Abstract

We theoretically and experimentally evaluate the influence of the bandwidth limitation and group delay ripple (GDR) of linearly chirped fiber Bragg gratings (LCFBGs) on the all-optical clock recovery utilizing the temporal Talbot effect. To simulate the reasonably arbitrary shape of the GDR of LCFBGs, the generalized distribution function model of GDR was proposed and utilized. The quality of recovered clock pulses was evaluated by using the proposed parameters “peak variation” and “pulse visibility.” Simulation results indicated that both the signal pulses with <1% duty factor and LCFBGs with the bandwidth of >125 times the bit rate, 10nm for 10Gbit/s input signal, were required to obtain both <20% peak variation and >17dB pulse visibility of the clock pulses recovered from 271 pseudorandom bit sequence (PRBS) pulses, and indicated that the LCFBGs with <20ps peak-to-peak GDR could recover the clock pulses from the 10Gbit/s signal with almost the same quality as that recovered with an ideal LCFBG (with no GDR). In addition, it was revealed that <20ps peak-to-peak GDR did not degrade the timing jitter reduction effect. Qualitative agreement of the experimental and simulation results justified our analytical methods. Our analytical approach and results will be very useful to practically design the LCFBGs for an all-optical clock recovery circuit based on the temporal Talbot effect.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Jinno and T. Matsumoto, “All-optical timing extraction using a 1.5 μm self pulsating multielectrode DFB LD,” Electron. Lett. 24, 1426-1427 (1988).
    [CrossRef]
  2. C. Bornholdt, B. Sartorius, S. Schelhase, M. Möhrle, and S. Bauer, “Self-pulsating DFB laser for all-optical clock recovery at 40 Gbit/s,” Electron. Lett. 36, 327-328 (2000).
    [CrossRef]
  3. J. Renaudier, B. Lavigne, F. Lelarge, M. Jourdran, B. Dagens, O. Legouezigou, P. Gallion, and G.-H. Duan, “Standard-compliant jitter transfer function of all-optical clock recovery at 40 GHz based on a quantum-dot self-pulsating semiconductor laser,” IEEE Photon. Technol. Lett. 18, 1249-1251 (2006).
    [CrossRef]
  4. T. Ohno, K. Sato, R. Iga, Y. Kondo, T. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode-locked laser diode,” Electron. Lett. 40, 265-267 (2004).
    [CrossRef]
  5. S. Arahira and Y. Ogawa, “Retiming and reshaping function of all-optical clock extraction at 160 Gb/s in monolithic mode-locked laser diode,” IEEE J. Quantum Electron. 41, 937-944 (2005).
    [CrossRef]
  6. B. R. Koch, J. S. Barton, M. Mašanović, Z. Hu, J. E. Bowers, and D. J. Blumenthal, “35 Gb/s monolithic all-optical clock recovery pulse source,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Tech. Dig. (CD) (Optical Society of America, 2007), paper OWP2.
    [PubMed]
  7. A. D. Ellis, K. Smith, and D. M. Patrick, “All-optical clock recovery at bit rates up to 40 Gbit/s,” Electron. Lett. 29, 1323-1324 (1993).
    [CrossRef]
  8. D. M. Patrick and R. J. Manning, “20 Gbit/s all-optical clock recovery using semiconductor nonlinearity,” Electron. Lett. 30, 151-152 (1994).
    [CrossRef]
  9. S. Bigo and E. Desurvire, “20 GHz all-optical clock recovery based on fibre laser mode-locking with fibre nonlinear loop mirror as variable intensity/phase modulator,” Electron. Lett. 31, 1855-1857 (1995).
    [CrossRef]
  10. L. E. Adams, E. S. Kintzer, and J. G. Fujimoto, “Performance and scalability of an all-optical clock recovery figure eight laser,” IEEE Photon. Technol. Lett. 8, 55-57 (1996).
    [CrossRef]
  11. L. Wang, Y. Su, A. Agarwal, and P. Kumar, “Polarization insensitive widely tunable all-optical clock recovery based on AM mode-locking of a fiber ring laser,” IEEE Photon. Technol. Lett. 12, 211-213 (2000).
