Abstract

Some interesting small pits/depressions on the surface of optics polished by a polyurethane pad are shown and possible reasons for the pits are analyzed. These small pits may appear regardless of the material, size, and shape of the optical component. The depth of the pits/depressions varies from <0.1λ(λ=632.8nm) to >0.5λ and the diameters lie in the range from 1 to 3mm. The reasons the pits/depressions form are discussed; in the meantime, some methods to make them shallow are proposed. The pits/depressions greatly influence the integrity of optics and, therefore, may deteriorate the performance of optical components.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. De Groote, S. D. Jacobs, L. L. Gregg, A. E. Marino, and J. C. Hayes, “Quantitative characterization of optical polishing pitch,” Proc. SPIE 4451, 209-221 (2001).
    [CrossRef]
  2. A. Lindquist, “Pitch, polytron, and polyurethane: a comparison,” Appl. Opt. 25, 3796-3797 (1986).
    [CrossRef] [PubMed]
  3. B. E. Gillman and F. Tinker, “Fun facts about pitch and the pitfalls of ignorance,” Proc. SPIE 3782, 72-79 (1999).
    [CrossRef]
  4. R. R. Berggren and R. A. Schmell, “Pad polishing for rapid production of large flats,” Proc. SPIE 3134, 252-257 (1997).
    [CrossRef]
  5. A. J. Leistner, “Teflon laps: some new developments and results,” Appl. Opt. 32, 3416-3424 (1993).
    [CrossRef] [PubMed]
  6. Y. Li, J. Hou, Q. Xu, J. Wang, W. Yang, and Y. Guo, “The characteristics of optics polished with a polyurethane pad,” Opt. Express 16, 10285-10293 (2008).
    [CrossRef] [PubMed]
  7. L. S. Ramanathan, S. Sivaram, and M. K. Mishra, “Polyurethane,” in Polymer Data Handbook, J. E. Mark, ed. (Oxford U. Press, 1999).
  8. H. Lu, B. Fookes, Y. Obeng, S. Machinski, and K. A. Richardson, “Quantitative analysis of physical and chemical changes in CMP polyurethane pad surfaces,” Mater. Charact. 49, 35-44 (2002).
    [CrossRef]
  9. As suggested by A. J. Leistner, Commonwealth Scientific and Industrial Research Organization, Lindfield 2070, Australia. (personal communication, 2008).
  10. F. W. Preston, “The theory and design of plate glass polishing machines,” J. Soc. Glass Technol. 11, 214-256 (1927).
  11. J. Luo and D. A. Dornfeld, “Wafer-scale CMP modeling of within wafer non-uniformity,” Laboratory for Manufacturing and Sustainability Reports (University of California, Berkeley, 2003).
  12. M. J. Cumbo, “Chemo-mechanical interactions in optical polishing,” Ph.D. dissertation (University of Rochester, 1993).
  13. J. Y. Lai, “Mechanics, mechanisms, and modeling of the chemical mechanical polishing process,” Ph.D. dissertation (Massachusetts Institute of Technology, 2001).
  14. A. Bastawros, A. Chandra, Y. Guo, and B. Yan, “Pad effects on material-removal rate in chemical-mechanical planarization,” J. Electron. Mater. 31, 1022-1031 (2002).
    [CrossRef]
  15. J. F. Luo and D. A. Dornfeld, “Material removal mechanism in chemical mechanical polishing: theory and modeling,” IEEE Trans. Semicond. Manuf. 14, 112-133 (2001).
    [CrossRef]
  16. B. Park, H. Lee, K. Park, H. Kim, and H. Jeong, “Pad roughness variation and its effect on material removal profile in ceria-based CMP slurry,” J. Mater. Proc. Technol. 203, 287-292 (2008).
    [CrossRef]
  17. C. Srinivasa-Murthy, D. Wang, S. P. Beaudoin, T. Bibby, K. Holland, and T. S. Cale, “Stress distribution in chemical mechanical polishing,” Thin Solid Films 308-309, 533-537 (1997).
    [CrossRef]
  18. G. Q. Cai, Y. S. Lu, and H. W. Zheng, “Analysis on lapping and polishing pressure distribution,” Ann. CIRP 47, 235-238 (1998).
    [CrossRef]
  19. T. Kasai, “A kinematic analysis of disk motion in a double sided polisher for chemical mechanical planarization (CMP),” Tribol. Int. 41, 111-118 (2008).
    [CrossRef]
  20. W. D. Dong, E. S. Putilin, and Y. V. Rudin, “Modelling the velocity and trajectory of the relative motion of a zone of a workpiece during surface lapping,” J. Opt. Technol. 70, 573-575 (2003).
    [CrossRef]
  21. T. Feng, “Pad conditioning density distribution in CMP process with diamond dresser,” IEEE Trans. Semicond. Manuf. 20, 464-475 (2007).
    [CrossRef]

