Abstract

A portable cavity ringdown spectroscopy (CRDS) apparatus was used to detect effluents from small test fires in the Fire Emulator/Detector Evaluator (FE/DE) and a small room in the Building Fire and Research Laboratory at the National Institute of Standards and Technology (NIST). The output from two lasers is combined to detect four combustion gases, CO, CO2, HCN, and C2H2, near simultaneously using CRDS. The goal of this work was to demonstrate the feasibility of using a CRDS sensor as a fire detector. Fire effluents were extracted from several test facilities and measurements of CO, CO2, HCN, and C2H2 were obtained every 25–30 s. In the FE/DE test, peak concentrations of the gases from smoldering paper were 420partsin106(ppm) CO, 1600ppm CO2, 530partsin109(ppb) HCN, and 440ppb C2H2. Peak gas concentrations from the small room were 270ppm CO, 2100ppm CO2, and 310ppb C2H2.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Cleary, W. L. Grosshandler, M. Nyden, and W. Rinkinen, “Signatures of smoldering/pyrolyzing fires for multi-element detector evaluation,” International Interflam '96 Conference, 7th Proceeding (Interscience Communications, 1996).
  2. W. L. Grosshandler, “Review of measurements and candidate signatures for early fire detection,” Rep. NISTIR 5555 (Fire Science Division, National Institute Standards and Technology, 1995).
  3. J. S. Goldmeer, “A rugged LED-based sensor for fire detection,” NIST Spec. Publ. 965, 378-389 (2001).
  4. D. Bomse, “A diode laser multigas analyzer for advanced detection of fires,” NIST Spec. Publ. 965, 358-369 (2001).
  5. T. Cleary and M. Donnelly, “Aircraft cargo compartment fire and nuisance source tests in the FE/DE,” NIST Spec. Publ. 965, 689-700 (2001).
  6. R. D. May, “Next-generation diode laser gas sensors for environmental and industrial monitoring,” Proc. SPIE 3858, 110-118 (1999).
    [CrossRef]
  7. R. A. Bryant, T. J. Ohlemiller, E. L. Johnsson, A. Hamins, B. S. Grove, W. F. Guthrie, A. Maranghides, and G. W. Mulholland, “The NIST 3 megawatt quantitative heat release rate facility,” NIST Spec. Publ. 1007, i-iv, 1-75 (2003).
  8. Governing Sourcebook State and Local Fire Protection Spending (Congressional Quarterly, Inc., 2008), http://sourcebook.governing.com/topicresults.jsp?yr=&mrtype=2&sort=612%3A&ctype=1&sub=145&x=37&y=5.
  9. D. T. Gottuk, M. J. Peatross, R. J. Roby, and C. L. Beyler, “Advanced fire detection using multi-signature alarm algorithms,” Fire Saf. J. 37, 381-394 (2002).
    [CrossRef]
  10. D. S. Bomse, D. C. Hovde, S.-J. Chen, and A. Marshall, “Diode laser spectroscopy of gases for incipient fire detection,” abstracts of paper presented at the 229th American Combustion Society National Meeting, San Diego, Calif., USA, 13-17 March, 2005.
  11. B. C. Levin and R. G. Gann, “Toxic potency of fire smoke. Measurement and use,” ACS Symp. Ser. 425, 3-11 (1990).
  12. D. T. Cassidy and L. J. Bonnell, “Trace gas detection with short-external-cavity indium gallium arsenide phosphide diode laser transmitter modules operating at 1.58 mm,” Appl. Opt. 27, 2688-2693 (1988).
  13. J. H. Miller, S. Elreedy, B. Ahvazi, F. Woldu, and P. Hassanzadeh, “Tunable diode-laser measurement of carbon monoxide concentration and temperature in a laminar methane-air diffusion flame,” Appl. Opt. 32, 6082-6089 (1993).
  14. M. W. Sigrist, “Trace gas monitoring by laser photoacoustic spectroscopy and related techniques (plenary),” Rev. Sci. Instrum. 74, 486-490 (2003).
    [CrossRef]
  15. G. Totschnig, D. S. Baer, J. Wang, F. Winter, H. Hofbauer, and R. K. Hanson, “Multiplexed continuous-wave diode-laser cavity ringdown measurements of multiple species,” Appl. Opt. 39, 2009-2016 (2000).
    [CrossRef]
  16. S. S. Brown, H. Stark, and A. R. Ravishankara, “Cavity ring-down spectroscopy for atmospheric trace gas detection: application to the nitrate radical (NO3),” Appl. Phys. B 75, 173-182 (2002).
  17. R. Grisar, J. Anders, M. Knothe, and W. J. Riedel, “Application of infrared fibers in diode laser trace gas analysis,” Proc. SPIE 1591, 201-205 (1992).
    [CrossRef]
  18. R. T. Jongma, M. G. H. Boogaarts, I. Holleman, and G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821-2828 (1995).
    [CrossRef]
  19. A. A. Kachanov, D. Romanini, M. Chenevier, A. Garnache, and F. Stoeckel, “New perspectives in ultrasensitive trace gas monitoring by cavity-enhanced laser absorption spectroscopy,” Proc. SPIE 3855, 51-61 (1999).
    [CrossRef]
  20. J. Morville, M. Chenevier, A. A. Kachanov, and D. Romanini, “Trace gas detection with DFB lasers and cavity ring-down spectroscopy,” Proc. SPIE 4485, 236-243 (2002).
    [CrossRef]
  21. D. Romanini, A. A. Kachanov, J. Morville, and M. Chenevier, “Measurement of trace gases by diode laser cavity ringdown spectroscopy,” Proc. SPIE 3821, 94-104 (1999).
    [CrossRef]
  22. M. W. Todd, R. A. Provencal, T. G. Owano, B. A. Paldus, A. Kachanov, K. L. Vodopyanov, M. Hunter, S. L. Coy, J. I. Steinfeld, and J. T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6-8 mm) optical parametric oscillator,” Appl. Phys. B 75, 367-376 (2002).
  23. R. R. Skaggs and J. H. Miller, “A study of carbon monoxide in a series of laminar ethylene/air diffusion flames using tunable diode laser absorption spectroscopy,” Combust. Flame 100, 430-439 (1995).
    [CrossRef]
  24. R. R. Skaggs, M. P. Tolocka, and H. J. Miller, “An evaluation of emissions from laminar, underventilated hydrocarbon diffusion flames,” Combust. Sci. Technol. 116-117, 399-426 (1996).
    [CrossRef]
  25. M. P. Tolocka and J. H. Miller, “Measurements of formaldehyde concentrations and formation rates in a methane-air, non-premixed flame and their implications for heat-release rate,” in Symposium (International) on Combustion, [Proceedings] 27th (Combustion Institute, 1998), pp. 633-640.
  26. J. H. Miller, A. R. Awtry, M. E. Moses, A. D. Jewell, and E. L. Wilson, “Measurements of hydrogen cyanide and its chemical production rate in a laminar methane/air, non-premixed flame by using continuous wave cavity ringdown spectroscopy,” Proc. Combust. Inst. 29, 2203-2209(2002).
  27. Y. He and B. J. Orr, “Cavity ringdown spectroscopy: new approaches and outcomes,” J. Chin. Chem. Soc. (Taipei) 48, 591-601 (2001).
  28. B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991-3997 (1998).
    [CrossRef]
  29. R. Peeters, G. Berden, and G. Meijer, “Sensitive absorption techniques for spectroscopy,” Am. Lab. (Shelton, Connecticut) 33, 60-68 (2001).
  30. R. A. Provencal, J. B. Paul, C. N. Chapo, and R. J. Saykally, “Cavity ringdown laser absorption spectroscopy,” Spectroscopy (Eugene, Or.) 14, 24, 26, 28-32 (1999).
  31. D. Romanini, “Quantitative absorption spectroscopy with a very high sensitivity: cavity ring-down and intracavity absorption laser,” Ann. Phys. (Paris) 20, 665-674 (1995).
    [CrossRef]
  32. D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316-322 (1997).
    [CrossRef]
  33. J. J. Scherer, J. B. Paul, C. P. Collier, A. O'Keefe, D. J. Rakestraw, and R. J. Saykally, “Cavity ringdown laser spectroscopy: a new ultrasensitive absorption technique,” Spectroscopy (Eugene, Or.) 11, 46-50 (1996).
  34. A. O'Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544-2551 (1988).
    [CrossRef]
  35. G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, and A. M. Wodtke, “Coherent cavity ring down spectroscopy,” Chem. Phys. Lett. 217, 112-116 (1994).
    [CrossRef]
  36. D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270, 538-545 (1997).
    [CrossRef]
  37. J. W. Hahn, Y. S. Yoo, J. Y. Lee, J. W. Kim, and H.-W. Lee, “Cavity ringdown spectroscopy with a continuous-wave laser: calculation of coupling efficiency and a new spectrometer design,” Appl. Opt. 38, 1859-1866 (1999).
    [CrossRef]
  38. B. A. Paldus, J. S. Harris Jr., J. Martin, J. Xie, and R. N. Zare, “Laser diode cavity ring-down spectroscopy using acousto-optic modulator stabilization,” J. Appl. Phys. 82, 3199-3204 (1997).
    [CrossRef]
  39. A. R. Awtry and J. H. Miller, “Development of a cw-laser-based cavity-ringdown sensor aboard a spacecraft for trace air constituents,” Appl. Phys. B 75, 255-260(2002).
  40. B. Lundgren and G. Stridh, “Chemical analysis of fire effluents,” ACS Symp. Ser. 425, 35-47 (1990).
  41. R. G. Gann, “Estimating data for incapacitation of people by fire smoke,” Fire Technol. 40, 201-207 (2004).
    [CrossRef]
  42. W. M. Pitts, “Reactivity of product gases generated in idealized enclosure fire environments,” in Symposium (International) on Combustion, [Proceedings] 24th (Combustion Institute, 1992), pp. 1737-1746.
  43. D. B. Oh, M. E. Paige, and D. S. Bomse, “Frequency modulation multiplexing for simultaneous detection of multiple gases by use of wavelength modulation spectroscopy with diode lasers,” Appl. Opt. 37, 2499-2501 (1998).
    [CrossRef]
  44. E. Di Cera, M. L. Doyle, M. S. Morgan, R. De Cristofaro, R. Landolfi, B. Bizzi, M. Castagnola, and S. J. Gill, “Carbon monoxide and oxygen binding to human hemoglobin F0,” Biochemistry 28, 2631-2638 (1989).
  45. W. L. Grosshandler, “Towards the development of a universal fire emulator-detector evaluator,” Fire Saf. J. 29, 113-127(1997).
    [CrossRef]
  46. J. M. Hollas, Modern Spectroscopy, 4th ed. (Wiley, 2004), p. 452.
  47. A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 1627-1639 (1964).
    [CrossRef]