    [CrossRef]
  12. K. Vlachos, G. Theophilopoulos, A. Hatziefremidis, and H. Avramopoulos, “30 Gb/s all-optical clock recovery circuit,” IEEE Photon. Technol. Lett. 12, 705-707 (2000).
    [CrossRef]
  13. L. F. K. Lui, L. Xu, C. C. Lee, P. K. A. Wai, H. Y. Tam, and C. Lu, “All-optical clock recovery using erbium-doped fiber laser incorporating an electroabsorption modulator and a linear optical amplifier,” IEEE Photon. Technol. Lett. 19, 720-722 (2007).
    [CrossRef]
  14. L. R. Chen and J. C. Cartledge, “Mode-locking in a semiconductor fiber laser using cross-absorption modulation in an electroabsorpsion modulator and application to all-optical clock recovery,” J. Lightwave Technol. 26, 799-806 (2008).
    [CrossRef]
  15. Y. Su, L. Wang, A. Agarwal, and P. Kumar, “Wavelength-tunable all-optical clock recovery using a fiber-optic parametric oscillator,” Opt. Commun. 184, 151-156 (2000).
    [CrossRef]
  16. L. F. K. Lui, A. Zhang, P. K. A. Wai, H. Y. Tam, and M. S.Demokan, “40 Gb/s all-optical clock recovery based on an optical parametric oscillator with photonic crystal fiber,” in Proceedings of Joint Conference of the Opto-Electronics and Communications Conference and the Australian Conference on Optical Fibre Technology (IEEE, 2008), paper ThH-1.
    [PubMed]
  17. B. R. Koch, A. W. Fang, H. N. Poulsen, H. Park, D. J. Blumenthal, J. E. Bowers, R. Jones, M. J. Paniccia, and O. Cohen, “All-optical clock recovery with retiming and reshaping using a silicon evanescent mode-locked ring laser,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference Technical Digest (CD) (Optical Society of America, 2008), paper OMN1.
    [PubMed]
  18. M. Jinno and T. Matsumoto, “Optical tank circuits used for all-optical timing recovery,” J. Quantum Electron. 28, 895-900 (1992).
    [CrossRef]
  19. D. L. Butler, J. S. Wey, M. W. Chbat, G. L. Burdge, and J. Goldhar, “Optical clock recovery from a data stream of an arbitrary bit rate by use of stimulated Brillouin scattering,” Opt. Lett. 20, 560-562 (1995).
    [CrossRef] [PubMed]
  20. H. Kawakami, Y. Miyamoto, T. Kataoka, and K. Hagimoto, “All-optical timing clock extraction using multiple wavelength pumped Brillouin amplifier,” IEICE Trans. Commun. E78-B, 694-701 (1995).
  21. T. Jannson and J. Jannson, “Temporal self-imaging effect in single-mode fibers,” J. Opt. Soc. Am. 71, 1373-1376(1981).
    [CrossRef]
  22. J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum. Electron. 7, 728-744 (2001).
    [CrossRef]
  23. S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu, and Y. Ogawa, “Repetition-frequency multiplication of mode-locked pulses using fiber dispersion,” J. Lightwave Technol. 16, 405-410 (1998).
    [CrossRef]
  24. I. Shake, H. Takara, S. Kawanishi, and M. Saruwatari, “High-repetition-rate optical pulse generation by using chirped optical pulses,” Electron. Lett. 34, 792-793 (1998).
    [CrossRef]
  25. W. J. Lai, P. Shum, and L. N. Binh, “Stability and transient analyses of temporal Talbot-effect-based repetition-rate multiplication mode-locked laser systems,” IEEE Photon. Technol. Lett. 16, 437-439 (2004).
    [CrossRef]
  26. J. Azaña and M. A. Muriel, “Technique for multiplying the repetition rates of periodic trains of pulses by means of a temporal self-imaging effect in chirped fiber gratings,” Opt. Lett. 24, 1672-1674 (1999).
    [CrossRef]
  27. S. Longhi, M. Marano, P. Laporta, O. Svelto, M. Belmonte, B. Agogliati, L. Arcangeli, V. Pruneri, M. N. Zervas, and M. Ibsen, “40 GHz pulse-train generation at 1.5 μm with a chirped fiber grating as a frequency multiplier,” Opt. Lett. 25, 1481-1483 (2000).
    [CrossRef]