2008

B. Park, H. Lee, K. Park, H. Kim, and H. Jeong, “Pad roughness variation and its effect on material removal profile in ceria-based CMP slurry,” J. Mater. Proc. Technol. 203, 287-292 (2008).
[CrossRef]

T. Kasai, “A kinematic analysis of disk motion in a double sided polisher for chemical mechanical planarization (CMP),” Tribol. Int. 41, 111-118 (2008).
[CrossRef]

Y. Li, J. Hou, Q. Xu, J. Wang, W. Yang, and Y. Guo, “The characteristics of optics polished with a polyurethane pad,” Opt. Express 16, 10285-10293 (2008).
[CrossRef] [PubMed]

2007

T. Feng, “Pad conditioning density distribution in CMP process with diamond dresser,” IEEE Trans. Semicond. Manuf. 20, 464-475 (2007).
[CrossRef]

2003

2002

H. Lu, B. Fookes, Y. Obeng, S. Machinski, and K. A. Richardson, “Quantitative analysis of physical and chemical changes in CMP polyurethane pad surfaces,” Mater. Charact. 49, 35-44 (2002).
[CrossRef]

A. Bastawros, A. Chandra, Y. Guo, and B. Yan, “Pad effects on material-removal rate in chemical-mechanical planarization,” J. Electron. Mater. 31, 1022-1031 (2002).
[CrossRef]

2001

J. F. Luo and D. A. Dornfeld, “Material removal mechanism in chemical mechanical polishing: theory and modeling,” IEEE Trans. Semicond. Manuf. 14, 112-133 (2001).
[CrossRef]

J. E. De Groote, S. D. Jacobs, L. L. Gregg, A. E. Marino, and J. C. Hayes, “Quantitative characterization of optical polishing pitch,” Proc. SPIE 4451, 209-221 (2001).
[CrossRef]

1999

B. E. Gillman and F. Tinker, “Fun facts about pitch and the pitfalls of ignorance,” Proc. SPIE 3782, 72-79 (1999).
[CrossRef]

1998

G. Q. Cai, Y. S. Lu, and H. W. Zheng, “Analysis on lapping and polishing pressure distribution,” Ann. CIRP 47, 235-238 (1998).
[CrossRef]

1997

R. R. Berggren and R. A. Schmell, “Pad polishing for rapid production of large flats,” Proc. SPIE 3134, 252-257 (1997).
[CrossRef]

C. Srinivasa-Murthy, D. Wang, S. P. Beaudoin, T. Bibby, K. Holland, and T. S. Cale, “Stress distribution in chemical mechanical polishing,” Thin Solid Films 308-309, 533-537 (1997).
[CrossRef]

1993

1986

1927

F. W. Preston, “The theory and design of plate glass polishing machines,” J. Soc. Glass Technol. 11, 214-256 (1927).

Bastawros, A.

A. Bastawros, A. Chandra, Y. Guo, and B. Yan, “Pad effects on material-removal rate in chemical-mechanical planarization,” J. Electron. Mater. 31, 1022-1031 (2002).
[CrossRef]

Beaudoin, S. P.

