Abstract

We measured the temporal dynamics of wavefront aberrations in a beam produced by a commercial ultrafast high-power laser with a research-prototype real-time Hartmann–Shack wavefront sensor. Measurements were performed at two different temporal rates for a 7mm diameter. Results showed that changes in the wavefront aberrations were always lower than 1%. The main contribution to the total root-mean-square (RMS) wavefront error was due to the effects of low order aberrations (defocus and astigmatism), which persisted even after cavity realignment. The potential improvement in the beam quality after correction of the different aberration modes was also shown. Real-time measurements of laser aberrations while modifying cavity parameters might be a useful tool to improve the beam quality.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H.-M. Heuck, U. Wittrock, J. Fils, S. Borneis, K. Witte, U. Eisenbart, D. Javorkova, V. Bagnoud, S. Götte, A. Tauschwitz, and E. Onkels, “Adaptive optics at the PHELIX laser,” Proc. SPIE 6584, 658402 (2007).
    [CrossRef]
  2. J.-P. Zou, A.-M. Sautivet, J. Fils, L. Martin, K. Abdeli, C. Sauteret, and B. Wattellier, “Optimization of the dynamic wavefront control of a pulsed kilojoule/nanosecond-petawatt laser facility,” Appl. Opt. 47, 704-710 (2008).
    [CrossRef] [PubMed]
  3. W. Koechner, “Thermal effect in laser rods,” in Solid-State Laser Engineering, D. L. MacAdam, ed. (Springer-Verlag, 1976), pp. 365-382.
  4. U. J. Greiner and H. H. Klingenberg, “Thermal lens correction of a diode-pumped Nd:YAG laser of high TEM00 power by an adjustable-curvature mirror,” Opt. Lett. 19, 1207-1209 (1994).
    [CrossRef] [PubMed]
  5. K. Akaoka, S. Harayama, K. Tei, Y. Maruyama, and T. Arisawa, ”Close loop wavefront correction of Ti:sapphire chirped pulse amplification laser beam,” Proc. SPIE 3265, 219-225 (1998).
    [CrossRef]
  6. B. Schäfer, K. Mann, G. Marowsky, C. P. Hauri, J. Biegert, and U. Keller, “Characterization, wavefront reconstruction and propagation of ultra-broadband laser pulses from Hartmann-Shack measurements,” Proc. SPIE 5918, 59180P (2005).
    [CrossRef]
  7. B. Schäfer, M. Lübbecke, and K. Mann, “Propagation of laser beams from Hartmann-Shack measurements,” Proc. SPIE 6343, 634348 (2006).
    [CrossRef]
  8. A. Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma instability suppression,” Phys. Rev. Lett. 53, 1057-1059(1984).
    [CrossRef]
  9. J. Garnier, “Statistics of the hot spots of smoothed beams produced by random phase plates revisited,” Phys. Plasmas 6, 1601-1610 (1999).
    [CrossRef]
  10. R. Lehmberg and S. Obenschain, “Use of induced spatial incoherence for uniform illumination of laser fusion targets,” Opt. Commun. 46, 27-31 (1983).
    [CrossRef]
  11. D. Veron, G. Thiell, and C. Gouédard, “Optical smoothing of the high power PHEBUS Nd-glass laser using the multimode optical fiber technique,” Opt. Commun. 97, 259-271(1993).
    [CrossRef]
  12. J. C. Chanteloup, F. Druon, M. Nantel, A. Maksimchuk, and G. Mourou, “Single-shot wavefront measurements of high-intensity ultrashort laser pulses with a three-wave interferometer,” Opt. Lett. 23, 621-623 (1998).
    [CrossRef]
  13. S. Matsuoka and K. Yamakawa, “Wavefront measurements of terawatt-class ultrashort laser pulses by the Fresnel phase-retrieval method,” J. Opt. Soc. Am. B 17, 663-667(2000).
    [CrossRef]
  14. P. Yang, S. J. Hu, X. D. Yang, S. Q. Chen, W. Yang, X. Zhang, and B. Xu, “Test and analysis of the time and space characteristics of phase aberration in a diode-side-pumped Nd:YAG laser,” Proc. SPIE 6018, 182-191 (2005).
  15. W. Lubeigt, G. Valentine, J. Girkin, E. Bente, and D. Burns, “Active transverse mode control and optimization of an all-solid-state laser using an intracavity adaptive-optic mirror,” Opt. Express 10, 550-555 (2002).
    [PubMed]
  16. W. Lubeigt, P. van Grol, G. Valentine, and D. Burns, “Use of intracavity adaptive optics in solid-state laser operation at 1 μm,” Adaptive Optics for Industry and Medicine: Proceedings of the 4th International Workshop, Vol. 102 (Springer, 2005), pp. 217-227.
    [CrossRef]
  17. H.-M. Heuck, U. Wittrock, C. Häfner, S. Borneis, E. Gaul, T. Kühl, and P. Wiewior, “Wavefront measurement and adaptive optics at the PHELIX laser,” Adaptive Optics for Industry and Medicine: Proceedings of the 4th International Workshop, Vol. 102 (Springer, 2005), pp. 283-290.
    [CrossRef]
  18. W. Lubeigt, G. Valentine, and D. Burns, “Enhancement of laser performance using an intracavity deformable membrane mirror,” Opt. Express 16, 10943-10955 (2008).
    [CrossRef] [PubMed]
  19. I. Ghozeil, “Hartmann and other screen tests,” in Optical Shop Testing, D. Malacara, ed. (Wiley, 1992), pp. 367-396.
  20. P. M. Prieto, F. Vargas, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann-Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388-1398 (2000).
    [CrossRef]
  21. J. C. Wyant and K. Creath, “Basic wavefront aberration theory for optical metrology,” in Applied Optics and Optical Engineering, B. Shannon and J. C. Wyant, ed. (Academic, 1992), Chap. 1, Vol. XI, pp. 1-39.
  22. J. Lee, R. V. Shack, and M. R. Descour, “Sorting method to extend the dynamic range of the Shack-Hartmann wavefront sensor,” Appl. Opt. 44, 4838-4845 (2005).
    [CrossRef] [PubMed]
  23. T. A. Planchon, J.-P. Rousseau, F. Burgy, G. Chériaux and J.-P. Chambaret, “Adaptive wavefront correction on a 100 TW/10 Hz chirped pulse amplification laser and effect of residual wavefront on beam propagation,” Opt. Commun. 252, 222-228 (2005).
    [CrossRef]
  24. T. M. Jeong, W. Choi, N. Hafz, J. H. Sung, S. K. Lee, D.-K. Ko, and J. Lee, “Wavefront correction and customization of focal spot of 100 TW Ti:sapphire laser system,” Jpn. J. Appl. Phys. 46, 7724-7730 (2007).
    [CrossRef]
  25. S.-W. Bahk, P. Rousseau, T. A. Planchon, V. Chvykov, G. Kalintchenko, A. Maksimchuk, G. A. Mourou and V. Yanovsky, “Generation and characterization of the highest laser intensities (1022 W/cm2),” Opt. Lett. 29, 2837-2839 (2004).
    [CrossRef]
  26. B. Wattellier, J. Fuchs, J-P. Zou, K. Abdeli, H. Pépin and C. Haefner, “Repetition rate increase and diffraction limited focal spots for a nonthermal-equilibrium 100 TW Nd:glass laser chain by use of adaptive optics,” Opt. Lett. 29, 2494-2496 (2004).
    [CrossRef] [PubMed]