2004 (1)

R. G. Gann, “Estimating data for incapacitation of people by fire smoke,” Fire Technol. 40, 201-207 (2004).
[CrossRef]

2003 (2)

R. A. Bryant, T. J. Ohlemiller, E. L. Johnsson, A. Hamins, B. S. Grove, W. F. Guthrie, A. Maranghides, and G. W. Mulholland, “The NIST 3 megawatt quantitative heat release rate facility,” NIST Spec. Publ. 1007, i-iv, 1-75 (2003).

M. W. Sigrist, “Trace gas monitoring by laser photoacoustic spectroscopy and related techniques (plenary),” Rev. Sci. Instrum. 74, 486-490 (2003).
[CrossRef]

2002 (6)

S. S. Brown, H. Stark, and A. R. Ravishankara, “Cavity ring-down spectroscopy for atmospheric trace gas detection: application to the nitrate radical (NO3),” Appl. Phys. B 75, 173-182 (2002).

J. Morville, M. Chenevier, A. A. Kachanov, and D. Romanini, “Trace gas detection with DFB lasers and cavity ring-down spectroscopy,” Proc. SPIE 4485, 236-243 (2002).
[CrossRef]

D. T. Gottuk, M. J. Peatross, R. J. Roby, and C. L. Beyler, “Advanced fire detection using multi-signature alarm algorithms,” Fire Saf. J. 37, 381-394 (2002).
[CrossRef]

M. W. Todd, R. A. Provencal, T. G. Owano, B. A. Paldus, A. Kachanov, K. L. Vodopyanov, M. Hunter, S. L. Coy, J. I. Steinfeld, and J. T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6-8 mm) optical parametric oscillator,” Appl. Phys. B 75, 367-376 (2002).

J. H. Miller, A. R. Awtry, M. E. Moses, A. D. Jewell, and E. L. Wilson, “Measurements of hydrogen cyanide and its chemical production rate in a laminar methane/air, non-premixed flame by using continuous wave cavity ringdown spectroscopy,” Proc. Combust. Inst. 29, 2203-2209(2002).

A. R. Awtry and J. H. Miller, “Development of a cw-laser-based cavity-ringdown sensor aboard a spacecraft for trace air constituents,” Appl. Phys. B 75, 255-260(2002).

2001 (5)

Y. He and B. J. Orr, “Cavity ringdown spectroscopy: new approaches and outcomes,” J. Chin. Chem. Soc. (Taipei) 48, 591-601 (2001).

R. Peeters, G. Berden, and G. Meijer, “Sensitive absorption techniques for spectroscopy,” Am. Lab. (Shelton, Connecticut) 33, 60-68 (2001).

J. S. Goldmeer, “A rugged LED-based sensor for fire detection,” NIST Spec. Publ. 965, 378-389 (2001).

D. Bomse, “A diode laser multigas analyzer for advanced detection of fires,” NIST Spec. Publ. 965, 358-369 (2001).

T. Cleary and M. Donnelly, “Aircraft cargo compartment fire and nuisance source tests in the FE/DE,” NIST Spec. Publ. 965, 689-700 (2001).

2000 (1)

1999 (5)

D. Romanini, A. A. Kachanov, J. Morville, and M. Chenevier, “Measurement of trace gases by diode laser cavity ringdown spectroscopy,” Proc. SPIE 3821, 94-104 (1999).
[CrossRef]

R. D. May, “Next-generation diode laser gas sensors for environmental and industrial monitoring,” Proc. SPIE 3858, 110-118 (1999).
[CrossRef]

R. A. Provencal, J. B. Paul, C. N. Chapo, and R. J. Saykally, “Cavity ringdown laser absorption spectroscopy,” Spectroscopy (Eugene, Or.) 14, 24, 26, 28-32 (1999).

