greve, V. Zaporojtchenko, and F. Faupel, “Equal intensity double plasmon resonance of bimetallic quasi-nanocomposites based on sandwich geometry,” Nanotechnology 19, 225302 (2008).
[CrossRef] [PubMed]

U. Schurmann, H. Takele, V. Zaporojtchenko, and F. Faupel, “Optical and electrical properties of polymer metal nanocomposites prepared by magnetron co-sputtering,” Thin Solid Films 515, 801-804 (2006).
[CrossRef]

H. Takele, H. Greve, C. Pochstein, V. Zaporojtchenko, and F. Faupel, “Plasmonic properties of Ag nanoclusters in various polymer matrices,” Nanotechnology 17, 3499-3505(2006).
[CrossRef] [PubMed]

Fedotov, V. A.

V. A. Fedotov, V. I. Emel'yanov, K. F. MacDonald, and N. I. Zheludev, “Optical properties of closely packed nanoparticle films: spheroids and nanoshells,” J. Opt. A 6, 155-160 (2004).
[CrossRef]

Fritz, S.

H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178-18188 (1993).
[CrossRef]

Gampp, R.

R. Joerger, R. Gampp, A. Heinzel, W. Graf, M. Kohl, P. Gantenbein, and P. Oelhafen, “Optical properties of inhomogeneous media,” Solar Energy Mater. Sol. Cells 54, 351-361 (1998).
[CrossRef]

Gantenbein, P.

R. Joerger, R. Gampp, A. Heinzel, W. Graf, M. Kohl, P. Gantenbein, and P. Oelhafen, “Optical properties of inhomogeneous media,” Solar Energy Mater. Sol. Cells 54, 351-361 (1998).
[CrossRef]

García, M. A.

J. C. Pivin, M. A. García, H. Hofmeister, A. Martucci, M. Sendova Massileva, M. Nikolaeva, O. Kaitasov, and J. Llopis, “Optical properties of silver clusters formed by ion irradiation,” Euro. Phys. J. D 20, 251-260 (2002).
[CrossRef]

M. A. García, J. Llopis, and S. E. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol-gel films,” Chem. Phys. Lett. 315, 313-320(1999).
[CrossRef]

Girardeau, T.

J. Toudert, D. Bobonneau, L. Simonot, S. Camelio, and T. Girardeau, “Quantitative modelling of the surface plasmon resonances of metal nanoclusters sandwiched between dielectric layers: the influence of nanocluster size, shape and organization,” Nanotechnology 19, 125709 (2008).
[CrossRef] [PubMed]

J. Toudert, S. Camelio, D. Babonneau, M. F. Denanot, T. Girardeau, J. P. Espinos, F. Yubero, and A. R. Gonzalez-Elipe, “Morphology and surface-plasmon resonance of silver nanoparticles sandwiched between Si3N4 and BN layers,” J. Appl. Phys. 98, 114316 (2005).
[CrossRef]

S. Camelio, J. Toudert, D. Bobonneau, and T. Girardeau, “Tailoring of the optical properties of Ag:Si3N4 nanocermets by changes of the cluster morphology,” Appl. Phys. B 80, 89-96 (2005).
[CrossRef]

Gonzalez-Elipe, A. R.

J. Toudert, S. Camelio, D. Babonneau, M. F. Denanot, T. Girardeau, J. P. Espinos, F. Yubero, and A. R. Gonzalez-Elipe, “Morphology and surface-plasmon resonance of silver nanoparticles sandwiched between Si3N4 and BN layers,” J. Appl. Phys. 98, 114316 (2005).
[CrossRef]

Gonzalo, J.