2008 (2)

2007 (2)

H.-M. Heuck, U. Wittrock, J. Fils, S. Borneis, K. Witte, U. Eisenbart, D. Javorkova, V. Bagnoud, S. Götte, A. Tauschwitz, and E. Onkels, “Adaptive optics at the PHELIX laser,” Proc. SPIE 6584, 658402 (2007).
[CrossRef]

T. M. Jeong, W. Choi, N. Hafz, J. H. Sung, S. K. Lee, D.-K. Ko, and J. Lee, “Wavefront correction and customization of focal spot of 100 TW Ti:sapphire laser system,” Jpn. J. Appl. Phys. 46, 7724-7730 (2007).
[CrossRef]

2006 (1)

B. Schäfer, M. Lübbecke, and K. Mann, “Propagation of laser beams from Hartmann-Shack measurements,” Proc. SPIE 6343, 634348 (2006).
[CrossRef]

2005 (4)

B. Schäfer, K. Mann, G. Marowsky, C. P. Hauri, J. Biegert, and U. Keller, “Characterization, wavefront reconstruction and propagation of ultra-broadband laser pulses from Hartmann-Shack measurements,” Proc. SPIE 5918, 59180P (2005).
[CrossRef]

P. Yang, S. J. Hu, X. D. Yang, S. Q. Chen, W. Yang, X. Zhang, and B. Xu, “Test and analysis of the time and space characteristics of phase aberration in a diode-side-pumped Nd:YAG laser,” Proc. SPIE 6018, 182-191 (2005).

T. A. Planchon, J.-P. Rousseau, F. Burgy, G. Chériaux and J.-P. Chambaret, “Adaptive wavefront correction on a 100 TW/10 Hz chirped pulse amplification laser and effect of residual wavefront on beam propagation,” Opt. Commun. 252, 222-228 (2005).
[CrossRef]

J. Lee, R. V. Shack, and M. R. Descour, “Sorting method to extend the dynamic range of the Shack-Hartmann wavefront sensor,” Appl. Opt. 44, 4838-4845 (2005).
[CrossRef] [PubMed]

2004 (2)

2002 (1)

2000 (2)

1999 (1)

J. Garnier, “Statistics of the hot spots of smoothed beams produced by random phase plates revisited,” Phys. Plasmas 6, 1601-1610 (1999).
[CrossRef]

1998 (2)

K. Akaoka, S. Harayama, K. Tei, Y. Maruyama, and T. Arisawa, ”Close loop wavefront correction of Ti:sapphire chirped pulse amplification laser beam,” Proc. SPIE 3265, 219-225 (1998).
[CrossRef]