C. Srinivasa-Murthy, D. Wang, S. P. Beaudoin, T. Bibby, K. Holland, and T. S. Cale, “Stress distribution in chemical mechanical polishing,” Thin Solid Films 308-309, 533-537 (1997).
[CrossRef]

Berggren, R. R.

R. R. Berggren and R. A. Schmell, “Pad polishing for rapid production of large flats,” Proc. SPIE 3134, 252-257 (1997).
[CrossRef]

Bibby, T.

C. Srinivasa-Murthy, D. Wang, S. P. Beaudoin, T. Bibby, K. Holland, and T. S. Cale, “Stress distribution in chemical mechanical polishing,” Thin Solid Films 308-309, 533-537 (1997).
[CrossRef]

Cai, G. Q.

G. Q. Cai, Y. S. Lu, and H. W. Zheng, “Analysis on lapping and polishing pressure distribution,” Ann. CIRP 47, 235-238 (1998).
[CrossRef]

Cale, T. S.

C. Srinivasa-Murthy, D. Wang, S. P. Beaudoin, T. Bibby, K. Holland, and T. S. Cale, “Stress distribution in chemical mechanical polishing,” Thin Solid Films 308-309, 533-537 (1997).
[CrossRef]

Chandra, A.

A. Bastawros, A. Chandra, Y. Guo, and B. Yan, “Pad effects on material-removal rate in chemical-mechanical planarization,” J. Electron. Mater. 31, 1022-1031 (2002).
[CrossRef]

Cumbo, M. J.

M. J. Cumbo, “Chemo-mechanical interactions in optical polishing,” Ph.D. dissertation (University of Rochester, 1993).

De Groote, J. E.

J. E. De Groote, S. D. Jacobs, L. L. Gregg, A. E. Marino, and J. C. Hayes, “Quantitative characterization of optical polishing pitch,” Proc. SPIE 4451, 209-221 (2001).
[CrossRef]

Dong, W. D.

Dornfeld, D. A.

J. F. Luo and D. A. Dornfeld, “Material removal mechanism in chemical mechanical polishing: theory and modeling,” IEEE Trans. Semicond. Manuf. 14, 112-133 (2001).
[CrossRef]

J. Luo and D. A. Dornfeld, “Wafer-scale CMP modeling of within wafer non-uniformity,” Laboratory for Manufacturing and Sustainability Reports (University of California, Berkeley, 2003).

Feng, T.

T. Feng, “Pad conditioning density distribution in CMP process with diamond dresser,” IEEE Trans. Semicond. Manuf. 20, 464-475 (2007).
[CrossRef]

Fookes, B.

H. Lu, B. Fookes, Y. Obeng, S. Machinski, and K. A. Richardson, “Quantitative analysis of physical and chemical changes in CMP polyurethane pad surfaces,” Mater. Charact. 49, 35-44 (2002).
[CrossRef]

Gillman, B. E.

B. E. Gillman and F. Tinker, “Fun facts about pitch and the pitfalls of ignorance,” Proc. SPIE 3782, 72-79 (1999).
[CrossRef]

Gregg, L. L.

J. E. De Groote, S. D. Jacobs, L. L. Gregg, A. E. Marino, and J. C. Hayes, “Quantitative characterization of optical polishing pitch,” Proc. SPIE 4451, 209-221 (2001).
[CrossRef]

Guo, Y.

Y. Li, J. Hou, Q. Xu, J. Wang, W. Yang, and Y. Guo, “The characteristics of optics polished with a polyurethane pad,” Opt. Express 16, 10285-10293 (2008).
[CrossRef] [PubMed]

A. Bastawros, A. Chandra, Y. Guo, and B. Yan, “Pad effects on material-removal rate in chemical-mechanical planarization,” J. Electron. Mater. 31, 1022-1031 (2002).
[CrossRef]

Hayes, J. C.

J. E. De Groote, S. D. Jacobs, L. L. Gregg, A. E. Marino, and J. C. Hayes, “Quantitative characterization of optical polishing pitch,” Proc. SPIE 4451, 209-221 (2001).
[CrossRef]

Holland, K.