A. A. Kachanov, D. Romanini, M. Chenevier, A. Garnache, and F. Stoeckel, “New perspectives in ultrasensitive trace gas monitoring by cavity-enhanced laser absorption spectroscopy,” Proc. SPIE 3855, 51-61 (1999).
[CrossRef]

J. W. Hahn, Y. S. Yoo, J. Y. Lee, J. W. Kim, and H.-W. Lee, “Cavity ringdown spectroscopy with a continuous-wave laser: calculation of coupling efficiency and a new spectrometer design,” Appl. Opt. 38, 1859-1866 (1999).
[CrossRef]

1998 (2)

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991-3997 (1998).
[CrossRef]

D. B. Oh, M. E. Paige, and D. S. Bomse, “Frequency modulation multiplexing for simultaneous detection of multiple gases by use of wavelength modulation spectroscopy with diode lasers,” Appl. Opt. 37, 2499-2501 (1998).
[CrossRef]

1997 (4)

W. L. Grosshandler, “Towards the development of a universal fire emulator-detector evaluator,” Fire Saf. J. 29, 113-127(1997).
[CrossRef]

B. A. Paldus, J. S. Harris Jr., J. Martin, J. Xie, and R. N. Zare, “Laser diode cavity ring-down spectroscopy using acousto-optic modulator stabilization,” J. Appl. Phys. 82, 3199-3204 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316-322 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270, 538-545 (1997).
[CrossRef]

1996 (2)

J. J. Scherer, J. B. Paul, C. P. Collier, A. O'Keefe, D. J. Rakestraw, and R. J. Saykally, “Cavity ringdown laser spectroscopy: a new ultrasensitive absorption technique,” Spectroscopy (Eugene, Or.) 11, 46-50 (1996).

R. R. Skaggs, M. P. Tolocka, and H. J. Miller, “An evaluation of emissions from laminar, underventilated hydrocarbon diffusion flames,” Combust. Sci. Technol. 116-117, 399-426 (1996).
[CrossRef]

1995 (3)

R. R. Skaggs and J. H. Miller, “A study of carbon monoxide in a series of laminar ethylene/air diffusion flames using tunable diode laser absorption spectroscopy,” Combust. Flame 100, 430-439 (1995).
[CrossRef]

D. Romanini, “Quantitative absorption spectroscopy with a very high sensitivity: cavity ring-down and intracavity absorption laser,” Ann. Phys. (Paris) 20, 665-674 (1995).
[CrossRef]

R. T. Jongma, M. G. H. Boogaarts, I. Holleman, and G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821-2828 (1995).
[CrossRef]

1994 (1)

G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, and A. M. Wodtke, “Coherent cavity ring down spectroscopy,” Chem. Phys. Lett. 217, 112-116 (1994).
[CrossRef]

1993 (1)

1992 (1)

R. Grisar, J. Anders, M. Knothe, and W. J. Riedel, “Application of infrared fibers in diode laser trace gas analysis,” Proc. SPIE 1591, 201-205 (1992).
[CrossRef]

1990 (2)

B. C. Levin and R. G. Gann, “Toxic potency of fire smoke. Measurement and use,” ACS Symp. Ser. 425, 3-11 (1990).

B. Lundgren and G. Stridh, “Chemical analysis of fire effluents,” ACS Symp. Ser. 425, 35-47 (1990).

1989 (1)

E. Di Cera, M. L. Doyle, M. S. Morgan, R. De Cristofaro, R. Landolfi, B. Bizzi, M. Castagnola, and S. J. Gill, “Carbon monoxide and oxygen binding to human hemoglobin F0,” Biochemistry 28, 2631-2638 (1989).

1988 (2)

A. O'Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544-2551 (1988).
[CrossRef]

D. T. Cassidy and L. J. Bonnell, “Trace gas detection with short-external-cavity indium gallium arsenide phosphide diode laser transmitter modules operating at 1.58 mm,” Appl. Opt. 27, 2688-2693 (1988).

1964 (1)

A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 1627-1639 (1964).
[CrossRef]

Ahvazi, B.

Anders, J.

R. Grisar, J. Anders, M. Knothe, and W. J. Riedel, “Application of infrared fibers in diode laser trace gas analysis,” Proc. SPIE 1591, 201-205 (1992).
[CrossRef]

Arnold, J. T.

M. W. Todd, R. A. Provencal, T. G. Owano, B. A. Paldus, A. Kachanov, K. L. Vodopyanov, M. Hunter, S. L. Coy, J. I. Steinfeld, and J. T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6-8 mm) optical parametric oscillator,” Appl. Phys. B 75, 367-376 (2002).

Awtry, A. R.

J. H. Miller, A. R. Awtry, M. E. Moses, A. D. Jewell, and E. L. Wilson, “Measurements of hydrogen cyanide and its chemical production rate in a laminar methane/air, non-premixed flame by using continuous wave cavity ringdown spectroscopy,” Proc. Combust. Inst. 29, 2203-2209(2002).

A. R. Awtry and J. H. Miller, “Development of a cw-laser-based cavity-ringdown sensor aboard a spacecraft for trace air constituents,” Appl. Phys. B 75, 255-260(2002).

Baer, D. S.

Berden, G.

R. Peeters, G. Berden, and G. Meijer, “Sensitive absorption techniques for spectroscopy,” Am. Lab. (Shelton, Connecticut) 33, 60-68 (2001).

Beyler, C. L.

D. T. Gottuk, M. J. Peatross, R. J. Roby, and C. L. Beyler, “Advanced fire detection using multi-signature alarm algorithms,” Fire Saf. J. 37, 381-394 (2002).
[CrossRef]

Bizzi, B.

E. Di Cera, M. L. Doyle, M. S. Morgan, R. De Cristofaro, R. Landolfi, B. Bizzi, M. Castagnola, and S. J. Gill, “Carbon monoxide and oxygen binding to human hemoglobin F0,” Biochemistry 28, 2631-2638 (1989).

Bomse, D.

D. Bomse, “A diode laser multigas analyzer for advanced detection of fires,” NIST Spec. Publ. 965, 358-369 (2001).

Bomse, D. S.

D. B. Oh, M. E. Paige, and D. S. Bomse, “Frequency modulation multiplexing for simultaneous detection of multiple gases by use of wavelength modulation spectroscopy with diode lasers,” Appl. Opt. 37, 2499-2501 (1998).
[CrossRef]

D. S. Bomse, D. C. Hovde, S.-J. Chen, and A. Marshall, “Diode laser spectroscopy of gases for incipient fire detection,” abstracts of paper presented at the 229th American Combustion Society National Meeting, San Diego, Calif., USA, 13-17 March, 2005.

Bonnell, L. J.

Boogaarts, M. G. H.

R. T. Jongma, M. G. H. Boogaarts, I. Holleman, and G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821-2828 (1995).
[CrossRef]

G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, and A. M. Wodtke, “Coherent cavity ring down spectroscopy,” Chem. Phys. Lett. 217, 112-116 (1994).
[CrossRef]

Brown, S. S.

S. S. Brown, H. Stark, and A. R. Ravishankara, “Cavity ring-down spectroscopy for atmospheric trace gas detection: application to the nitrate radical (NO3),” Appl. Phys. B 75, 173-182 (2002).

Bryant, R. A.

R. A. Bryant, T. J. Ohlemiller, E. L. Johnsson, A. Hamins, B. S. Grove, W. F. Guthrie, A. Maranghides, and G. W. Mulholland, “The NIST 3 megawatt quantitative heat release rate facility,” NIST Spec. Publ. 1007, i-iv, 1-75 (2003).

Cassidy, D. T.

Castagnola, M.

E. Di Cera, M. L. Doyle, M. S. Morgan, R. De Cristofaro, R. Landolfi, B. Bizzi, M. Castagnola, and S. J. Gill, “Carbon monoxide and oxygen binding to human hemoglobin F0,” Biochemistry 28, 2631-2638 (1989).

Chapo, C. N.

R. A. Provencal, J. B. Paul, C. N. Chapo, and R. J. Saykally, “Cavity ringdown laser absorption spectroscopy,” Spectroscopy (Eugene, Or.) 14, 24, 26, 28-32 (1999).

Chen, S.-J.

D. S. Bomse, D. C. Hovde, S.-J. Chen, and A. Marshall, “Diode laser spectroscopy of gases for incipient fire detection,” abstracts of paper presented at the 229th American Combustion Society National Meeting, San Diego, Calif., USA, 13-17 March, 2005.