J. C. Chanteloup, F. Druon, M. Nantel, A. Maksimchuk, and G. Mourou, “Single-shot wavefront measurements of high-intensity ultrashort laser pulses with a three-wave interferometer,” Opt. Lett. 23, 621-623 (1998).
[CrossRef]

1994 (1)

1993 (1)

D. Veron, G. Thiell, and C. Gouédard, “Optical smoothing of the high power PHEBUS Nd-glass laser using the multimode optical fiber technique,” Opt. Commun. 97, 259-271(1993).
[CrossRef]

1984 (1)

A. Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma instability suppression,” Phys. Rev. Lett. 53, 1057-1059(1984).
[CrossRef]

1983 (1)

R. Lehmberg and S. Obenschain, “Use of induced spatial incoherence for uniform illumination of laser fusion targets,” Opt. Commun. 46, 27-31 (1983).
[CrossRef]

Abdeli, K.

Akaoka, K.

K. Akaoka, S. Harayama, K. Tei, Y. Maruyama, and T. Arisawa, ”Close loop wavefront correction of Ti:sapphire chirped pulse amplification laser beam,” Proc. SPIE 3265, 219-225 (1998).
[CrossRef]

Arinaga, S.

A. Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma instability suppression,” Phys. Rev. Lett. 53, 1057-1059(1984).
[CrossRef]

Arisawa, T.

K. Akaoka, S. Harayama, K. Tei, Y. Maruyama, and T. Arisawa, ”Close loop wavefront correction of Ti:sapphire chirped pulse amplification laser beam,” Proc. SPIE 3265, 219-225 (1998).
[CrossRef]

Artal, P.

Bagnoud, V.

H.-M. Heuck, U. Wittrock, J. Fils, S. Borneis, K. Witte, U. Eisenbart, D. Javorkova, V. Bagnoud, S. Götte, A. Tauschwitz, and E. Onkels, “Adaptive optics at the PHELIX laser,” Proc. SPIE 6584, 658402 (2007).
[CrossRef]

Bahk, S.-W.

Bente, E.

Biegert, J.

B. Schäfer, K. Mann, G. Marowsky, C. P. Hauri, J. Biegert, and U. Keller, “Characterization, wavefront reconstruction and propagation of ultra-broadband laser pulses from Hartmann-Shack measurements,” Proc. SPIE 5918, 59180P (2005).
[CrossRef]

Borneis, S.

H.-M. Heuck, U. Wittrock, J. Fils, S. Borneis, K. Witte, U. Eisenbart, D. Javorkova, V. Bagnoud, S. Götte, A. Tauschwitz, and E. Onkels, “Adaptive optics at the PHELIX laser,” Proc. SPIE 6584, 658402 (2007).
[CrossRef]

H.-M. Heuck, U. Wittrock, C. Häfner, S. Borneis, E. Gaul, T. Kühl, and P. Wiewior, “Wavefront measurement and adaptive optics at the PHELIX laser,” Adaptive Optics for Industry and Medicine: Proceedings of the 4th International Workshop, Vol. 102 (Springer, 2005), pp. 283-290.
[CrossRef]

Burgy, F.

T. A. Planchon, J.-P. Rousseau, F. Burgy, G. Chériaux and J.-P. Chambaret, “Adaptive wavefront correction on a 100 TW/10 Hz chirped pulse amplification laser and effect of residual wavefront on beam propagation,” Opt. Commun. 252, 222-228 (2005).
[CrossRef]

Burns, D.

Chambaret, J.-P.

T. A. Planchon, J.-P. Rousseau, F. Burgy, G. Chériaux and J.-P. Chambaret, “Adaptive wavefront correction on a 100 TW/10 Hz chirped pulse amplification laser and effect of residual wavefront on beam propagation,” Opt. Commun. 252, 222-228 (2005).
[CrossRef]

Chanteloup, J. C.

Chen, S. Q.

P. Yang, S. J. Hu, X. D. Yang, S. Q. Chen, W. Yang, X. Zhang, and B. Xu, “Test and analysis of the time and space characteristics of phase aberration in a diode-side-pumped Nd:YAG laser,” Proc. SPIE 6018, 182-191 (2005).

Chériaux, G.

T. A. Planchon, J.-P. Rousseau, F. Burgy, G. Chériaux and J.-P. Chambaret, “Adaptive wavefront correction on a 100 TW/10 Hz chirped pulse amplification laser and effect of residual wavefront on beam propagation,” Opt. Commun. 252, 222-228 (2005).
[CrossRef]

Choi, W.

T. M. Jeong, W. Choi, N. Hafz, J. H. Sung, S. K. Lee, D.-K. Ko, and J. Lee, “Wavefront correction and customization of focal spot of 100 TW Ti:sapphire laser system,” Jpn. J. Appl. Phys. 46, 7724-7730 (2007).
[CrossRef]

Chvykov, V.

Creath, K.

J. C. Wyant and K. Creath, “Basic wavefront aberration theory for optical metrology,” in Applied Optics and Optical Engineering, B. Shannon and J. C. Wyant, ed. (Academic, 1992), Chap. 1, Vol. XI, pp. 1-39.