C. Srinivasa-Murthy, D. Wang, S. P. Beaudoin, T. Bibby, K. Holland, and T. S. Cale, “Stress distribution in chemical mechanical polishing,” Thin Solid Films 308-309, 533-537 (1997).
[CrossRef]

Hou, J.

Jacobs, S. D.

J. E. De Groote, S. D. Jacobs, L. L. Gregg, A. E. Marino, and J. C. Hayes, “Quantitative characterization of optical polishing pitch,” Proc. SPIE 4451, 209-221 (2001).
[CrossRef]

Jeong, H.

B. Park, H. Lee, K. Park, H. Kim, and H. Jeong, “Pad roughness variation and its effect on material removal profile in ceria-based CMP slurry,” J. Mater. Proc. Technol. 203, 287-292 (2008).
[CrossRef]

Kasai, T.

T. Kasai, “A kinematic analysis of disk motion in a double sided polisher for chemical mechanical planarization (CMP),” Tribol. Int. 41, 111-118 (2008).
[CrossRef]

Kim, H.

B. Park, H. Lee, K. Park, H. Kim, and H. Jeong, “Pad roughness variation and its effect on material removal profile in ceria-based CMP slurry,” J. Mater. Proc. Technol. 203, 287-292 (2008).
[CrossRef]

Lai, J. Y.

J. Y. Lai, “Mechanics, mechanisms, and modeling of the chemical mechanical polishing process,” Ph.D. dissertation (Massachusetts Institute of Technology, 2001).

Lee, H.

B. Park, H. Lee, K. Park, H. Kim, and H. Jeong, “Pad roughness variation and its effect on material removal profile in ceria-based CMP slurry,” J. Mater. Proc. Technol. 203, 287-292 (2008).
[CrossRef]

Leistner, A. J.

A. J. Leistner, “Teflon laps: some new developments and results,” Appl. Opt. 32, 3416-3424 (1993).
[CrossRef] [PubMed]

As suggested by A. J. Leistner, Commonwealth Scientific and Industrial Research Organization, Lindfield 2070, Australia. (personal communication, 2008).

Li, Y.

Lindquist, A.

Lu, H.

H. Lu, B. Fookes, Y. Obeng, S. Machinski, and K. A. Richardson, “Quantitative analysis of physical and chemical changes in CMP polyurethane pad surfaces,” Mater. Charact. 49, 35-44 (2002).
[CrossRef]

Lu, Y. S.

G. Q. Cai, Y. S. Lu, and H. W. Zheng, “Analysis on lapping and polishing pressure distribution,” Ann. CIRP 47, 235-238 (1998).
[CrossRef]

Luo, J.

J. Luo and D. A. Dornfeld, “Wafer-scale CMP modeling of within wafer non-uniformity,” Laboratory for Manufacturing and Sustainability Reports (University of California, Berkeley, 2003).

Luo, J. F.

J. F. Luo and D. A. Dornfeld, “Material removal mechanism in chemical mechanical polishing: theory and modeling,” IEEE Trans. Semicond. Manuf. 14, 112-133 (2001).
[CrossRef]

Machinski, S.

H. Lu, B. Fookes, Y. Obeng, S. Machinski, and K. A. Richardson, “Quantitative analysis of physical and chemical changes in CMP polyurethane pad surfaces,” Mater. Charact. 49, 35-44 (2002).
[CrossRef]

Marino, A. E.

J. E. De Groote, S. D. Jacobs, L. L. Gregg, A. E. Marino, and J. C. Hayes, “Quantitative characterization of optical polishing pitch,” Proc. SPIE 4451, 209-221 (2001).
[CrossRef]

Mishra, M. K.

L. S. Ramanathan, S. Sivaram, and M. K. Mishra, “Polyurethane,” in Polymer Data Handbook, J. E. Mark, ed. (Oxford U. Press, 1999).

Obeng, Y.