J. Gonzalo, R. Serna, J. Solís, D. Babonneau, and C. N. Afonso, “Morphological and interaction effects on the surface plasmon resonance of metal nanoparticles,” J. Phys. Condens. Matter 15, S3001-S3010 (2003).
[CrossRef]

J. P. Barnes, A. K. Petford-Long, R. C. Doole, R. Serna, J. Gonzalo, A. Suarez-Garcia, C. N. Afonso, and D. Hole, “Structural studies of Ag nanocrystals embedded in amorphous Al2O3 grown by pulsed laser deposition,” Nanotechnology 13, 465-470 (2002).
[CrossRef]

C. N. Afonso, J. Solis, R. Serna, J. Gonzalo, J. M. Ballestros, and J. C. G. de Sande, “Pulsed laser deposition of nanocomposite thin films for photonic applications,” Proc. SPIE 3618, 453-464 (1999).
[CrossRef]

Graener, H.

Graf, W.

R. Joerger, R. Gampp, A. Heinzel, W. Graf, M. Kohl, P. Gantenbein, and P. Oelhafen, “Optical properties of inhomogeneous media,” Solar Energy Mater. Sol. Cells 54, 351-361 (1998).
[CrossRef]

Greve, H.

V. S. K. Chakravadhanula, M. Elbahri, U. Schurmann, H. Takele, H. Greve, V. Zaporojtchenko, and F. Faupel, “Equal intensity double plasmon resonance of bimetallic quasi-nanocomposites based on sandwich geometry,” Nanotechnology 19, 225302 (2008).
[CrossRef] [PubMed]

H. Takele, H. Greve, C. Pochstein, V. Zaporojtchenko, and F. Faupel, “Plasmonic properties of Ag nanoclusters in various polymer matrices,” Nanotechnology 17, 3499-3505(2006).
[CrossRef] [PubMed]

Haus, J. W.

M. J. Bloemer and J. W. Haus, “Versatile waveguide polarizer incorporating an ultrathin discontinuous silver film,” Appl. Phys. Lett. 61, 1619-1621 (1992).
[CrossRef]

Heinzel, A.

R. Joerger, R. Gampp, A. Heinzel, W. Graf, M. Kohl, P. Gantenbein, and P. Oelhafen, “Optical properties of inhomogeneous media,” Solar Energy Mater. Sol. Cells 54, 351-361 (1998).
[CrossRef]

Hilger, A.

H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178-18188 (1993).
[CrossRef]

Hofmeister, H.

J. C. Pivin, M. A. García, H. Hofmeister, A. Martucci, M. Sendova Massileva, M. Nikolaeva, O. Kaitasov, and J. Llopis, “Optical properties of silver clusters formed by ion irradiation,” Euro. Phys. J. D 20, 251-260 (2002).
[CrossRef]

Hole, D.

J. P. Barnes, A. K. Petford-Long, R. C. Doole, R. Serna, J. Gonzalo, A. Suarez-Garcia, C. N. Afonso, and D. Hole, “Structural studies of Ag nanocrystals embedded in amorphous Al2O3 grown by pulsed laser deposition,” Nanotechnology 13, 465-470 (2002).
[CrossRef]

Hovel, H.

H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178-18188 (1993).
[CrossRef]

Joerger, R.

R. Joerger, R. Gampp, A. Heinzel, W. Graf, M. Kohl, P. Gantenbein, and P. Oelhafen, “Optical properties of inhomogeneous media,” Solar Energy Mater. Sol. Cells 54, 351-361 (1998).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Kaitasov, O.

J. C. Pivin, M. A. García, H. Hofmeister, A. Martucci, M. Sendova Massileva, M. Nikolaeva, O. Kaitasov, and J. Llopis, “Optical properties of silver clusters formed by ion irradiation,” Euro. Phys. J. D 20, 251-260 (2002).
[CrossRef]

Kik, P.

A. Polman, E. Snoeks, G. N. van den Hoven, M. L. Brongersma, R. Serna, J. H. Shin, P. Kik, and E. Radius, “Ion beam synthesis of planar opto-electronic devices,” Nucl. Instrum. Methods Phys. Res. B 106, 393-399 (1995).
[CrossRef]

Kimbara, A.