Descour, M. R.

Druon, F.

Eisenbart, U.

H.-M. Heuck, U. Wittrock, J. Fils, S. Borneis, K. Witte, U. Eisenbart, D. Javorkova, V. Bagnoud, S. Götte, A. Tauschwitz, and E. Onkels, “Adaptive optics at the PHELIX laser,” Proc. SPIE 6584, 658402 (2007).
[CrossRef]

Fils, J.

J.-P. Zou, A.-M. Sautivet, J. Fils, L. Martin, K. Abdeli, C. Sauteret, and B. Wattellier, “Optimization of the dynamic wavefront control of a pulsed kilojoule/nanosecond-petawatt laser facility,” Appl. Opt. 47, 704-710 (2008).
[CrossRef] [PubMed]

H.-M. Heuck, U. Wittrock, J. Fils, S. Borneis, K. Witte, U. Eisenbart, D. Javorkova, V. Bagnoud, S. Götte, A. Tauschwitz, and E. Onkels, “Adaptive optics at the PHELIX laser,” Proc. SPIE 6584, 658402 (2007).
[CrossRef]

Fuchs, J.

Garnier, J.

J. Garnier, “Statistics of the hot spots of smoothed beams produced by random phase plates revisited,” Phys. Plasmas 6, 1601-1610 (1999).
[CrossRef]

Gaul, E.

H.-M. Heuck, U. Wittrock, C. Häfner, S. Borneis, E. Gaul, T. Kühl, and P. Wiewior, “Wavefront measurement and adaptive optics at the PHELIX laser,” Adaptive Optics for Industry and Medicine: Proceedings of the 4th International Workshop, Vol. 102 (Springer, 2005), pp. 283-290.
[CrossRef]

Ghozeil, I.

I. Ghozeil, “Hartmann and other screen tests,” in Optical Shop Testing, D. Malacara, ed. (Wiley, 1992), pp. 367-396.

Girkin, J.

Goelz, S.

Götte, S.

H.-M. Heuck, U. Wittrock, J. Fils, S. Borneis, K. Witte, U. Eisenbart, D. Javorkova, V. Bagnoud, S. Götte, A. Tauschwitz, and E. Onkels, “Adaptive optics at the PHELIX laser,” Proc. SPIE 6584, 658402 (2007).
[CrossRef]

Gouédard, C.

D. Veron, G. Thiell, and C. Gouédard, “Optical smoothing of the high power PHEBUS Nd-glass laser using the multimode optical fiber technique,” Opt. Commun. 97, 259-271(1993).
[CrossRef]

Greiner, U. J.

Haefner, C.

Häfner, C.

H.-M. Heuck, U. Wittrock, C. Häfner, S. Borneis, E. Gaul, T. Kühl, and P. Wiewior, “Wavefront measurement and adaptive optics at the PHELIX laser,” Adaptive Optics for Industry and Medicine: Proceedings of the 4th International Workshop, Vol. 102 (Springer, 2005), pp. 283-290.
[CrossRef]

Hafz, N.

T. M. Jeong, W. Choi, N. Hafz, J. H. Sung, S. K. Lee, D.-K. Ko, and J. Lee, “Wavefront correction and customization of focal spot of 100 TW Ti:sapphire laser system,” Jpn. J. Appl. Phys. 46, 7724-7730 (2007).
[CrossRef]

Harayama, S.

K. Akaoka, S. Harayama, K. Tei, Y. Maruyama, and T. Arisawa, ”Close loop wavefront correction of Ti:sapphire chirped pulse amplification laser beam,” Proc. SPIE 3265, 219-225 (1998).
[CrossRef]

Hauri, C. P.

B. Schäfer, K. Mann, G. Marowsky, C. P. Hauri, J. Biegert, and U. Keller, “Characterization, wavefront reconstruction and propagation of ultra-broadband laser pulses from Hartmann-Shack measurements,” Proc. SPIE 5918, 59180P (2005).
[CrossRef]

Heuck, H.-M.

H.-M. Heuck, U. Wittrock, J. Fils, S. Borneis, K. Witte, U. Eisenbart, D. Javorkova, V. Bagnoud, S. Götte, A. Tauschwitz, and E. Onkels, “Adaptive optics at the PHELIX laser,” Proc. SPIE 6584, 658402 (2007).
[CrossRef]

H.-M. Heuck, U. Wittrock, C. Häfner, S. Borneis, E. Gaul, T. Kühl, and P. Wiewior, “Wavefront measurement and adaptive optics at the PHELIX laser,” Adaptive Optics for Industry and Medicine: Proceedings of the 4th International Workshop, Vol. 102 (Springer, 2005), pp. 283-290.
[CrossRef]

Hu, S. J.

P. Yang, S. J. Hu, X. D. Yang, S. Q. Chen, W. Yang, X. Zhang, and B. Xu, “Test and analysis of the time and space characteristics of phase aberration in a diode-side-pumped Nd:YAG laser,” Proc. SPIE 6018, 182-191 (2005).