Chenevier, M.

J. Morville, M. Chenevier, A. A. Kachanov, and D. Romanini, “Trace gas detection with DFB lasers and cavity ring-down spectroscopy,” Proc. SPIE 4485, 236-243 (2002).
[CrossRef]

A. A. Kachanov, D. Romanini, M. Chenevier, A. Garnache, and F. Stoeckel, “New perspectives in ultrasensitive trace gas monitoring by cavity-enhanced laser absorption spectroscopy,” Proc. SPIE 3855, 51-61 (1999).
[CrossRef]

D. Romanini, A. A. Kachanov, J. Morville, and M. Chenevier, “Measurement of trace gases by diode laser cavity ringdown spectroscopy,” Proc. SPIE 3821, 94-104 (1999).
[CrossRef]

Cleary, T.

T. Cleary and M. Donnelly, “Aircraft cargo compartment fire and nuisance source tests in the FE/DE,” NIST Spec. Publ. 965, 689-700 (2001).

T. Cleary, W. L. Grosshandler, M. Nyden, and W. Rinkinen, “Signatures of smoldering/pyrolyzing fires for multi-element detector evaluation,” International Interflam '96 Conference, 7th Proceeding (Interscience Communications, 1996).

Collier, C. P.

J. J. Scherer, J. B. Paul, C. P. Collier, A. O'Keefe, D. J. Rakestraw, and R. J. Saykally, “Cavity ringdown laser spectroscopy: a new ultrasensitive absorption technique,” Spectroscopy (Eugene, Or.) 11, 46-50 (1996).

Coy, S. L.

M. W. Todd, R. A. Provencal, T. G. Owano, B. A. Paldus, A. Kachanov, K. L. Vodopyanov, M. Hunter, S. L. Coy, J. I. Steinfeld, and J. T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6-8 mm) optical parametric oscillator,” Appl. Phys. B 75, 367-376 (2002).

De Cristofaro, R.

E. Di Cera, M. L. Doyle, M. S. Morgan, R. De Cristofaro, R. Landolfi, B. Bizzi, M. Castagnola, and S. J. Gill, “Carbon monoxide and oxygen binding to human hemoglobin F0,” Biochemistry 28, 2631-2638 (1989).

Deacon, D. A. G.

A. O'Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544-2551 (1988).
[CrossRef]

Di Cera, E.

E. Di Cera, M. L. Doyle, M. S. Morgan, R. De Cristofaro, R. Landolfi, B. Bizzi, M. Castagnola, and S. J. Gill, “Carbon monoxide and oxygen binding to human hemoglobin F0,” Biochemistry 28, 2631-2638 (1989).

Donnelly, M.

T. Cleary and M. Donnelly, “Aircraft cargo compartment fire and nuisance source tests in the FE/DE,” NIST Spec. Publ. 965, 689-700 (2001).

Doyle, M. L.

E. Di Cera, M. L. Doyle, M. S. Morgan, R. De Cristofaro, R. Landolfi, B. Bizzi, M. Castagnola, and S. J. Gill, “Carbon monoxide and oxygen binding to human hemoglobin F0,” Biochemistry 28, 2631-2638 (1989).

Elreedy, S.

Gann, R. G.

R. G. Gann, “Estimating data for incapacitation of people by fire smoke,” Fire Technol. 40, 201-207 (2004).
[CrossRef]

B. C. Levin and R. G. Gann, “Toxic potency of fire smoke. Measurement and use,” ACS Symp. Ser. 425, 3-11 (1990).

Garnache, A.

A. A. Kachanov, D. Romanini, M. Chenevier, A. Garnache, and F. Stoeckel, “New perspectives in ultrasensitive trace gas monitoring by cavity-enhanced laser absorption spectroscopy,” Proc. SPIE 3855, 51-61 (1999).
[CrossRef]

Gill, S. J.

E. Di Cera, M. L. Doyle, M. S. Morgan, R. De Cristofaro, R. Landolfi, B. Bizzi, M. Castagnola, and S. J. Gill, “Carbon monoxide and oxygen binding to human hemoglobin F0,” Biochemistry 28, 2631-2638 (1989).

Golay, M. J. E.

A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 1627-1639 (1964).
[CrossRef]

Goldmeer, J. S.

J. S. Goldmeer, “A rugged LED-based sensor for fire detection,” NIST Spec. Publ. 965, 378-389 (2001).

Gottuk, D. T.

D. T. Gottuk, M. J. Peatross, R. J. Roby, and C. L. Beyler, “Advanced fire detection using multi-signature alarm algorithms,” Fire Saf. J. 37, 381-394 (2002).
[CrossRef]

Grisar, R.

R. Grisar, J. Anders, M. Knothe, and W. J. Riedel, “Application of infrared fibers in diode laser trace gas analysis,” Proc. SPIE 1591, 201-205 (1992).
[CrossRef]

Grosshandler, W. L.

W. L. Grosshandler, “Towards the development of a universal fire emulator-detector evaluator,” Fire Saf. J. 29, 113-127(1997).
[CrossRef]

W. L. Grosshandler, “Review of measurements and candidate signatures for early fire detection,” Rep. NISTIR 5555 (Fire Science Division, National Institute Standards and Technology, 1995).

T. Cleary, W. L. Grosshandler, M. Nyden, and W. Rinkinen, “Signatures of smoldering/pyrolyzing fires for multi-element detector evaluation,” International Interflam '96 Conference, 7th Proceeding (Interscience Communications, 1996).

Grove, B. S.

R. A. Bryant, T. J. Ohlemiller, E. L. Johnsson, A. Hamins, B. S. Grove, W. F. Guthrie, A. Maranghides, and G. W. Mulholland, “The NIST 3 megawatt quantitative heat release rate facility,” NIST Spec. Publ. 1007, i-iv, 1-75 (2003).

Guthrie, W. F.

R. A. Bryant, T. J. Ohlemiller, E. L. Johnsson, A. Hamins, B. S. Grove, W. F. Guthrie, A. Maranghides, and G. W. Mulholland, “The NIST 3 megawatt quantitative heat release rate facility,” NIST Spec. Publ. 1007, i-iv, 1-75 (2003).

Hahn, J. W.

Hamins, A.

R. A. Bryant, T. J. Ohlemiller, E. L. Johnsson, A. Hamins, B. S. Grove, W. F. Guthrie, A. Maranghides, and G. W. Mulholland, “The NIST 3 megawatt quantitative heat release rate facility,” NIST Spec. Publ. 1007, i-iv, 1-75 (2003).

Hanson, R. K.

Harb, C. C.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991-3997 (1998).
[CrossRef]

Harris, J. S.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991-3997 (1998).
[CrossRef]

B. A. Paldus, J. S. Harris Jr., J. Martin, J. Xie, and R. N. Zare, “Laser diode cavity ring-down spectroscopy using acousto-optic modulator stabilization,” J. Appl. Phys. 82, 3199-3204 (1997).
[CrossRef]

Hassanzadeh, P.

He, Y.

Y. He and B. J. Orr, “Cavity ringdown spectroscopy: new approaches and outcomes,” J. Chin. Chem. Soc. (Taipei) 48, 591-601 (2001).

Hofbauer, H.

Hollas, J. M.

J. M. Hollas, Modern Spectroscopy, 4th ed. (Wiley, 2004), p. 452.

Holleman, I.

R. T. Jongma, M. G. H. Boogaarts, I. Holleman, and G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821-2828 (1995).
[CrossRef]

Hovde, D. C.

D. S. Bomse, D. C. Hovde, S.-J. Chen, and A. Marshall, “Diode laser spectroscopy of gases for incipient fire detection,” abstracts of paper presented at the 229th American Combustion Society National Meeting, San Diego, Calif., USA, 13-17 March, 2005.