T. Yamaguchi, S. Yoshida, and A. Kimbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films 21, 173-187 (1974).
[CrossRef]

Kohl, M.

R. Joerger, R. Gampp, A. Heinzel, W. Graf, M. Kohl, P. Gantenbein, and P. Oelhafen, “Optical properties of inhomogeneous media,” Solar Energy Mater. Sol. Cells 54, 351-361 (1998).
[CrossRef]

Kreibig, U.

H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178-18188 (1993).
[CrossRef]

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Krenn, J. R.

Lange, J.

Leitner, A.

Llopis, J.

J. C. Pivin, M. A. García, H. Hofmeister, A. Martucci, M. Sendova Massileva, M. Nikolaeva, O. Kaitasov, and J. Llopis, “Optical properties of silver clusters formed by ion irradiation,” Euro. Phys. J. D 20, 251-260 (2002).
[CrossRef]

M. A. García, J. Llopis, and S. E. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol-gel films,” Chem. Phys. Lett. 315, 313-320(1999).
[CrossRef]

MacDonald, K. F.

V. A. Fedotov, V. I. Emel'yanov, K. F. MacDonald, and N. I. Zheludev, “Optical properties of closely packed nanoparticle films: spheroids and nanoshells,” J. Opt. A 6, 155-160 (2004).
[CrossRef]

Mandal, S. K.

S. K. Mandal, R. K. Roy, and A. K. Pal, “Effect of particle shape distribution on the surface plasmon resonance of Ag-SiO2 nanocomposite thin films,” J. Phys. D 36, 261-265 (2003).
[CrossRef]

Martucci, A.

J. C. Pivin, M. A. García, H. Hofmeister, A. Martucci, M. Sendova Massileva, M. Nikolaeva, O. Kaitasov, and J. Llopis, “Optical properties of silver clusters formed by ion irradiation,” Euro. Phys. J. D 20, 251-260 (2002).
[CrossRef]

Massileva, M. Sendova

J. C. Pivin, M. A. García, H. Hofmeister, A. Martucci, M. Sendova Massileva, M. Nikolaeva, O. Kaitasov, and J. Llopis, “Optical properties of silver clusters formed by ion irradiation,” Euro. Phys. J. D 20, 251-260 (2002).
[CrossRef]

Nikolaeva, M.

J. C. Pivin, M. A. García, H. Hofmeister, A. Martucci, M. Sendova Massileva, M. Nikolaeva, O. Kaitasov, and J. Llopis, “Optical properties of silver clusters formed by ion irradiation,” Euro. Phys. J. D 20, 251-260 (2002).
[CrossRef]

Oelhafen, P.

R. Joerger, R. Gampp, A. Heinzel, W. Graf, M. Kohl, P. Gantenbein, and P. Oelhafen, “Optical properties of inhomogeneous media,” Solar Energy Mater. Sol. Cells 54, 351-361 (1998).
[CrossRef]

Paje, S. E.

M. A. García, J. Llopis, and S. E. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol-gel films,” Chem. Phys. Lett. 315, 313-320(1999).
[CrossRef]

Pal, A. K.

S. K. Mandal, R. K. Roy, and A. K. Pal, “Effect of particle shape distribution on the surface plasmon resonance of Ag-SiO2 nanocomposite thin films,” J. Phys. D 36, 261-265 (2003).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants (Academic, 1985).

Petford-Long, A. K.

J. P. Barnes, A. K. Petford-Long, R. C. Doole, R. Serna, J. Gonzalo, A. Suarez-Garcia, C. N. Afonso, and D. Hole, “Structural studies of Ag nanocrystals embedded in amorphous Al2O3 grown by pulsed laser deposition,” Nanotechnology 13, 465-470 (2002).
[CrossRef]

Pivin, J. C.

J. C. Pivin, M. A. García, H. Hofmeister, A. Martucci, M. Sendova Massileva, M. Nikolaeva, O. Kaitasov, and J. Llopis, “Optical properties of silver clusters formed by ion irradiation,” Euro. Phys. J. D 20, 251-260 (2002).
[CrossRef]

Pochstein, C.