  28. D. Pudo, M. Depa, and L. R. Chen, “Single and multiwavelength all-optical clock recovery in single-mode fiber using the temporal Talbot effect,” J. Lightwave Technol. 25, 2898-2903 (2007).
    [CrossRef]
  29. D. Pudo, M. Depa, L. R. Chen, M. Ibsen, and D. J. Richardson, “Temporal-Talbot effect based all-optical clock recovery using Bragg gratings,” in European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference Technical Digest (Optical Society of America, 2007), paper CI7_5.
    [CrossRef] [PubMed]
  30. C. R. Fernández-Pousa, F. Mateos, L. Chantada, M. T. Flores-Arias, C. Bao, M. V. Pérez, and C. Gómez-Reino, “Timing jitter smoothing by Talbot effect. I. Variance,” J. Opt. Soc. Am. B 21, 1170-1177 (2004).
    [CrossRef]
  31. C. R. Fernández-Pousa, F. Mateos, L. Chantada, M. T. Flores-Arias, C. Bao, M. V. Pérez, and C. Gómez-Reino, “Timing jitter smoothing by Talbot effect. II. Intensity spectrum,” J. Opt. Soc. Am. B 22, 753-763 (2005).
    [CrossRef]
  32. D. Pudo and L. R. Chen, “Simple estimation of pulse amplitude noise and timing jitter evolution through the temporal Talbot effect,” Opt. Express 15, 6351-6357 (2007).
    [CrossRef] [PubMed]
  33. D. Pudo, C. R. Fernández-Pousa, and L. R. Chen, “Timing jitter transfer function in the temporal Talbot effect,” IEEE Photon. Technol. Lett. 20, 496-498 (2008).
    [CrossRef]
  34. L. Chantada, C. R. Fernández-Pousa, M. T. Flores-Arias, and C. Gómez-Reino, “Radio-frequency spectrum analysis of a second-order dispersive Talbot line,” Appl. Opt. 47, E19-E26 (2008).
    [CrossRef] [PubMed]
  35. M. Oiwa, J. Kim, K. Tsuji, N. Onodera, and M. Saruwatari, “Experimental demonstration of timing jitter reduction based on the temporal Talbot effect using LCFBGs,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuA3.
    [PubMed]
  36. J. T. Mok and B. J. Eggleton, “Impact of group delay ripple on repetition-rate multiplication through Talbot self-imaging effect,” Opt. Commun. 232, 167-178 (2004).
    [CrossRef]
  37. K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770-778 (1998).
    [CrossRef]
  38. S. J. Mihailov, F. Bilodeau, K. O. Hill, D. C. Johnson, J. Albert, and A. S. Holmes, “Apodization technique for fiber grating fabrication with a halftone transmission amplitude mask,” Appl. Opt. 39, 3670-3677 (2000).
    [CrossRef]
  39. T. Komukai, T. Inui, and M. Nakazawa, “Very low group delay ripple characteristics of fibre Bragg grating with chirp induced by an S-curve bending technique,” Electron. Lett. 37, 449-451 (2001).
    [CrossRef]
  40. T. Komukai, T. Inui, and M. Nakazawa, “Origin of group delay ripple in chirped fiber Bragg grating and its effective reduction method,” Electron. Commun. Japan (Part II: Electronics) (English translation) 86, 76-84 (2003).
    [CrossRef]
  41. M. Sumetsky, P. I. Reyes, P. S. Westbrook, N. M. Litchinitser, B. J. Eggleton, Y. Li, R. Deshmukh, and C. Soccolich, “Group-delay ripple correction in chirped fiber Bragg gratings,” Opt. Lett. 28, 777-779 (2003).
    [CrossRef] [PubMed]
  42. T.-J. Ahn, Y. Park, and J. Azaña, “Fast and accurate group delay ripple measurement technique for ultralong chirped fiber Bragg gratings,” Opt. Lett. 32, 2674-2676 (2007).
    [CrossRef] [PubMed]
  43. K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, and R. I. Laming, “Influence of nonideal chirped fiber grating characteristics on dispersion cancellation,” IEEE Photon. Technol. Lett. 10, 1476-1478 (1998).
    [CrossRef]
  44. H. Yoshimi, Y. Takushima, and K. Kikuchi, “A simple method for estimating the eye-opening penalty caused by group-delay ripple of optical filters,” in Proceedings of 28th European Conference on Optical Communication (IEEE, 2002), paper 10.4.4.