Hunter, M.

M. W. Todd, R. A. Provencal, T. G. Owano, B. A. Paldus, A. Kachanov, K. L. Vodopyanov, M. Hunter, S. L. Coy, J. I. Steinfeld, and J. T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6-8 mm) optical parametric oscillator,” Appl. Phys. B 75, 367-376 (2002).

Jewell, A. D.

J. H. Miller, A. R. Awtry, M. E. Moses, A. D. Jewell, and E. L. Wilson, “Measurements of hydrogen cyanide and its chemical production rate in a laminar methane/air, non-premixed flame by using continuous wave cavity ringdown spectroscopy,” Proc. Combust. Inst. 29, 2203-2209(2002).

Johnsson, E. L.

R. A. Bryant, T. J. Ohlemiller, E. L. Johnsson, A. Hamins, B. S. Grove, W. F. Guthrie, A. Maranghides, and G. W. Mulholland, “The NIST 3 megawatt quantitative heat release rate facility,” NIST Spec. Publ. 1007, i-iv, 1-75 (2003).

Jongma, R. T.

R. T. Jongma, M. G. H. Boogaarts, I. Holleman, and G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821-2828 (1995).
[CrossRef]

G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, and A. M. Wodtke, “Coherent cavity ring down spectroscopy,” Chem. Phys. Lett. 217, 112-116 (1994).
[CrossRef]

Kachanov, A.

M. W. Todd, R. A. Provencal, T. G. Owano, B. A. Paldus, A. Kachanov, K. L. Vodopyanov, M. Hunter, S. L. Coy, J. I. Steinfeld, and J. T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6-8 mm) optical parametric oscillator,” Appl. Phys. B 75, 367-376 (2002).

Kachanov, A. A.

J. Morville, M. Chenevier, A. A. Kachanov, and D. Romanini, “Trace gas detection with DFB lasers and cavity ring-down spectroscopy,” Proc. SPIE 4485, 236-243 (2002).
[CrossRef]

D. Romanini, A. A. Kachanov, J. Morville, and M. Chenevier, “Measurement of trace gases by diode laser cavity ringdown spectroscopy,” Proc. SPIE 3821, 94-104 (1999).
[CrossRef]

A. A. Kachanov, D. Romanini, M. Chenevier, A. Garnache, and F. Stoeckel, “New perspectives in ultrasensitive trace gas monitoring by cavity-enhanced laser absorption spectroscopy,” Proc. SPIE 3855, 51-61 (1999).
[CrossRef]

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316-322 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270, 538-545 (1997).
[CrossRef]

Kim, J. W.

Knothe, M.

R. Grisar, J. Anders, M. Knothe, and W. J. Riedel, “Application of infrared fibers in diode laser trace gas analysis,” Proc. SPIE 1591, 201-205 (1992).
[CrossRef]

Landolfi, R.

E. Di Cera, M. L. Doyle, M. S. Morgan, R. De Cristofaro, R. Landolfi, B. Bizzi, M. Castagnola, and S. J. Gill, “Carbon monoxide and oxygen binding to human hemoglobin F0,” Biochemistry 28, 2631-2638 (1989).

Lee, H.-W.

Lee, J. Y.

Levin, B. C.

B. C. Levin and R. G. Gann, “Toxic potency of fire smoke. Measurement and use,” ACS Symp. Ser. 425, 3-11 (1990).

Lundgren, B.

B. Lundgren and G. Stridh, “Chemical analysis of fire effluents,” ACS Symp. Ser. 425, 35-47 (1990).

Maranghides, A.

R. A. Bryant, T. J. Ohlemiller, E. L. Johnsson, A. Hamins, B. S. Grove, W. F. Guthrie, A. Maranghides, and G. W. Mulholland, “The NIST 3 megawatt quantitative heat release rate facility,” NIST Spec. Publ. 1007, i-iv, 1-75 (2003).

Marshall, A.

D. S. Bomse, D. C. Hovde, S.-J. Chen, and A. Marshall, “Diode laser spectroscopy of gases for incipient fire detection,” abstracts of paper presented at the 229th American Combustion Society National Meeting, San Diego, Calif., USA, 13-17 March, 2005.

Martin, J.

B. A. Paldus, J. S. Harris Jr., J. Martin, J. Xie, and R. N. Zare, “Laser diode cavity ring-down spectroscopy using acousto-optic modulator stabilization,” J. Appl. Phys. 82, 3199-3204 (1997).
[CrossRef]

May, R. D.

R. D. May, “Next-generation diode laser gas sensors for environmental and industrial monitoring,” Proc. SPIE 3858, 110-118 (1999).
[CrossRef]

Meijer, G.

R. Peeters, G. Berden, and G. Meijer, “Sensitive absorption techniques for spectroscopy,” Am. Lab. (Shelton, Connecticut) 33, 60-68 (2001).

R. T. Jongma, M. G. H. Boogaarts, I. Holleman, and G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821-2828 (1995).
[CrossRef]

G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, and A. M. Wodtke, “Coherent cavity ring down spectroscopy,” Chem. Phys. Lett. 217, 112-116 (1994).
[CrossRef]

Miller, H. J.

R. R. Skaggs, M. P. Tolocka, and H. J. Miller, “An evaluation of emissions from laminar, underventilated hydrocarbon diffusion flames,” Combust. Sci. Technol. 116-117, 399-426 (1996).
[CrossRef]

Miller, J. H.

J. H. Miller, A. R. Awtry, M. E. Moses, A. D. Jewell, and E. L. Wilson, “Measurements of hydrogen cyanide and its chemical production rate in a laminar methane/air, non-premixed flame by using continuous wave cavity ringdown spectroscopy,” Proc. Combust. Inst. 29, 2203-2209(2002).

A. R. Awtry and J. H. Miller, “Development of a cw-laser-based cavity-ringdown sensor aboard a spacecraft for trace air constituents,” Appl. Phys. B 75, 255-260(2002).

R. R. Skaggs and J. H. Miller, “A study of carbon monoxide in a series of laminar ethylene/air diffusion flames using tunable diode laser absorption spectroscopy,” Combust. Flame 100, 430-439 (1995).
[CrossRef]

J. H. Miller, S. Elreedy, B. Ahvazi, F. Woldu, and P. Hassanzadeh, “Tunable diode-laser measurement of carbon monoxide concentration and temperature in a laminar methane-air diffusion flame,” Appl. Opt. 32, 6082-6089 (1993).

M. P. Tolocka and J. H. Miller, “Measurements of formaldehyde concentrations and formation rates in a methane-air, non-premixed flame and their implications for heat-release rate,” in Symposium (International) on Combustion, [Proceedings] 27th (Combustion Institute, 1998), pp. 633-640.

Morgan, M. S.

E. Di Cera, M. L. Doyle, M. S. Morgan, R. De Cristofaro, R. Landolfi, B. Bizzi, M. Castagnola, and S. J. Gill, “Carbon monoxide and oxygen binding to human hemoglobin F0,” Biochemistry 28, 2631-2638 (1989).

Morville, J.

J. Morville, M. Chenevier, A. A. Kachanov, and D. Romanini, “Trace gas detection with DFB lasers and cavity ring-down spectroscopy,” Proc. SPIE 4485, 236-243 (2002).
[CrossRef]

D. Romanini, A. A. Kachanov, J. Morville, and M. Chenevier, “Measurement of trace gases by diode laser cavity ringdown spectroscopy,” Proc. SPIE 3821, 94-104 (1999).
[CrossRef]

Moses, M. E.