Javorkova, D.

H.-M. Heuck, U. Wittrock, J. Fils, S. Borneis, K. Witte, U. Eisenbart, D. Javorkova, V. Bagnoud, S. Götte, A. Tauschwitz, and E. Onkels, “Adaptive optics at the PHELIX laser,” Proc. SPIE 6584, 658402 (2007).
[CrossRef]

Jeong, T. M.

T. M. Jeong, W. Choi, N. Hafz, J. H. Sung, S. K. Lee, D.-K. Ko, and J. Lee, “Wavefront correction and customization of focal spot of 100 TW Ti:sapphire laser system,” Jpn. J. Appl. Phys. 46, 7724-7730 (2007).
[CrossRef]

Kalintchenko, G.

Kato, A. Y.

A. Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma instability suppression,” Phys. Rev. Lett. 53, 1057-1059(1984).
[CrossRef]

Keller, U.

B. Schäfer, K. Mann, G. Marowsky, C. P. Hauri, J. Biegert, and U. Keller, “Characterization, wavefront reconstruction and propagation of ultra-broadband laser pulses from Hartmann-Shack measurements,” Proc. SPIE 5918, 59180P (2005).
[CrossRef]

Kitagawa, Y.

A. Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma instability suppression,” Phys. Rev. Lett. 53, 1057-1059(1984).
[CrossRef]

Klingenberg, H. H.

Ko, D.-K.

T. M. Jeong, W. Choi, N. Hafz, J. H. Sung, S. K. Lee, D.-K. Ko, and J. Lee, “Wavefront correction and customization of focal spot of 100 TW Ti:sapphire laser system,” Jpn. J. Appl. Phys. 46, 7724-7730 (2007).
[CrossRef]

Koechner, W.

W. Koechner, “Thermal effect in laser rods,” in Solid-State Laser Engineering, D. L. MacAdam, ed. (Springer-Verlag, 1976), pp. 365-382.

Kühl, T.

H.-M. Heuck, U. Wittrock, C. Häfner, S. Borneis, E. Gaul, T. Kühl, and P. Wiewior, “Wavefront measurement and adaptive optics at the PHELIX laser,” Adaptive Optics for Industry and Medicine: Proceedings of the 4th International Workshop, Vol. 102 (Springer, 2005), pp. 283-290.
[CrossRef]

Lee, J.

T. M. Jeong, W. Choi, N. Hafz, J. H. Sung, S. K. Lee, D.-K. Ko, and J. Lee, “Wavefront correction and customization of focal spot of 100 TW Ti:sapphire laser system,” Jpn. J. Appl. Phys. 46, 7724-7730 (2007).
[CrossRef]

J. Lee, R. V. Shack, and M. R. Descour, “Sorting method to extend the dynamic range of the Shack-Hartmann wavefront sensor,” Appl. Opt. 44, 4838-4845 (2005).
[CrossRef] [PubMed]

Lee, S. K.

T. M. Jeong, W. Choi, N. Hafz, J. H. Sung, S. K. Lee, D.-K. Ko, and J. Lee, “Wavefront correction and customization of focal spot of 100 TW Ti:sapphire laser system,” Jpn. J. Appl. Phys. 46, 7724-7730 (2007).
[CrossRef]

Lehmberg, R.

R. Lehmberg and S. Obenschain, “Use of induced spatial incoherence for uniform illumination of laser fusion targets,” Opt. Commun. 46, 27-31 (1983).
[CrossRef]

Lübbecke, M.

B. Schäfer, M. Lübbecke, and K. Mann, “Propagation of laser beams from Hartmann-Shack measurements,” Proc. SPIE 6343, 634348 (2006).
[CrossRef]

Lubeigt, W.

Maksimchuk, A.

Mann, K.

B. Schäfer, M. Lübbecke, and K. Mann, “Propagation of laser beams from Hartmann-Shack measurements,” Proc. SPIE 6343, 634348 (2006).
[CrossRef]

B. Schäfer, K. Mann, G. Marowsky, C. P. Hauri, J. Biegert, and U. Keller, “Characterization, wavefront reconstruction and propagation of ultra-broadband laser pulses from Hartmann-Shack measurements,” Proc. SPIE 5918, 59180P (2005).
[CrossRef]

Marowsky, G.

B. Schäfer, K. Mann, G. Marowsky, C. P. Hauri, J. Biegert, and U. Keller, “Characterization, wavefront reconstruction and propagation of ultra-broadband laser pulses from Hartmann-Shack measurements,” Proc. SPIE 5918, 59180P (2005).
[CrossRef]

Martin, L.

Maruyama, Y.

K. Akaoka, S. Harayama, K. Tei, Y. Maruyama, and T. Arisawa, ”Close loop wavefront correction of Ti:sapphire chirped pulse amplification laser beam,” Proc. SPIE 3265, 219-225 (1998).
[CrossRef]

Matsuoka, S.

Mima, K.

A. Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma instability suppression,” Phys. Rev. Lett. 53, 1057-1059(1984).
[CrossRef]

Miyanaga, N.

A. Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma instability suppression,” Phys. Rev. Lett. 53, 1057-1059(1984).
[CrossRef]

Mourou, G.

Mourou, G. A.

Nakatsuka, M.

A. Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma instability suppression,” Phys. Rev. Lett. 53, 1057-1059(1984).
[CrossRef]

Nantel, M.

Obenschain, S.

R. Lehmberg and S. Obenschain, “Use of induced spatial incoherence for uniform illumination of laser fusion targets,” Opt. Commun. 46, 27-31 (1983).
[CrossRef]

Onkels, E.

H.-M. Heuck, U. Wittrock, J. Fils, S. Borneis, K. Witte, U. Eisenbart, D. Javorkova, V. Bagnoud, S. Götte, A. Tauschwitz, and E. Onkels, “Adaptive optics at the PHELIX laser,” Proc. SPIE 6584, 658402 (2007).
[CrossRef]

Pépin, H.

Planchon, T. A.

T. A. Planchon, J.-P. Rousseau, F. Burgy, G. Chériaux and J.-P. Chambaret, “Adaptive wavefront correction on a 100 TW/10 Hz chirped pulse amplification laser and effect of residual wavefront on beam propagation,” Opt. Commun. 252, 222-228 (2005).
[CrossRef]

S.-W. Bahk, P. Rousseau, T. A. Planchon, V. Chvykov, G. Kalintchenko, A. Maksimchuk, G. A. Mourou and V. Yanovsky, “Generation and characterization of the highest laser intensities (1022 W/cm2),” Opt. Lett. 29, 2837-2839 (2004).
[CrossRef]

Prieto, P. M.

Rousseau, J.-P.

T. A. Planchon, J.-P. Rousseau, F. Burgy, G. Chériaux and J.-P. Chambaret, “Adaptive wavefront correction on a 100 TW/10 Hz chirped pulse amplification laser and effect of residual wavefront on beam propagation,” Opt. Commun. 252, 222-228 (2005).
[CrossRef]

Rousseau, P.

Sauteret, C.

Sautivet, A.-M.

Schäfer, B.

B. Schäfer, M. Lübbecke, and K. Mann, “Propagation of laser beams from Hartmann-Shack measurements,” Proc. SPIE 6343, 634348 (2006).
[CrossRef]

B. Schäfer, K. Mann, G. Marowsky, C. P. Hauri, J. Biegert, and U. Keller, “Characterization, wavefront reconstruction and propagation of ultra-broadband laser pulses from Hartmann-Shack measurements,” Proc. SPIE 5918, 59180P (2005).
[CrossRef]

Shack, R. V.

Sung, J. H.

T. M. Jeong, W. Choi, N. Hafz, J. H. Sung, S. K. Lee, D.-K. Ko, and J. Lee, “Wavefront correction and customization of focal spot of 100 TW Ti:sapphire laser system,” Jpn. J. Appl. Phys. 46, 7724-7730 (2007).
[CrossRef]

Tauschwitz, A.

H.-M. Heuck, U. Wittrock, J. Fils, S. Borneis, K. Witte, U. Eisenbart, D. Javorkova, V. Bagnoud, S. Götte, A. Tauschwitz, and E. Onkels, “Adaptive optics at the PHELIX laser,” Proc. SPIE 6584, 658402 (2007).
[CrossRef]

Tei, K.

K. Akaoka, S. Harayama, K. Tei, Y. Maruyama, and T. Arisawa, ”Close loop wavefront correction of Ti:sapphire chirped pulse amplification laser beam,” Proc. SPIE 3265, 219-225 (1998).
[CrossRef]

Thiell, G.

D. Veron, G. Thiell, and C. Gouédard, “Optical smoothing of the high power PHEBUS Nd-glass laser using the multimode optical fiber technique,” Opt. Commun. 97, 259-271(1993).
[CrossRef]

Valentine, G.

van Grol, P.

W. Lubeigt, P. van Grol, G. Valentine, and D. Burns, “Use of intracavity adaptive optics in solid-state laser operation at 1 μm,” Adaptive Optics for Industry and Medicine: Proceedings of the 4th International Workshop, Vol. 102 (Springer, 2005), pp. 217-227.
[CrossRef]

Vargas, F.

Veron, D.

D. Veron, G. Thiell, and C. Gouédard, “Optical smoothing of the high power PHEBUS Nd-glass laser using the multimode optical fiber technique,” Opt. Commun. 97, 259-271(1993).
[CrossRef]

Wattellier, B.

Wiewior, P.

H.-M. Heuck, U. Wittrock, C. Häfner, S. Borneis, E. Gaul, T. Kühl, and P. Wiewior, “Wavefront measurement and adaptive optics at the PHELIX laser,” Adaptive Optics for Industry and Medicine: Proceedings of the 4th International Workshop, Vol. 102 (Springer, 2005), pp. 283-290.
[CrossRef]

Witte, K.

H.-M. Heuck, U. Wittrock, J. Fils, S. Borneis, K. Witte, U. Eisenbart, D. Javorkova, V. Bagnoud, S. Götte, A. Tauschwitz, and E. Onkels, “Adaptive optics at the PHELIX laser,” Proc. SPIE 6584, 658402 (2007).
[CrossRef]

Wittrock, U.