2008 (3)

2007 (4)

2006 (1)

J. Renaudier, B. Lavigne, F. Lelarge, M. Jourdran, B. Dagens, O. Legouezigou, P. Gallion, and G.-H. Duan, “Standard-compliant jitter transfer function of all-optical clock recovery at 40 GHz based on a quantum-dot self-pulsating semiconductor laser,” IEEE Photon. Technol. Lett. 18, 1249-1251 (2006).
[CrossRef]

2005 (2)

S. Arahira and Y. Ogawa, “Retiming and reshaping function of all-optical clock extraction at 160 Gb/s in monolithic mode-locked laser diode,” IEEE J. Quantum Electron. 41, 937-944 (2005).
[CrossRef]

C. R. Fernández-Pousa, F. Mateos, L. Chantada, M. T. Flores-Arias, C. Bao, M. V. Pérez, and C. Gómez-Reino, “Timing jitter smoothing by Talbot effect. II. Intensity spectrum,” J. Opt. Soc. Am. B 22, 753-763 (2005).
[CrossRef]

2004 (4)

C. R. Fernández-Pousa, F. Mateos, L. Chantada, M. T. Flores-Arias, C. Bao, M. V. Pérez, and C. Gómez-Reino, “Timing jitter smoothing by Talbot effect. I. Variance,” J. Opt. Soc. Am. B 21, 1170-1177 (2004).
[CrossRef]

W. J. Lai, P. Shum, and L. N. Binh, “Stability and transient analyses of temporal Talbot-effect-based repetition-rate multiplication mode-locked laser systems,” IEEE Photon. Technol. Lett. 16, 437-439 (2004).
[CrossRef]

J. T. Mok and B. J. Eggleton, “Impact of group delay ripple on repetition-rate multiplication through Talbot self-imaging effect,” Opt. Commun. 232, 167-178 (2004).
[CrossRef]

T. Ohno, K. Sato, R. Iga, Y. Kondo, T. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode-locked laser diode,” Electron. Lett. 40, 265-267 (2004).
[CrossRef]

2003 (2)

T. Komukai, T. Inui, and M. Nakazawa, “Origin of group delay ripple in chirped fiber Bragg grating and its effective reduction method,” Electron. Commun. Japan (Part II: Electronics) (English translation) 86, 76-84 (2003).
[CrossRef]

M. Sumetsky, P. I. Reyes, P. S. Westbrook, N. M. Litchinitser, B. J. Eggleton, Y. Li, R. Deshmukh, and C. Soccolich, “Group-delay ripple correction in chirped fiber Bragg gratings,” Opt. Lett. 28, 777-779 (2003).
[CrossRef] [PubMed]

2001 (2)

J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum. Electron. 7, 728-744 (2001).
[CrossRef]

T. Komukai, T. Inui, and M. Nakazawa, “Very low group delay ripple characteristics of fibre Bragg grating with chirp induced by an S-curve bending technique,” Electron. Lett. 37, 449-451 (2001).
[CrossRef]

2000 (6)

S. Longhi, M. Marano, P. Laporta, O. Svelto, M. Belmonte, B. Agogliati, L. Arcangeli, V. Pruneri, M. N. Zervas, and M. Ibsen, “40 GHz pulse-train generation at 1.5 μm with a chirped fiber grating as a frequency multiplier,” Opt. Lett. 25, 1481-1483 (2000).
[CrossRef]

S. J. Mihailov, F. Bilodeau, K. O. Hill, D. C. Johnson, J. Albert, and A. S. Holmes, “Apodization technique for fiber grating fabrication with a halftone transmission amplitude mask,” Appl. Opt. 39, 3670-3677 (2000).
[CrossRef]

C. Bornholdt, B. Sartorius, S. Schelhase, M. Möhrle, and S. Bauer, “Self-pulsating DFB laser for all-optical clock recovery at 40 Gbit/s,” Electron. Lett. 36, 327-328 (2000).
[CrossRef]

L. Wang, Y. Su, A. Agarwal, and P. Kumar, “Polarization insensitive widely tunable all-optical clock recovery based on AM mode-locking of a fiber ring laser,” IEEE Photon. Technol. Lett. 12, 211-213 (2000).
[CrossRef]

K. Vlachos, G. Theophilopoulos, A. Hatziefremidis, and H. Avramopoulos, “30 Gb/s all-optical clock recovery circuit,” IEEE Photon. Technol. Lett. 12, 705-707 (2000).
[CrossRef]