J. H. Miller, A. R. Awtry, M. E. Moses, A. D. Jewell, and E. L. Wilson, “Measurements of hydrogen cyanide and its chemical production rate in a laminar methane/air, non-premixed flame by using continuous wave cavity ringdown spectroscopy,” Proc. Combust. Inst. 29, 2203-2209(2002).

Mulholland, G. W.

R. A. Bryant, T. J. Ohlemiller, E. L. Johnsson, A. Hamins, B. S. Grove, W. F. Guthrie, A. Maranghides, and G. W. Mulholland, “The NIST 3 megawatt quantitative heat release rate facility,” NIST Spec. Publ. 1007, i-iv, 1-75 (2003).

Nyden, M.

T. Cleary, W. L. Grosshandler, M. Nyden, and W. Rinkinen, “Signatures of smoldering/pyrolyzing fires for multi-element detector evaluation,” International Interflam '96 Conference, 7th Proceeding (Interscience Communications, 1996).

Oh, D. B.

Ohlemiller, T. J.

R. A. Bryant, T. J. Ohlemiller, E. L. Johnsson, A. Hamins, B. S. Grove, W. F. Guthrie, A. Maranghides, and G. W. Mulholland, “The NIST 3 megawatt quantitative heat release rate facility,” NIST Spec. Publ. 1007, i-iv, 1-75 (2003).

O'Keefe, A.

J. J. Scherer, J. B. Paul, C. P. Collier, A. O'Keefe, D. J. Rakestraw, and R. J. Saykally, “Cavity ringdown laser spectroscopy: a new ultrasensitive absorption technique,” Spectroscopy (Eugene, Or.) 11, 46-50 (1996).

A. O'Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544-2551 (1988).
[CrossRef]

Orr, B. J.

Y. He and B. J. Orr, “Cavity ringdown spectroscopy: new approaches and outcomes,” J. Chin. Chem. Soc. (Taipei) 48, 591-601 (2001).

Owano, T. G.

M. W. Todd, R. A. Provencal, T. G. Owano, B. A. Paldus, A. Kachanov, K. L. Vodopyanov, M. Hunter, S. L. Coy, J. I. Steinfeld, and J. T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6-8 mm) optical parametric oscillator,” Appl. Phys. B 75, 367-376 (2002).

Paige, M. E.

Paldus, B. A.

M. W. Todd, R. A. Provencal, T. G. Owano, B. A. Paldus, A. Kachanov, K. L. Vodopyanov, M. Hunter, S. L. Coy, J. I. Steinfeld, and J. T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6-8 mm) optical parametric oscillator,” Appl. Phys. B 75, 367-376 (2002).

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991-3997 (1998).
[CrossRef]

B. A. Paldus, J. S. Harris Jr., J. Martin, J. Xie, and R. N. Zare, “Laser diode cavity ring-down spectroscopy using acousto-optic modulator stabilization,” J. Appl. Phys. 82, 3199-3204 (1997).
[CrossRef]

Parker, D. H.

G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, and A. M. Wodtke, “Coherent cavity ring down spectroscopy,” Chem. Phys. Lett. 217, 112-116 (1994).
[CrossRef]

Paul, J. B.

R. A. Provencal, J. B. Paul, C. N. Chapo, and R. J. Saykally, “Cavity ringdown laser absorption spectroscopy,” Spectroscopy (Eugene, Or.) 14, 24, 26, 28-32 (1999).

J. J. Scherer, J. B. Paul, C. P. Collier, A. O'Keefe, D. J. Rakestraw, and R. J. Saykally, “Cavity ringdown laser spectroscopy: a new ultrasensitive absorption technique,” Spectroscopy (Eugene, Or.) 11, 46-50 (1996).

Peatross, M. J.

D. T. Gottuk, M. J. Peatross, R. J. Roby, and C. L. Beyler, “Advanced fire detection using multi-signature alarm algorithms,” Fire Saf. J. 37, 381-394 (2002).
[CrossRef]

Peeters, R.

R. Peeters, G. Berden, and G. Meijer, “Sensitive absorption techniques for spectroscopy,” Am. Lab. (Shelton, Connecticut) 33, 60-68 (2001).

Pitts, W. M.

W. M. Pitts, “Reactivity of product gases generated in idealized enclosure fire environments,” in Symposium (International) on Combustion, [Proceedings] 24th (Combustion Institute, 1992), pp. 1737-1746.

Provencal, R. A.

M. W. Todd, R. A. Provencal, T. G. Owano, B. A. Paldus, A. Kachanov, K. L. Vodopyanov, M. Hunter, S. L. Coy, J. I. Steinfeld, and J. T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6-8 mm) optical parametric oscillator,” Appl. Phys. B 75, 367-376 (2002).

R. A. Provencal, J. B. Paul, C. N. Chapo, and R. J. Saykally, “Cavity ringdown laser absorption spectroscopy,” Spectroscopy (Eugene, Or.) 14, 24, 26, 28-32 (1999).

Rakestraw, D. J.

J. J. Scherer, J. B. Paul, C. P. Collier, A. O'Keefe, D. J. Rakestraw, and R. J. Saykally, “Cavity ringdown laser spectroscopy: a new ultrasensitive absorption technique,” Spectroscopy (Eugene, Or.) 11, 46-50 (1996).

Ravishankara, A. R.

S. S. Brown, H. Stark, and A. R. Ravishankara, “Cavity ring-down spectroscopy for atmospheric trace gas detection: application to the nitrate radical (NO3),” Appl. Phys. B 75, 173-182 (2002).

Riedel, W. J.

R. Grisar, J. Anders, M. Knothe, and W. J. Riedel, “Application of infrared fibers in diode laser trace gas analysis,” Proc. SPIE 1591, 201-205 (1992).
[CrossRef]

Rinkinen, W.

T. Cleary, W. L. Grosshandler, M. Nyden, and W. Rinkinen, “Signatures of smoldering/pyrolyzing fires for multi-element detector evaluation,” International Interflam '96 Conference, 7th Proceeding (Interscience Communications, 1996).

Roby, R. J.

D. T. Gottuk, M. J. Peatross, R. J. Roby, and C. L. Beyler, “Advanced fire detection using multi-signature alarm algorithms,” Fire Saf. J. 37, 381-394 (2002).
[CrossRef]

Romanini, D.

J. Morville, M. Chenevier, A. A. Kachanov, and D. Romanini, “Trace gas detection with DFB lasers and cavity ring-down spectroscopy,” Proc. SPIE 4485, 236-243 (2002).
[CrossRef]

D. Romanini, A. A. Kachanov, J. Morville, and M. Chenevier, “Measurement of trace gases by diode laser cavity ringdown spectroscopy,” Proc. SPIE 3821, 94-104 (1999).
[CrossRef]

A. A. Kachanov, D. Romanini, M. Chenevier, A. Garnache, and F. Stoeckel, “New perspectives in ultrasensitive trace gas monitoring by cavity-enhanced laser absorption spectroscopy,” Proc. SPIE 3855, 51-61 (1999).
[CrossRef]

D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270, 538-545 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316-322 (1997).
[CrossRef]

D. Romanini, “Quantitative absorption spectroscopy with a very high sensitivity: cavity ring-down and intracavity absorption laser,” Ann. Phys. (Paris) 20, 665-674 (1995).
[CrossRef]

Sadeghi, N.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316-322 (1997).
[CrossRef]

Savitzky, A.

A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 1627-1639 (1964).
[CrossRef]

Saykally, R. J.

R. A. Provencal, J. B. Paul, C. N. Chapo, and R. J. Saykally, “Cavity ringdown laser absorption spectroscopy,” Spectroscopy (Eugene, Or.) 14, 24, 26, 28-32 (1999).