H. Takele, H. Greve, C. Pochstein, V. Zaporojtchenko, and F. Faupel, “Plasmonic properties of Ag nanoclusters in various polymer matrices,” Nanotechnology 17, 3499-3505(2006).
[CrossRef] [PubMed]

Podlipensky, A.

Polman, A.

A. Polman, E. Snoeks, G. N. van den Hoven, M. L. Brongersma, R. Serna, J. H. Shin, P. Kik, and E. Radius, “Ion beam synthesis of planar opto-electronic devices,” Nucl. Instrum. Methods Phys. Res. B 106, 393-399 (1995).
[CrossRef]

Quinten, M.

Radius, E.

A. Polman, E. Snoeks, G. N. van den Hoven, M. L. Brongersma, R. Serna, J. H. Shin, P. Kik, and E. Radius, “Ion beam synthesis of planar opto-electronic devices,” Nucl. Instrum. Methods Phys. Res. B 106, 393-399 (1995).
[CrossRef]

Roy, R. K.

S. K. Mandal, R. K. Roy, and A. K. Pal, “Effect of particle shape distribution on the surface plasmon resonance of Ag-SiO2 nanocomposite thin films,” J. Phys. D 36, 261-265 (2003).
[CrossRef]

Ruan, T. N.

Z. Q. Sun, D. M. Sun, and T. N. Ruan, “Microstructural and optical absorption properties of Cu-MgF2 nanoparticle cermet film,” Chin. Phys. Lett. 19, 1365-1368 (2002).
[CrossRef]

Schurmann, U.

V. S. K. Chakravadhanula, M. Elbahri, U. Schurmann, H. Takele, H. Greve, V. Zaporojtchenko, and F. Faupel, “Equal intensity double plasmon resonance of bimetallic quasi-nanocomposites based on sandwich geometry,” Nanotechnology 19, 225302 (2008).
[CrossRef] [PubMed]

U. Schurmann, H. Takele, V. Zaporojtchenko, and F. Faupel, “Optical and electrical properties of polymer metal nanocomposites prepared by magnetron co-sputtering,” Thin Solid Films 515, 801-804 (2006).
[CrossRef]

Seiffert, G.

Serna, R.

J. Gonzalo, R. Serna, J. Solís, D. Babonneau, and C. N. Afonso, “Morphological and interaction effects on the surface plasmon resonance of metal nanoparticles,” J. Phys. Condens. Matter 15, S3001-S3010 (2003).
[CrossRef]

J. P. Barnes, A. K. Petford-Long, R. C. Doole, R. Serna, J. Gonzalo, A. Suarez-Garcia, C. N. Afonso, and D. Hole, “Structural studies of Ag nanocrystals embedded in amorphous Al2O3 grown by pulsed laser deposition,” Nanotechnology 13, 465-470 (2002).
[CrossRef]

C. N. Afonso, J. Solis, R. Serna, J. Gonzalo, J. M. Ballestros, and J. C. G. de Sande, “Pulsed laser deposition of nanocomposite thin films for photonic applications,” Proc. SPIE 3618, 453-464 (1999).
[CrossRef]

A. Polman, E. Snoeks, G. N. van den Hoven, M. L. Brongersma, R. Serna, J. H. Shin, P. Kik, and E. Radius, “Ion beam synthesis of planar opto-electronic devices,” Nucl. Instrum. Methods Phys. Res. B 106, 393-399 (1995).
[CrossRef]

Shin, J. H.

A. Polman, E. Snoeks, G. N. van den Hoven, M. L. Brongersma, R. Serna, J. H. Shin, P. Kik, and E. Radius, “Ion beam synthesis of planar opto-electronic devices,” Nucl. Instrum. Methods Phys. Res. B 106, 393-399 (1995).
[CrossRef]

Simonot, L.