Y. Su, L. Wang, A. Agarwal, and P. Kumar, “Wavelength-tunable all-optical clock recovery using a fiber-optic parametric oscillator,” Opt. Commun. 184, 151-156 (2000).
[CrossRef]

1999 (1)

1998 (4)

S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu, and Y. Ogawa, “Repetition-frequency multiplication of mode-locked pulses using fiber dispersion,” J. Lightwave Technol. 16, 405-410 (1998).
[CrossRef]

I. Shake, H. Takara, S. Kawanishi, and M. Saruwatari, “High-repetition-rate optical pulse generation by using chirped optical pulses,” Electron. Lett. 34, 792-793 (1998).
[CrossRef]

K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770-778 (1998).
[CrossRef]

K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, and R. I. Laming, “Influence of nonideal chirped fiber grating characteristics on dispersion cancellation,” IEEE Photon. Technol. Lett. 10, 1476-1478 (1998).
[CrossRef]

1996 (1)

L. E. Adams, E. S. Kintzer, and J. G. Fujimoto, “Performance and scalability of an all-optical clock recovery figure eight laser,” IEEE Photon. Technol. Lett. 8, 55-57 (1996).
[CrossRef]

1995 (3)

D. L. Butler, J. S. Wey, M. W. Chbat, G. L. Burdge, and J. Goldhar, “Optical clock recovery from a data stream of an arbitrary bit rate by use of stimulated Brillouin scattering,” Opt. Lett. 20, 560-562 (1995).
[CrossRef] [PubMed]

H. Kawakami, Y. Miyamoto, T. Kataoka, and K. Hagimoto, “All-optical timing clock extraction using multiple wavelength pumped Brillouin amplifier,” IEICE Trans. Commun. E78-B, 694-701 (1995).

S. Bigo and E. Desurvire, “20 GHz all-optical clock recovery based on fibre laser mode-locking with fibre nonlinear loop mirror as variable intensity/phase modulator,” Electron. Lett. 31, 1855-1857 (1995).
[CrossRef]

1994 (1)

D. M. Patrick and R. J. Manning, “20 Gbit/s all-optical clock recovery using semiconductor nonlinearity,” Electron. Lett. 30, 151-152 (1994).
[CrossRef]

1993 (1)

A. D. Ellis, K. Smith, and D. M. Patrick, “All-optical clock recovery at bit rates up to 40 Gbit/s,” Electron. Lett. 29, 1323-1324 (1993).
[CrossRef]

1992 (1)

M. Jinno and T. Matsumoto, “Optical tank circuits used for all-optical timing recovery,” J. Quantum Electron. 28, 895-900 (1992).
[CrossRef]

1988 (1)

M. Jinno and T. Matsumoto, “All-optical timing extraction using a 1.5 μm self pulsating multielectrode DFB LD,” Electron. Lett. 24, 1426-1427 (1988).
[CrossRef]

1981 (1)

Adams, L. E.

L. E. Adams, E. S. Kintzer, and J. G. Fujimoto, “Performance and scalability of an all-optical clock recovery figure eight laser,” IEEE Photon. Technol. Lett. 8, 55-57 (1996).
[CrossRef]

Agarwal, A.

L. Wang, Y. Su, A. Agarwal, and P. Kumar, “Polarization insensitive widely tunable all-optical clock recovery based on AM mode-locking of a fiber ring laser,” IEEE Photon. Technol. Lett. 12, 211-213 (2000).
[CrossRef]

Y. Su, L. Wang, A. Agarwal, and P. Kumar, “Wavelength-tunable all-optical clock recovery using a fiber-optic parametric oscillator,” Opt. Commun. 184, 151-156 (2000).
[CrossRef]

Agogliati, B.

Ahn, T.-J.

Albert, J.

Arahira, S.

S. Arahira and Y. Ogawa, “Retiming and reshaping function of all-optical clock extraction at 160 Gb/s in monolithic mode-locked laser diode,” IEEE J. Quantum Electron. 41, 937-944 (2005).
[CrossRef]

S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu, and Y. Ogawa, “Repetition-frequency multiplication of mode-locked pulses using fiber dispersion,” J. Lightwave Technol. 16, 405-410 (1998).
[CrossRef]

Arcangeli, L.

Avramopoulos, H.

K. Vlachos, G. Theophilopoulos, A. Hatziefremidis, and H. Avramopoulos, “30 Gb/s all-optical clock recovery circuit,” IEEE Photon. Technol. Lett. 12, 705-707 (2000).
[CrossRef]

Azaña, J.