H.-M. Heuck, U. Wittrock, J. Fils, S. Borneis, K. Witte, U. Eisenbart, D. Javorkova, V. Bagnoud, S. Götte, A. Tauschwitz, and E. Onkels, “Adaptive optics at the PHELIX laser,” Proc. SPIE 6584, 658402 (2007).
[CrossRef]

H.-M. Heuck, U. Wittrock, C. Häfner, S. Borneis, E. Gaul, T. Kühl, and P. Wiewior, “Wavefront measurement and adaptive optics at the PHELIX laser,” Adaptive Optics for Industry and Medicine: Proceedings of the 4th International Workshop, Vol. 102 (Springer, 2005), pp. 283-290.
[CrossRef]

Wyant, J. C.

J. C. Wyant and K. Creath, “Basic wavefront aberration theory for optical metrology,” in Applied Optics and Optical Engineering, B. Shannon and J. C. Wyant, ed. (Academic, 1992), Chap. 1, Vol. XI, pp. 1-39.

Xu, B.

P. Yang, S. J. Hu, X. D. Yang, S. Q. Chen, W. Yang, X. Zhang, and B. Xu, “Test and analysis of the time and space characteristics of phase aberration in a diode-side-pumped Nd:YAG laser,” Proc. SPIE 6018, 182-191 (2005).

Yamakawa, K.

Yamanaka, C.

A. Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma instability suppression,” Phys. Rev. Lett. 53, 1057-1059(1984).
[CrossRef]

Yang, P.

P. Yang, S. J. Hu, X. D. Yang, S. Q. Chen, W. Yang, X. Zhang, and B. Xu, “Test and analysis of the time and space characteristics of phase aberration in a diode-side-pumped Nd:YAG laser,” Proc. SPIE 6018, 182-191 (2005).

Yang, W.

P. Yang, S. J. Hu, X. D. Yang, S. Q. Chen, W. Yang, X. Zhang, and B. Xu, “Test and analysis of the time and space characteristics of phase aberration in a diode-side-pumped Nd:YAG laser,” Proc. SPIE 6018, 182-191 (2005).

Yang, X. D.

P. Yang, S. J. Hu, X. D. Yang, S. Q. Chen, W. Yang, X. Zhang, and B. Xu, “Test and analysis of the time and space characteristics of phase aberration in a diode-side-pumped Nd:YAG laser,” Proc. SPIE 6018, 182-191 (2005).

Yanovsky, V.

Zhang, X.

P. Yang, S. J. Hu, X. D. Yang, S. Q. Chen, W. Yang, X. Zhang, and B. Xu, “Test and analysis of the time and space characteristics of phase aberration in a diode-side-pumped Nd:YAG laser,” Proc. SPIE 6018, 182-191 (2005).

Zou, J.-P.

Zou, J-P.

Appl. Opt. (2)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

T. M. Jeong, W. Choi, N. Hafz, J. H. Sung, S. K. Lee, D.-K. Ko, and J. Lee, “Wavefront correction and customization of focal spot of 100 TW Ti:sapphire laser system,” Jpn. J. Appl. Phys. 46, 7724-7730 (2007).
[CrossRef]

Opt. Commun. (3)

T. A. Planchon, J.-P. Rousseau, F. Burgy, G. Chériaux and J.-P. Chambaret, “Adaptive wavefront correction on a 100 TW/10 Hz chirped pulse amplification laser and effect of residual wavefront on beam propagation,” Opt. Commun. 252, 222-228 (2005).
[CrossRef]

R. Lehmberg and S. Obenschain, “Use of induced spatial incoherence for uniform illumination of laser fusion targets,” Opt. Commun. 46, 27-31 (1983).
[CrossRef]

D. Veron, G. Thiell, and C. Gouédard, “Optical smoothing of the high power PHEBUS Nd-glass laser using the multimode optical fiber technique,” Opt. Commun. 97, 259-271(1993).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Phys. Plasmas (1)

J. Garnier, “Statistics of the hot spots of smoothed beams produced by random phase plates revisited,” Phys. Plasmas 6, 1601-1610 (1999).
[CrossRef]

Phys. Rev. Lett. (1)

A. Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma instability suppression,” Phys. Rev. Lett. 53, 1057-1059(1984).
[CrossRef]

Proc. SPIE (5)

H.-M. Heuck, U. Wittrock, J. Fils, S. Borneis, K. Witte, U. Eisenbart, D. Javorkova, V. Bagnoud, S. Götte, A. Tauschwitz, and E. Onkels, “Adaptive optics at the PHELIX laser,” Proc. SPIE 6584, 658402 (2007).
[CrossRef]

K. Akaoka, S. Harayama, K. Tei, Y. Maruyama, and T. Arisawa, ”Close loop wavefront correction of Ti:sapphire chirped pulse amplification laser beam,” Proc. SPIE 3265, 219-225 (1998).
[CrossRef]

B. Schäfer, K. Mann, G. Marowsky, C. P. Hauri, J. Biegert, and U. Keller, “Characterization, wavefront reconstruction and propagation of ultra-broadband laser pulses from Hartmann-Shack measurements,” Proc. SPIE 5918, 59180P (2005).
[CrossRef]

B. Schäfer, M. Lübbecke, and K. Mann, “Propagation of laser beams from Hartmann-Shack measurements,” Proc. SPIE 6343, 634348 (2006).
[CrossRef]

P. Yang, S. J. Hu, X. D. Yang, S. Q. Chen, W. Yang, X. Zhang, and B. Xu, “Test and analysis of the time and space characteristics of phase aberration in a diode-side-pumped Nd:YAG laser,” Proc. SPIE 6018, 182-191 (2005).