J. Toudert, D. Bobonneau, L. Simonot, S. Camelio, and T. Girardeau, “Quantitative modelling of the surface plasmon resonances of metal nanoclusters sandwiched between dielectric layers: the influence of nanocluster size, shape and organization,” Nanotechnology 19, 125709 (2008).
[CrossRef] [PubMed]

Snoeks, E.

A. Polman, E. Snoeks, G. N. van den Hoven, M. L. Brongersma, R. Serna, J. H. Shin, P. Kik, and E. Radius, “Ion beam synthesis of planar opto-electronic devices,” Nucl. Instrum. Methods Phys. Res. B 106, 393-399 (1995).
[CrossRef]

Solis, J.

C. N. Afonso, J. Solis, R. Serna, J. Gonzalo, J. M. Ballestros, and J. C. G. de Sande, “Pulsed laser deposition of nanocomposite thin films for photonic applications,” Proc. SPIE 3618, 453-464 (1999).
[CrossRef]

Solís, J.

J. Gonzalo, R. Serna, J. Solís, D. Babonneau, and C. N. Afonso, “Morphological and interaction effects on the surface plasmon resonance of metal nanoparticles,” J. Phys. Condens. Matter 15, S3001-S3010 (2003).
[CrossRef]

Suarez-Garcia, A.

J. P. Barnes, A. K. Petford-Long, R. C. Doole, R. Serna, J. Gonzalo, A. Suarez-Garcia, C. N. Afonso, and D. Hole, “Structural studies of Ag nanocrystals embedded in amorphous Al2O3 grown by pulsed laser deposition,” Nanotechnology 13, 465-470 (2002).
[CrossRef]

Sun, D. M.

Z. Q. Sun, D. M. Sun, and T. N. Ruan, “Microstructural and optical absorption properties of Cu-MgF2 nanoparticle cermet film,” Chin. Phys. Lett. 19, 1365-1368 (2002).
[CrossRef]

Sun, Z. Q.

Z. Q. Sun, D. M. Sun, and T. N. Ruan, “Microstructural and optical absorption properties of Cu-MgF2 nanoparticle cermet film,” Chin. Phys. Lett. 19, 1365-1368 (2002).
[CrossRef]

Takele, H.

V. S. K. Chakravadhanula, M. Elbahri, U. Schurmann, H. Takele, H. Greve, V. Zaporojtchenko, and F. Faupel, “Equal intensity double plasmon resonance of bimetallic quasi-nanocomposites based on sandwich geometry,” Nanotechnology 19, 225302 (2008).
[CrossRef] [PubMed]

U. Schurmann, H. Takele, V. Zaporojtchenko, and F. Faupel, “Optical and electrical properties of polymer metal nanocomposites prepared by magnetron co-sputtering,” Thin Solid Films 515, 801-804 (2006).
[CrossRef]

H. Takele, H. Greve, C. Pochstein, V. Zaporojtchenko, and F. Faupel, “Plasmonic properties of Ag nanoclusters in various polymer matrices,” Nanotechnology 17, 3499-3505(2006).
[CrossRef] [PubMed]

Toudert, J.

J. Toudert, D. Bobonneau, L. Simonot, S. Camelio, and T. Girardeau, “Quantitative modelling of the surface plasmon resonances of metal nanoclusters sandwiched between dielectric layers: the influence of nanocluster size, shape and organization,” Nanotechnology 19, 125709 (2008).
[CrossRef] [PubMed]

J. Toudert, S. Camelio, D. Babonneau, M. F. Denanot, T. Girardeau, J. P. Espinos, F. Yubero, and A. R. Gonzalez-Elipe, “Morphology and surface-plasmon resonance of silver nanoparticles sandwiched between Si3N4 and BN layers,” J. Appl. Phys. 98, 114316 (2005).
[CrossRef]

S. Camelio, J. Toudert, D. Bobonneau, and T. Girardeau, “Tailoring of the optical properties of Ag:Si3N4 nanocermets by changes of the cluster morphology,” Appl. Phys. B 80, 89-96 (2005).
[CrossRef]

van den Hoven, G. N.