Bao, C.

Barton, J. S.

B. R. Koch, J. S. Barton, M. Mašanović, Z. Hu, J. E. Bowers, and D. J. Blumenthal, “35 Gb/s monolithic all-optical clock recovery pulse source,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Tech. Dig. (CD) (Optical Society of America, 2007), paper OWP2.
[PubMed]

Bauer, S.

C. Bornholdt, B. Sartorius, S. Schelhase, M. Möhrle, and S. Bauer, “Self-pulsating DFB laser for all-optical clock recovery at 40 Gbit/s,” Electron. Lett. 36, 327-328 (2000).
[CrossRef]

Belmonte, M.

Bigo, S.

S. Bigo and E. Desurvire, “20 GHz all-optical clock recovery based on fibre laser mode-locking with fibre nonlinear loop mirror as variable intensity/phase modulator,” Electron. Lett. 31, 1855-1857 (1995).
[CrossRef]

Bilodeau, F.

Binh, L. N.

W. J. Lai, P. Shum, and L. N. Binh, “Stability and transient analyses of temporal Talbot-effect-based repetition-rate multiplication mode-locked laser systems,” IEEE Photon. Technol. Lett. 16, 437-439 (2004).
[CrossRef]

Blumenthal, D. J.

B. R. Koch, A. W. Fang, H. N. Poulsen, H. Park, D. J. Blumenthal, J. E. Bowers, R. Jones, M. J. Paniccia, and O. Cohen, “All-optical clock recovery with retiming and reshaping using a silicon evanescent mode-locked ring laser,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference Technical Digest (CD) (Optical Society of America, 2008), paper OMN1.
[PubMed]

B. R. Koch, J. S. Barton, M. Mašanović, Z. Hu, J. E. Bowers, and D. J. Blumenthal, “35 Gb/s monolithic all-optical clock recovery pulse source,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Tech. Dig. (CD) (Optical Society of America, 2007), paper OWP2.
[PubMed]

Bornholdt, C.

C. Bornholdt, B. Sartorius, S. Schelhase, M. Möhrle, and S. Bauer, “Self-pulsating DFB laser for all-optical clock recovery at 40 Gbit/s,” Electron. Lett. 36, 327-328 (2000).
[CrossRef]

Bowers, J. E.

B. R. Koch, J. S. Barton, M. Mašanović, Z. Hu, J. E. Bowers, and D. J. Blumenthal, “35 Gb/s monolithic all-optical clock recovery pulse source,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Tech. Dig. (CD) (Optical Society of America, 2007), paper OWP2.
[PubMed]

B. R. Koch, A. W. Fang, H. N. Poulsen, H. Park, D. J. Blumenthal, J. E. Bowers, R. Jones, M. J. Paniccia, and O. Cohen, “All-optical clock recovery with retiming and reshaping using a silicon evanescent mode-locked ring laser,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference Technical Digest (CD) (Optical Society of America, 2008), paper OMN1.
[PubMed]

Burdge, G. L.

Butler, D. L.

Cartledge, J. C.

Chantada, L.

Chbat, M. W.

Chen, L. R.

L. R. Chen and J. C. Cartledge, “Mode-locking in a semiconductor fiber laser using cross-absorption modulation in an electroabsorpsion modulator and application to all-optical clock recovery,” J. Lightwave Technol. 26, 799-806 (2008).
[CrossRef]

D. Pudo, C. R. Fernández-Pousa, and L. R. Chen, “Timing jitter transfer function in the temporal Talbot effect,” IEEE Photon. Technol. Lett. 20, 496-498 (2008).
[CrossRef]

D. Pudo and L. R. Chen, “Simple estimation of pulse amplitude noise and timing jitter evolution through the temporal Talbot effect,” Opt. Express 15, 6351-6357 (2007).
[CrossRef] [PubMed]

D. Pudo, M. Depa, and L. R. Chen, “Single and multiwavelength all-optical clock recovery in single-mode fiber using the temporal Talbot effect,” J. Lightwave Technol. 25, 2898-2903 (2007).
[CrossRef]

D. Pudo, M. Depa, L. R. Chen, M. Ibsen, and D. J. Richardson, “Temporal-Talbot effect based all-optical clock recovery using Bragg gratings,” in European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference Technical Digest (Optical Society of America, 2007), paper CI7_5.
[CrossRef] [PubMed]

Cohen, O.