J. J. Scherer, J. B. Paul, C. P. Collier, A. O'Keefe, D. J. Rakestraw, and R. J. Saykally, “Cavity ringdown laser spectroscopy: a new ultrasensitive absorption technique,” Spectroscopy (Eugene, Or.) 11, 46-50 (1996).

Scherer, J. J.

J. J. Scherer, J. B. Paul, C. P. Collier, A. O'Keefe, D. J. Rakestraw, and R. J. Saykally, “Cavity ringdown laser spectroscopy: a new ultrasensitive absorption technique,” Spectroscopy (Eugene, Or.) 11, 46-50 (1996).

Sigrist, M. W.

M. W. Sigrist, “Trace gas monitoring by laser photoacoustic spectroscopy and related techniques (plenary),” Rev. Sci. Instrum. 74, 486-490 (2003).
[CrossRef]

Skaggs, R. R.

R. R. Skaggs, M. P. Tolocka, and H. J. Miller, “An evaluation of emissions from laminar, underventilated hydrocarbon diffusion flames,” Combust. Sci. Technol. 116-117, 399-426 (1996).
[CrossRef]

R. R. Skaggs and J. H. Miller, “A study of carbon monoxide in a series of laminar ethylene/air diffusion flames using tunable diode laser absorption spectroscopy,” Combust. Flame 100, 430-439 (1995).
[CrossRef]

Spence, T. G.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991-3997 (1998).
[CrossRef]

Stark, H.

S. S. Brown, H. Stark, and A. R. Ravishankara, “Cavity ring-down spectroscopy for atmospheric trace gas detection: application to the nitrate radical (NO3),” Appl. Phys. B 75, 173-182 (2002).

Steinfeld, J. I.

M. W. Todd, R. A. Provencal, T. G. Owano, B. A. Paldus, A. Kachanov, K. L. Vodopyanov, M. Hunter, S. L. Coy, J. I. Steinfeld, and J. T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6-8 mm) optical parametric oscillator,” Appl. Phys. B 75, 367-376 (2002).

Stoeckel, F.

A. A. Kachanov, D. Romanini, M. Chenevier, A. Garnache, and F. Stoeckel, “New perspectives in ultrasensitive trace gas monitoring by cavity-enhanced laser absorption spectroscopy,” Proc. SPIE 3855, 51-61 (1999).
[CrossRef]

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316-322 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270, 538-545 (1997).
[CrossRef]

Stridh, G.

B. Lundgren and G. Stridh, “Chemical analysis of fire effluents,” ACS Symp. Ser. 425, 35-47 (1990).

Todd, M. W.

M. W. Todd, R. A. Provencal, T. G. Owano, B. A. Paldus, A. Kachanov, K. L. Vodopyanov, M. Hunter, S. L. Coy, J. I. Steinfeld, and J. T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6-8 mm) optical parametric oscillator,” Appl. Phys. B 75, 367-376 (2002).

Tolocka, M. P.

R. R. Skaggs, M. P. Tolocka, and H. J. Miller, “An evaluation of emissions from laminar, underventilated hydrocarbon diffusion flames,” Combust. Sci. Technol. 116-117, 399-426 (1996).
[CrossRef]

M. P. Tolocka and J. H. Miller, “Measurements of formaldehyde concentrations and formation rates in a methane-air, non-premixed flame and their implications for heat-release rate,” in Symposium (International) on Combustion, [Proceedings] 27th (Combustion Institute, 1998), pp. 633-640.

Totschnig, G.

Vodopyanov, K. L.

M. W. Todd, R. A. Provencal, T. G. Owano, B. A. Paldus, A. Kachanov, K. L. Vodopyanov, M. Hunter, S. L. Coy, J. I. Steinfeld, and J. T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6-8 mm) optical parametric oscillator,” Appl. Phys. B 75, 367-376 (2002).

Wang, J.

Wilke, B.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991-3997 (1998).
[CrossRef]

Wilson, E. L.

J. H. Miller, A. R. Awtry, M. E. Moses, A. D. Jewell, and E. L. Wilson, “Measurements of hydrogen cyanide and its chemical production rate in a laminar methane/air, non-premixed flame by using continuous wave cavity ringdown spectroscopy,” Proc. Combust. Inst. 29, 2203-2209(2002).

Winter, F.

Wodtke, A. M.

G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, and A. M. Wodtke, “Coherent cavity ring down spectroscopy,” Chem. Phys. Lett. 217, 112-116 (1994).
[CrossRef]

Woldu, F.

Xie, J.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991-3997 (1998).
[CrossRef]

B. A. Paldus, J. S. Harris Jr., J. Martin, J. Xie, and R. N. Zare, “Laser diode cavity ring-down spectroscopy using acousto-optic modulator stabilization,” J. Appl. Phys. 82, 3199-3204 (1997).
[CrossRef]

Yoo, Y. S.

Zare, R. N.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991-3997 (1998).
[CrossRef]

B. A. Paldus, J. S. Harris Jr., J. Martin, J. Xie, and R. N. Zare, “Laser diode cavity ring-down spectroscopy using acousto-optic modulator stabilization,” J. Appl. Phys. 82, 3199-3204 (1997).
[CrossRef]

ACS Symp. Ser. (1)

B. C. Levin and R. G. Gann, “Toxic potency of fire smoke. Measurement and use,” ACS Symp. Ser. 425, 3-11 (1990).

Am. Lab. (Shelton, Connecticut) (1)

R. Peeters, G. Berden, and G. Meijer, “Sensitive absorption techniques for spectroscopy,” Am. Lab. (Shelton, Connecticut) 33, 60-68 (2001).

Anal. Chem. (1)

A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 1627-1639 (1964).
[CrossRef]

Ann. Phys. (Paris) (1)

D. Romanini, “Quantitative absorption spectroscopy with a very high sensitivity: cavity ring-down and intracavity absorption laser,” Ann. Phys. (Paris) 20, 665-674 (1995).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. B (3)

A. R. Awtry and J. H. Miller, “Development of a cw-laser-based cavity-ringdown sensor aboard a spacecraft for trace air constituents,” Appl. Phys. B 75, 255-260(2002).

S. S. Brown, H. Stark, and A. R. Ravishankara, “Cavity ring-down spectroscopy for atmospheric trace gas detection: application to the nitrate radical (NO3),” Appl. Phys. B 75, 173-182 (2002).

M. W. Todd, R. A. Provencal, T. G. Owano, B. A. Paldus, A. Kachanov, K. L. Vodopyanov, M. Hunter, S. L. Coy, J. I. Steinfeld, and J. T. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6-8 mm) optical parametric oscillator,” Appl. Phys. B 75, 367-376 (2002).

Biochemistry (1)

E. Di Cera, M. L. Doyle, M. S. Morgan, R. De Cristofaro, R. Landolfi, B. Bizzi, M. Castagnola, and S. J. Gill, “Carbon monoxide and oxygen binding to human hemoglobin F0,” Biochemistry 28, 2631-2638 (1989).