A. Polman, E. Snoeks, G. N. van den Hoven, M. L. Brongersma, R. Serna, J. H. Shin, P. Kik, and E. Radius, “Ion beam synthesis of planar opto-electronic devices,” Nucl. Instrum. Methods Phys. Res. B 106, 393-399 (1995).
[CrossRef]

Vollmer, M.

H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178-18188 (1993).
[CrossRef]

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Yamaguchi, T.

T. Yamaguchi, S. Yoshida, and A. Kimbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films 21, 173-187 (1974).
[CrossRef]

Yoshida, S.

T. Yamaguchi, S. Yoshida, and A. Kimbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films 21, 173-187 (1974).
[CrossRef]

Yubero, F.

J. Toudert, S. Camelio, D. Babonneau, M. F. Denanot, T. Girardeau, J. P. Espinos, F. Yubero, and A. R. Gonzalez-Elipe, “Morphology and surface-plasmon resonance of silver nanoparticles sandwiched between Si3N4 and BN layers,” J. Appl. Phys. 98, 114316 (2005).
[CrossRef]

Zaporojtchenko, V.

V. S. K. Chakravadhanula, M. Elbahri, U. Schurmann, H. Takele, H. Greve, V. Zaporojtchenko, and F. Faupel, “Equal intensity double plasmon resonance of bimetallic quasi-nanocomposites based on sandwich geometry,” Nanotechnology 19, 225302 (2008).
[CrossRef] [PubMed]

U. Schurmann, H. Takele, V. Zaporojtchenko, and F. Faupel, “Optical and electrical properties of polymer metal nanocomposites prepared by magnetron co-sputtering,” Thin Solid Films 515, 801-804 (2006).
[CrossRef]

H. Takele, H. Greve, C. Pochstein, V. Zaporojtchenko, and F. Faupel, “Plasmonic properties of Ag nanoclusters in various polymer matrices,” Nanotechnology 17, 3499-3505(2006).
[CrossRef] [PubMed]

Zheludev, N. I.

V. A. Fedotov, V. I. Emel'yanov, K. F. MacDonald, and N. I. Zheludev, “Optical properties of closely packed nanoparticle films: spheroids and nanoshells,” J. Opt. A 6, 155-160 (2004).
[CrossRef]

Appl. Phys. B (1)

S. Camelio, J. Toudert, D. Bobonneau, and T. Girardeau, “Tailoring of the optical properties of Ag:Si3N4 nanocermets by changes of the cluster morphology,” Appl. Phys. B 80, 89-96 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

M. J. Bloemer and J. W. Haus, “Versatile waveguide polarizer incorporating an ultrathin discontinuous silver film,” Appl. Phys. Lett. 61, 1619-1621 (1992).
[CrossRef]

Chem. Phys. Lett. (1)

M. A. García, J. Llopis, and S. E. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol-gel films,” Chem. Phys. Lett. 315, 313-320(1999).
[CrossRef]

Chin. Phys. Lett. (1)

Z. Q. Sun, D. M. Sun, and T. N. Ruan, “Microstructural and optical absorption properties of Cu-MgF2 nanoparticle cermet film,” Chin. Phys. Lett. 19, 1365-1368 (2002).
[CrossRef]

Euro. Phys. J. D (1)

J. C. Pivin, M. A. García, H. Hofmeister, A. Martucci, M. Sendova Massileva, M. Nikolaeva, O. Kaitasov, and J. Llopis, “Optical properties of silver clusters formed by ion irradiation,” Euro. Phys. J. D 20, 251-260 (2002).
[CrossRef]

J. Appl. Phys. (1)

J. Toudert, S. Camelio, D. Babonneau, M. F. Denanot, T. Girardeau, J. P. Espinos, F. Yubero, and A. R. Gonzalez-Elipe, “Morphology and surface-plasmon resonance of silver nanoparticles sandwiched between Si3N4 and BN layers,” J. Appl. Phys. 98, 114316 (2005).
[CrossRef]