B. R. Koch, A. W. Fang, H. N. Poulsen, H. Park, D. J. Blumenthal, J. E. Bowers, R. Jones, M. J. Paniccia, and O. Cohen, “All-optical clock recovery with retiming and reshaping using a silicon evanescent mode-locked ring laser,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference Technical Digest (CD) (Optical Society of America, 2008), paper OMN1.
[PubMed]

Dagens, B.

J. Renaudier, B. Lavigne, F. Lelarge, M. Jourdran, B. Dagens, O. Legouezigou, P. Gallion, and G.-H. Duan, “Standard-compliant jitter transfer function of all-optical clock recovery at 40 GHz based on a quantum-dot self-pulsating semiconductor laser,” IEEE Photon. Technol. Lett. 18, 1249-1251 (2006).
[CrossRef]

Demokan, M. S.

L. F. K. Lui, A. Zhang, P. K. A. Wai, H. Y. Tam, and M. S.Demokan, “40 Gb/s all-optical clock recovery based on an optical parametric oscillator with photonic crystal fiber,” in Proceedings of Joint Conference of the Opto-Electronics and Communications Conference and the Australian Conference on Optical Fibre Technology (IEEE, 2008), paper ThH-1.
[PubMed]

Depa, M.

D. Pudo, M. Depa, and L. R. Chen, “Single and multiwavelength all-optical clock recovery in single-mode fiber using the temporal Talbot effect,” J. Lightwave Technol. 25, 2898-2903 (2007).
[CrossRef]

D. Pudo, M. Depa, L. R. Chen, M. Ibsen, and D. J. Richardson, “Temporal-Talbot effect based all-optical clock recovery using Bragg gratings,” in European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference Technical Digest (Optical Society of America, 2007), paper CI7_5.
[CrossRef] [PubMed]

Deshmukh, R.

Desurvire, E.

S. Bigo and E. Desurvire, “20 GHz all-optical clock recovery based on fibre laser mode-locking with fibre nonlinear loop mirror as variable intensity/phase modulator,” Electron. Lett. 31, 1855-1857 (1995).
[CrossRef]

Duan, G.-H.

J. Renaudier, B. Lavigne, F. Lelarge, M. Jourdran, B. Dagens, O. Legouezigou, P. Gallion, and G.-H. Duan, “Standard-compliant jitter transfer function of all-optical clock recovery at 40 GHz based on a quantum-dot self-pulsating semiconductor laser,” IEEE Photon. Technol. Lett. 18, 1249-1251 (2006).
[CrossRef]

Durkin, M.

K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, and R. I. Laming, “Influence of nonideal chirped fiber grating characteristics on dispersion cancellation,” IEEE Photon. Technol. Lett. 10, 1476-1478 (1998).
[CrossRef]

Eggleton, B. J.

J. T. Mok and B. J. Eggleton, “Impact of group delay ripple on repetition-rate multiplication through Talbot self-imaging effect,” Opt. Commun. 232, 167-178 (2004).
[CrossRef]

M. Sumetsky, P. I. Reyes, P. S. Westbrook, N. M. Litchinitser, B. J. Eggleton, Y. Li, R. Deshmukh, and C. Soccolich, “Group-delay ripple correction in chirped fiber Bragg gratings,” Opt. Lett. 28, 777-779 (2003).
[CrossRef] [PubMed]

Ellis, A. D.

A. D. Ellis, K. Smith, and D. M. Patrick, “All-optical clock recovery at bit rates up to 40 Gbit/s,” Electron. Lett. 29, 1323-1324 (1993).
[CrossRef]

Ennser, K.

K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770-778 (1998).
[CrossRef]

K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, and R. I. Laming, “Influence of nonideal chirped fiber grating characteristics on dispersion cancellation,” IEEE Photon. Technol. Lett. 10, 1476-1478 (1998).
[CrossRef]

Fang, A. W.

B. R. Koch, A. W. Fang, H. N. Poulsen, H. Park, D. J. Blumenthal, J. E. Bowers, R. Jones, M. J. Paniccia, and O. Cohen, “All-optical clock recovery with retiming and reshaping using a silicon evanescent mode-locked ring laser,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference Technical Digest (CD) (Optical Society of America, 2008), paper OMN1.
[PubMed]

Fernández-Pousa, C. R.