H. Lu, B. Fookes, Y. Obeng, S. Machinski, and K. A. Richardson, “Quantitative analysis of physical and chemical changes in CMP polyurethane pad surfaces,” Mater. Charact. 49, 35-44 (2002).
[CrossRef]

Park, B.

B. Park, H. Lee, K. Park, H. Kim, and H. Jeong, “Pad roughness variation and its effect on material removal profile in ceria-based CMP slurry,” J. Mater. Proc. Technol. 203, 287-292 (2008).
[CrossRef]

Park, K.

B. Park, H. Lee, K. Park, H. Kim, and H. Jeong, “Pad roughness variation and its effect on material removal profile in ceria-based CMP slurry,” J. Mater. Proc. Technol. 203, 287-292 (2008).
[CrossRef]

Preston, F. W.

F. W. Preston, “The theory and design of plate glass polishing machines,” J. Soc. Glass Technol. 11, 214-256 (1927).

Putilin, E. S.

Ramanathan, L. S.

L. S. Ramanathan, S. Sivaram, and M. K. Mishra, “Polyurethane,” in Polymer Data Handbook, J. E. Mark, ed. (Oxford U. Press, 1999).

Richardson, K. A.

H. Lu, B. Fookes, Y. Obeng, S. Machinski, and K. A. Richardson, “Quantitative analysis of physical and chemical changes in CMP polyurethane pad surfaces,” Mater. Charact. 49, 35-44 (2002).
[CrossRef]

Rudin, Y. V.

Schmell, R. A.

R. R. Berggren and R. A. Schmell, “Pad polishing for rapid production of large flats,” Proc. SPIE 3134, 252-257 (1997).
[CrossRef]

Sivaram, S.

L. S. Ramanathan, S. Sivaram, and M. K. Mishra, “Polyurethane,” in Polymer Data Handbook, J. E. Mark, ed. (Oxford U. Press, 1999).

Srinivasa-Murthy, C.

C. Srinivasa-Murthy, D. Wang, S. P. Beaudoin, T. Bibby, K. Holland, and T. S. Cale, “Stress distribution in chemical mechanical polishing,” Thin Solid Films 308-309, 533-537 (1997).
[CrossRef]

Tinker, F.

B. E. Gillman and F. Tinker, “Fun facts about pitch and the pitfalls of ignorance,” Proc. SPIE 3782, 72-79 (1999).
[CrossRef]

Wang, D.

C. Srinivasa-Murthy, D. Wang, S. P. Beaudoin, T. Bibby, K. Holland, and T. S. Cale, “Stress distribution in chemical mechanical polishing,” Thin Solid Films 308-309, 533-537 (1997).
[CrossRef]

Wang, J.

Xu, Q.

Yan, B.

A. Bastawros, A. Chandra, Y. Guo, and B. Yan, “Pad effects on material-removal rate in chemical-mechanical planarization,” J. Electron. Mater. 31, 1022-1031 (2002).
[CrossRef]

Yang, W.

Zheng, H. W.

G. Q. Cai, Y. S. Lu, and H. W. Zheng, “Analysis on lapping and polishing pressure distribution,” Ann. CIRP 47, 235-238 (1998).
[CrossRef]

Ann. CIRP

G. Q. Cai, Y. S. Lu, and H. W. Zheng, “Analysis on lapping and polishing pressure distribution,” Ann. CIRP 47, 235-238 (1998).
[CrossRef]

Appl. Opt.

IEEE Trans. Semicond. Manuf.