J. Opt. A (1)

V. A. Fedotov, V. I. Emel'yanov, K. F. MacDonald, and N. I. Zheludev, “Optical properties of closely packed nanoparticle films: spheroids and nanoshells,” J. Opt. A 6, 155-160 (2004).
[CrossRef]

J. Phys. Condens. Matter (1)

J. Gonzalo, R. Serna, J. Solís, D. Babonneau, and C. N. Afonso, “Morphological and interaction effects on the surface plasmon resonance of metal nanoparticles,” J. Phys. Condens. Matter 15, S3001-S3010 (2003).
[CrossRef]

J. Phys. D (1)

S. K. Mandal, R. K. Roy, and A. K. Pal, “Effect of particle shape distribution on the surface plasmon resonance of Ag-SiO2 nanocomposite thin films,” J. Phys. D 36, 261-265 (2003).
[CrossRef]

Nanotechnology (4)

H. Takele, H. Greve, C. Pochstein, V. Zaporojtchenko, and F. Faupel, “Plasmonic properties of Ag nanoclusters in various polymer matrices,” Nanotechnology 17, 3499-3505(2006).
[CrossRef] [PubMed]

J. P. Barnes, A. K. Petford-Long, R. C. Doole, R. Serna, J. Gonzalo, A. Suarez-Garcia, C. N. Afonso, and D. Hole, “Structural studies of Ag nanocrystals embedded in amorphous Al2O3 grown by pulsed laser deposition,” Nanotechnology 13, 465-470 (2002).
[CrossRef]

V. S. K. Chakravadhanula, M. Elbahri, U. Schurmann, H. Takele, H. Greve, V. Zaporojtchenko, and F. Faupel, “Equal intensity double plasmon resonance of bimetallic quasi-nanocomposites based on sandwich geometry,” Nanotechnology 19, 225302 (2008).
[CrossRef] [PubMed]

J. Toudert, D. Bobonneau, L. Simonot, S. Camelio, and T. Girardeau, “Quantitative modelling of the surface plasmon resonances of metal nanoclusters sandwiched between dielectric layers: the influence of nanocluster size, shape and organization,” Nanotechnology 19, 125709 (2008).
[CrossRef] [PubMed]

Nucl. Instrum. Methods Phys. Res. B (1)

A. Polman, E. Snoeks, G. N. van den Hoven, M. L. Brongersma, R. Serna, J. H. Shin, P. Kik, and E. Radius, “Ion beam synthesis of planar opto-electronic devices,” Nucl. Instrum. Methods Phys. Res. B 106, 393-399 (1995).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. B (2)

H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178-18188 (1993).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Proc. SPIE (1)

C. N. Afonso, J. Solis, R. Serna, J. Gonzalo, J. M. Ballestros, and J. C. G. de Sande, “Pulsed laser deposition of nanocomposite thin films for photonic applications,” Proc. SPIE 3618, 453-464 (1999).
[CrossRef]

Solar Energy Mater. Sol. Cells (1)

R. Joerger, R. Gampp, A. Heinzel, W. Graf, M. Kohl, P. Gantenbein, and P. Oelhafen, “Optical properties of inhomogeneous media,” Solar Energy Mater. Sol. Cells 54, 351-361 (1998).
[CrossRef]

Thin Solid Films (2)

T. Yamaguchi, S. Yoshida, and A. Kimbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films 21, 173-187 (1974).
[CrossRef]

U. Schurmann, H. Takele, V. Zaporojtchenko, and F. Faupel, “Optical and electrical properties of polymer metal nanocomposites prepared by magnetron co-sputtering,” Thin Solid Films 515, 801-804 (2006).
[CrossRef]

Other (2)

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

E. D. Palik, Handbook of Optical Constants (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Scheme of the spatial arrangement of the silver NCs (cross section). In particular, the NCs lie on planes perpendicular to the direction of propagation of the spectrophotometer beam (z direction). The interparticle distance in the x y plane is a, while the interlayer distance in the z direction is b. According to the Toudert et al. method [19], the shaded layers containing the NCs can be considered as effective-medium layers of thickness d equal to the diameter of the NCs.