Other (5)

I. Ghozeil, “Hartmann and other screen tests,” in Optical Shop Testing, D. Malacara, ed. (Wiley, 1992), pp. 367-396.

W. Lubeigt, P. van Grol, G. Valentine, and D. Burns, “Use of intracavity adaptive optics in solid-state laser operation at 1 μm,” Adaptive Optics for Industry and Medicine: Proceedings of the 4th International Workshop, Vol. 102 (Springer, 2005), pp. 217-227.
[CrossRef]

H.-M. Heuck, U. Wittrock, C. Häfner, S. Borneis, E. Gaul, T. Kühl, and P. Wiewior, “Wavefront measurement and adaptive optics at the PHELIX laser,” Adaptive Optics for Industry and Medicine: Proceedings of the 4th International Workshop, Vol. 102 (Springer, 2005), pp. 283-290.
[CrossRef]

W. Koechner, “Thermal effect in laser rods,” in Solid-State Laser Engineering, D. L. MacAdam, ed. (Springer-Verlag, 1976), pp. 365-382.

J. C. Wyant and K. Creath, “Basic wavefront aberration theory for optical metrology,” in Applied Optics and Optical Engineering, B. Shannon and J. C. Wyant, ed. (Academic, 1992), Chap. 1, Vol. XI, pp. 1-39.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Hartmann–Shack wavefront sensor used to measure the wavefront aberration stability of a high-power laser beam.

Fig. 2
Fig. 2

WAs ( 2 π phase wrapped, 7 mm pupil) including Zernike terms from 2nd to 6th order computed from HS images registered at 0 ms , 500 ms , 15 min , and 1 h (upper row), and the corresponding calculated far-field PSFs (bottom row). PSFs subtend 1.7 ° .

Fig. 3
Fig. 3

RMS values for the WAs computed from HS images registered at two different temporal rates: 25 Hz during 1 s (left) and 0.001 Hz during 3 h (right). The triangles correspond to the mean. The error bars are the standard deviation (they are almost within the symbol).

Fig. 4
Fig. 4

Individual Zernike coefficient values of the WA (up to 4th order) for the high-power laser beam. Data correspond to one frame (white bars) and the average during 1 s (gray bars) and 3 h (black bars).

Fig. 5
Fig. 5

RMS values (excluding defocus and astigmatism) for the WAs computed from HS images registered at the same temporal rates as those in Fig. 3. Triangles represent the mean and the error bars are the standard deviation.

Fig. 6
Fig. 6

Temporal evolution of the values of defocus (left plots) and astigmatism (right plots) terms for the two temporal scales: (a)  1 s and (b)  3 h . Triangles represent the averaged value.

Fig. 7
Fig. 7

“Residual” WAs for the high-power laser beam using the first HS image ( time = 0 ) as a reference. Left to right panels correspond to the time sets of 1 s , 15 min , 1 h , and 3 h .

Fig. 8
Fig. 8

WAs (upper row) and PSFs (bottom row) including Zernike terms from 2nd to 6th order as a function of time once the optics inside the laser system was realigned. From left to right: t = 0 , 1 s , 15 min , and 1 h . All panels subtend the same as in Fig. 2.

Fig. 9
Fig. 9

Values of RMS for the laser beam WAs after the cavity realignment as a function of time: total RMS (white symbols) and RMS for 3rd order terms and higher (black symbols). Triangles represent the mean value. Error bars are within the symbols.

Fig. 10
Fig. 10

Individual Zernike coefficient values of the WA (up to 4th order) for the high-power laser beam. White and gray bars correspond to the averaged values during 1 s and 1 h after the optics realignment. Black bars are the same as those in Fig. 4 (mean during 3 h ).

Fig. 11
Fig. 11

WAs (upper row, 7 mm pupil) and PSFs (lower row, subtending 0.85 ° ) corresponding to the predicted improvement in the quality of the high-power laser beam by removing different Zernike terms. Far left column: no defocus; second column from the left: no 2nd order terms; third column from the left: no 3rd order terms; far right column: no 4th order terms.

Fig. 12
Fig. 12

Increase in the Strehl ratio of the PSF as a funtion of the corrected Zernike terms.

Tables (1)

Tables Icon

Table 1 Values of RMS and Other Aberration Terms Before and After Realigning the Optics Inside the Laser Cavity

Metrics