Chem. Phys. Lett. (3)

G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, and A. M. Wodtke, “Coherent cavity ring down spectroscopy,” Chem. Phys. Lett. 217, 112-116 (1994).
[CrossRef]

D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270, 538-545 (1997).
[CrossRef]

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316-322 (1997).
[CrossRef]

Combust. Flame (1)

R. R. Skaggs and J. H. Miller, “A study of carbon monoxide in a series of laminar ethylene/air diffusion flames using tunable diode laser absorption spectroscopy,” Combust. Flame 100, 430-439 (1995).
[CrossRef]

Combust. Sci. Technol. (1)

R. R. Skaggs, M. P. Tolocka, and H. J. Miller, “An evaluation of emissions from laminar, underventilated hydrocarbon diffusion flames,” Combust. Sci. Technol. 116-117, 399-426 (1996).
[CrossRef]

Fire Saf. J. (2)

D. T. Gottuk, M. J. Peatross, R. J. Roby, and C. L. Beyler, “Advanced fire detection using multi-signature alarm algorithms,” Fire Saf. J. 37, 381-394 (2002).
[CrossRef]

W. L. Grosshandler, “Towards the development of a universal fire emulator-detector evaluator,” Fire Saf. J. 29, 113-127(1997).
[CrossRef]

Fire Technol. (1)

R. G. Gann, “Estimating data for incapacitation of people by fire smoke,” Fire Technol. 40, 201-207 (2004).
[CrossRef]

J. Appl. Phys. (2)

B. A. Paldus, J. S. Harris Jr., J. Martin, J. Xie, and R. N. Zare, “Laser diode cavity ring-down spectroscopy using acousto-optic modulator stabilization,” J. Appl. Phys. 82, 3199-3204 (1997).
[CrossRef]

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, and R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991-3997 (1998).
[CrossRef]

J. Chin. Chem. Soc. (Taipei) (1)

Y. He and B. J. Orr, “Cavity ringdown spectroscopy: new approaches and outcomes,” J. Chin. Chem. Soc. (Taipei) 48, 591-601 (2001).

NIST Spec. Publ. (4)

J. S. Goldmeer, “A rugged LED-based sensor for fire detection,” NIST Spec. Publ. 965, 378-389 (2001).

D. Bomse, “A diode laser multigas analyzer for advanced detection of fires,” NIST Spec. Publ. 965, 358-369 (2001).

T. Cleary and M. Donnelly, “Aircraft cargo compartment fire and nuisance source tests in the FE/DE,” NIST Spec. Publ. 965, 689-700 (2001).

R. A. Bryant, T. J. Ohlemiller, E. L. Johnsson, A. Hamins, B. S. Grove, W. F. Guthrie, A. Maranghides, and G. W. Mulholland, “The NIST 3 megawatt quantitative heat release rate facility,” NIST Spec. Publ. 1007, i-iv, 1-75 (2003).

Proc. Combust. Inst. (1)

J. H. Miller, A. R. Awtry, M. E. Moses, A. D. Jewell, and E. L. Wilson, “Measurements of hydrogen cyanide and its chemical production rate in a laminar methane/air, non-premixed flame by using continuous wave cavity ringdown spectroscopy,” Proc. Combust. Inst. 29, 2203-2209(2002).

Proc. SPIE (5)

A. A. Kachanov, D. Romanini, M. Chenevier, A. Garnache, and F. Stoeckel, “New perspectives in ultrasensitive trace gas monitoring by cavity-enhanced laser absorption spectroscopy,” Proc. SPIE 3855, 51-61 (1999).
[CrossRef]

J. Morville, M. Chenevier, A. A. Kachanov, and D. Romanini, “Trace gas detection with DFB lasers and cavity ring-down spectroscopy,” Proc. SPIE 4485, 236-243 (2002).
[CrossRef]

D. Romanini, A. A. Kachanov, J. Morville, and M. Chenevier, “Measurement of trace gases by diode laser cavity ringdown spectroscopy,” Proc. SPIE 3821, 94-104 (1999).
[CrossRef]

R. D. May, “Next-generation diode laser gas sensors for environmental and industrial monitoring,” Proc. SPIE 3858, 110-118 (1999).
[CrossRef]

R. Grisar, J. Anders, M. Knothe, and W. J. Riedel, “Application of infrared fibers in diode laser trace gas analysis,” Proc. SPIE 1591, 201-205 (1992).
[CrossRef]

Rev. Sci. Instrum. (3)

R. T. Jongma, M. G. H. Boogaarts, I. Holleman, and G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821-2828 (1995).
[CrossRef]

M. W. Sigrist, “Trace gas monitoring by laser photoacoustic spectroscopy and related techniques (plenary),” Rev. Sci. Instrum. 74, 486-490 (2003).
[CrossRef]

A. O'Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544-2551 (1988).
[CrossRef]

Spectroscopy (Eugene, Or.) (2)

J. J. Scherer, J. B. Paul, C. P. Collier, A. O'Keefe, D. J. Rakestraw, and R. J. Saykally, “Cavity ringdown laser spectroscopy: a new ultrasensitive absorption technique,” Spectroscopy (Eugene, Or.) 11, 46-50 (1996).

R. A. Provencal, J. B. Paul, C. N. Chapo, and R. J. Saykally, “Cavity ringdown laser absorption spectroscopy,” Spectroscopy (Eugene, Or.) 14, 24, 26, 28-32 (1999).

Other (8)

D. S. Bomse, D. C. Hovde, S.-J. Chen, and A. Marshall, “Diode laser spectroscopy of gases for incipient fire detection,” abstracts of paper presented at the 229th American Combustion Society National Meeting, San Diego, Calif., USA, 13-17 March, 2005.

M. P. Tolocka and J. H. Miller, “Measurements of formaldehyde concentrations and formation rates in a methane-air, non-premixed flame and their implications for heat-release rate,” in Symposium (International) on Combustion, [Proceedings] 27th (Combustion Institute, 1998), pp. 633-640.

Governing Sourcebook State and Local Fire Protection Spending (Congressional Quarterly, Inc., 2008), http://sourcebook.governing.com/topicresults.jsp?yr=&mrtype=2&sort=612%3A&ctype=1&sub=145&x=37&y=5.

T. Cleary, W. L. Grosshandler, M. Nyden, and W. Rinkinen, “Signatures of smoldering/pyrolyzing fires for multi-element detector evaluation,” International Interflam '96 Conference, 7th Proceeding (Interscience Communications, 1996).

W. L. Grosshandler, “Review of measurements and candidate signatures for early fire detection,” Rep. NISTIR 5555 (Fire Science Division, National Institute Standards and Technology, 1995).

W. M. Pitts, “Reactivity of product gases generated in idealized enclosure fire environments,” in Symposium (International) on Combustion, [Proceedings] 24th (Combustion Institute, 1992), pp. 1737-1746.

B. Lundgren and G. Stridh, “Chemical analysis of fire effluents,” ACS Symp. Ser. 425, 35-47 (1990).

J. M. Hollas, Modern Spectroscopy, 4th ed. (Wiley, 2004), p. 452.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental schematic of the setup used.

Fig. 2
Fig. 2

Schematic of the Fire Emulator/Detector Evaluator located at the BFRL at NIST.

Fig. 3
Fig. 3

Example of data point selection. Arrows indicate the three decay times observed for each molecule.

Fig. 4
Fig. 4

Time evolution in the concentrations of CO, CO 2 , HCN, and C 2 H 2 from a smoldering paper fire ignited by a burning cigarette in the FE/DE. The cigarette was placed in the paper bed at 45 min, indicated by the “ignition” line.

Fig. 5
Fig. 5

Time evolution in the concentrations of CO, CO 2 , and C 2 H 2 measured using the CRDS sensor from a smoldering paper fire started by a burning cigarette in the small room. Mass and temperature data were measured using NIST computer. Vertical lines indicate when the smoke detectors alarmed. The photoelectric detectors alarmed first followed by the ionization detectors.

Tables (1)

Tables Icon

Table 1 Line Positions, Line Strengths, Line Shapes, Linewidths, and Detection Limits for the Target Gases a

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

α ( λ ) = τ empty τ λ c τ empty τ λ ,
x j = α ( λ ) S g ρ ,
Δ v D = v c ( 2 k T ln 2 m ) 1 / 2 ,
Δ v C = d 2 2 ( 8 k T π m ) 1 / 2 P k T ,

Metrics