Fig. 2
Fig. 2

Optical absorption spectra of the system shown in Fig. 1 with a = b = 30 nm and NCs’ diameter equal to 10 nm . The optical absorption spectra have been calculated by the MG effective medium theory (solid curve), as well as by the Toudert et al. method [19] using as thickness of the effective medium layers diameter d of the NCs ( d = 10 nm ) (dashed curve) and a modified thickness d = 12.2 nm (dotted curve).

Fig. 3
Fig. 3

To obtain agreement between the optical absorption spectra calculated by the MG effective medium theory and the Toudert et al. method [19], it is necessary to consider the effective medium layers having thickness d higher with respect to the NCs’ diameter d.

Fig. 4
Fig. 4

Optical absorption spectra of the system shown in Fig. 1 with a = b = 40 nm and NCs’ diameter equal to 10 nm . The optical absorption spectra have been calculated by the MG effective medium theory (solid curve), as well as by the Toudert et al. method [19] using as thickness of the effective medium layers the diameter d of the NCs ( d = 10 nm ) (dashed curve) and a modified thickness d = 12 nm (dotted curve).

Fig. 5
Fig. 5

Scheme of the imaginary sphere used for the calculation of the electric field exerted on the ith particle located at the center of the sphere.

Fig. 6
Fig. 6

σ value as a function of the Lorentz sphere radius R L for NCs lying on layers spaced 50 nm apart perpendicular to the beam direction. The interparticle distance along the x as well as the y directions has been taken equal to 10 nm .

Fig. 7
Fig. 7

Optical absorption spectra of the system shown in Fig. 1 with a = 40 nm and b = 60 nm , calculated by the García method [15, 16] (solid curve) and by the Toudert et al. method [19] using the modified thickness d = 12 nm (dashed curve) for the effective medium layers. The NCs’ diameter is 10 nm .

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

α ( λ ) = 4 π k λ ,
k = ( | ε f | Re ( ε f ) 2 ) 1 / 2 .
ε f = ε m [ 1 + f ( ε ε m ) ε m + S ( ε ε m ) ] ,
ε ( ω , R ) = ε bulk ( ω ) + ω p 2 ω 2 + i ω γ 0 ω p 2 ω 2 + i ω ( γ 0 + A v f / R ) ,
α ( λ ) = 1 D [ ln ( I 0 R ) ln ( T ) ] ,
E loc i = E ext + E surr i .
E surr i = E 1 i + E 2 i .
E 1 i = 1 4 π ε m j [ 3 x i j 2 p j x r i j 5 p j x r i j 3 ] x ^ ,
E 2 i = P 3 ε m ,
P = ε m i n i α i E loc i ,
α i = V i ( ε i ε m ) ε m + L i ( ε i ε m ) ,
K i = j [ 3 x i j 2 r i j 5 1 r i j 3 ] p j x P ,
E loc i = E ext + P 3 ε m + 1 4 π ε m K i P .
P = ε m [ i n i α i 1 1 3 i n i α i 1 4 π i n i α i K i ] E ext .
P = ε m ( ε f ε m 1 ) E ext .
ε f = ε m [ 1 + i n i α i 1 1 3 i n i α i 1 4 π i n i α i K i ] .
ε f = ε m [ 1 + f ( ε ε m ) ε m + S ( ε ε m ) ] ,
σ i = j [ ( 3 x i j 2 ) / ( r i j 5 ) 1 / ( r i j 3 ) ] ,
E 1 i = σ p x 4 π ε m .
ε f = ε m [ 1 + f ( ε ε m ) ε m + F ( ε ε m ) ] ,

Metrics