J. F. Luo and D. A. Dornfeld, “Material removal mechanism in chemical mechanical polishing: theory and modeling,” IEEE Trans. Semicond. Manuf. 14, 112-133 (2001).
[CrossRef]

T. Feng, “Pad conditioning density distribution in CMP process with diamond dresser,” IEEE Trans. Semicond. Manuf. 20, 464-475 (2007).
[CrossRef]

J. Electron. Mater.

A. Bastawros, A. Chandra, Y. Guo, and B. Yan, “Pad effects on material-removal rate in chemical-mechanical planarization,” J. Electron. Mater. 31, 1022-1031 (2002).
[CrossRef]

J. Mater. Proc. Technol.

B. Park, H. Lee, K. Park, H. Kim, and H. Jeong, “Pad roughness variation and its effect on material removal profile in ceria-based CMP slurry,” J. Mater. Proc. Technol. 203, 287-292 (2008).
[CrossRef]

J. Opt. Technol.

J. Soc. Glass Technol.

F. W. Preston, “The theory and design of plate glass polishing machines,” J. Soc. Glass Technol. 11, 214-256 (1927).

Mater. Charact.

H. Lu, B. Fookes, Y. Obeng, S. Machinski, and K. A. Richardson, “Quantitative analysis of physical and chemical changes in CMP polyurethane pad surfaces,” Mater. Charact. 49, 35-44 (2002).
[CrossRef]

Opt. Express

Proc. SPIE

B. E. Gillman and F. Tinker, “Fun facts about pitch and the pitfalls of ignorance,” Proc. SPIE 3782, 72-79 (1999).
[CrossRef]

R. R. Berggren and R. A. Schmell, “Pad polishing for rapid production of large flats,” Proc. SPIE 3134, 252-257 (1997).
[CrossRef]

J. E. De Groote, S. D. Jacobs, L. L. Gregg, A. E. Marino, and J. C. Hayes, “Quantitative characterization of optical polishing pitch,” Proc. SPIE 4451, 209-221 (2001).
[CrossRef]

Thin Solid Films

C. Srinivasa-Murthy, D. Wang, S. P. Beaudoin, T. Bibby, K. Holland, and T. S. Cale, “Stress distribution in chemical mechanical polishing,” Thin Solid Films 308-309, 533-537 (1997).
[CrossRef]

Tribol. Int.

T. Kasai, “A kinematic analysis of disk motion in a double sided polisher for chemical mechanical planarization (CMP),” Tribol. Int. 41, 111-118 (2008).
[CrossRef]

Other

As suggested by A. J. Leistner, Commonwealth Scientific and Industrial Research Organization, Lindfield 2070, Australia. (personal communication, 2008).

L. S. Ramanathan, S. Sivaram, and M. K. Mishra, “Polyurethane,” in Polymer Data Handbook, J. E. Mark, ed. (Oxford U. Press, 1999).

J. Luo and D. A. Dornfeld, “Wafer-scale CMP modeling of within wafer non-uniformity,” Laboratory for Manufacturing and Sustainability Reports (University of California, Berkeley, 2003).

M. J. Cumbo, “Chemo-mechanical interactions in optical polishing,” Ph.D. dissertation (University of Rochester, 1993).

J. Y. Lai, “Mechanics, mechanisms, and modeling of the chemical mechanical polishing process,” Ph.D. dissertation (Massachusetts Institute of Technology, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Sketch of PPS100.

Fig. 2
Fig. 2

Small pits by means of interferometer: (a) interferogram of the small pits/depressions and (b) peak-to-valley diagram near the center of the sample.

Fig. 3
Fig. 3

Surface roughness of the pitted fused silica at (a)  20 × magnification and (b)  2.5 × magnification.

Fig. 4
Fig. 4

Dimensions of small pits: (a) depth of a typical small pit and (b) breadth of small pits.

Fig. 5
Fig. 5

Surface of sample after ameliorated: (a) surface with shallow small pits, (b) small pits were removed.

Fig. 6
Fig. 6

Active and inactive asperities during polishing process.

Fig. 7
Fig. 7

Trajectories of point A with various κ: (a)  κ = 1 1.2 , (b)  κ = 1 1.041 , and (c)  κ = 1 1 .

Tables (1)

Tables Icon

Table 1 Downward Loads and Rotation Rates Applied in the Experiments

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

MRR = k P v = k P d s d t = k P R 2 Ω 2 + r 2 ( Ω ω ) 2 + 2 r R Ω ( Ω ω ) cos θ ,

Metrics