Flores-Arias, M. T.

Fujimoto, J. G.

L. E. Adams, E. S. Kintzer, and J. G. Fujimoto, “Performance and scalability of an all-optical clock recovery figure eight laser,” IEEE Photon. Technol. Lett. 8, 55-57 (1996).
[CrossRef]

Furuta, T.

T. Ohno, K. Sato, R. Iga, Y. Kondo, T. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode-locked laser diode,” Electron. Lett. 40, 265-267 (2004).
[CrossRef]

Gallion, P.

J. Renaudier, B. Lavigne, F. Lelarge, M. Jourdran, B. Dagens, O. Legouezigou, P. Gallion, and G.-H. Duan, “Standard-compliant jitter transfer function of all-optical clock recovery at 40 GHz based on a quantum-dot self-pulsating semiconductor laser,” IEEE Photon. Technol. Lett. 18, 1249-1251 (2006).
[CrossRef]

Goldhar, J.

Gómez-Reino, C.

Hagimoto, K.

H. Kawakami, Y. Miyamoto, T. Kataoka, and K. Hagimoto, “All-optical timing clock extraction using multiple wavelength pumped Brillouin amplifier,” IEICE Trans. Commun. E78-B, 694-701 (1995).

Hatziefremidis, A.

K. Vlachos, G. Theophilopoulos, A. Hatziefremidis, and H. Avramopoulos, “30 Gb/s all-optical clock recovery circuit,” IEEE Photon. Technol. Lett. 12, 705-707 (2000).
[CrossRef]

Hill, K. O.

Holmes, A. S.

Hu, Z.

B. R. Koch, J. S. Barton, M. Mašanović, Z. Hu, J. E. Bowers, and D. J. Blumenthal, “35 Gb/s monolithic all-optical clock recovery pulse source,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Tech. Dig. (CD) (Optical Society of America, 2007), paper OWP2.
[PubMed]

Ibsen, M.

S. Longhi, M. Marano, P. Laporta, O. Svelto, M. Belmonte, B. Agogliati, L. Arcangeli, V. Pruneri, M. N. Zervas, and M. Ibsen, “40 GHz pulse-train generation at 1.5 μm with a chirped fiber grating as a frequency multiplier,” Opt. Lett. 25, 1481-1483 (2000).
[CrossRef]

K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, and R. I. Laming, “Influence of nonideal chirped fiber grating characteristics on dispersion cancellation,” IEEE Photon. Technol. Lett. 10, 1476-1478 (1998).
[CrossRef]

D. Pudo, M. Depa, L. R. Chen, M. Ibsen, and D. J. Richardson, “Temporal-Talbot effect based all-optical clock recovery using Bragg gratings,” in European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference Technical Digest (Optical Society of America, 2007), paper CI7_5.
[CrossRef] [PubMed]

Iga, R.

T. Ohno, K. Sato, R. Iga, Y. Kondo, T. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode-locked laser diode,” Electron. Lett. 40, 265-267 (2004).
[CrossRef]

Inui, T.

T. Komukai, T. Inui, and M. Nakazawa, “Origin of group delay ripple in chirped fiber Bragg grating and its effective reduction method,” Electron. Commun. Japan (Part II: Electronics) (English translation) 86, 76-84 (2003).
[CrossRef]

T. Komukai, T. Inui, and M. Nakazawa, “Very low group delay ripple characteristics of fibre Bragg grating with chirp induced by an S-curve bending technique,” Electron. Lett. 37, 449-451 (2001).
[CrossRef]

Ito, H.

T. Ohno, K. Sato, R. Iga, Y. Kondo, T. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode-locked laser diode,” Electron. Lett. 40, 265-267 (2004).
[CrossRef]

Ito, T.

T. Ohno, K. Sato, R. Iga, Y. Kondo, T. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode-locked laser diode,” Electron. Lett. 40, 265-267 (2004).
[CrossRef]

Jannson, J.

Jannson, T.

Jinno, M.

M. Jinno and T. Matsumoto, “Optical tank circuits used for all-optical timing recovery,” J. Quantum Electron. 28, 895-900 (1992).
[CrossRef]

M. Jinno and T. Matsumoto, “All-optical timing extraction using a 1.5 μm self pulsating multielectrode DFB LD,” Electron. Lett. 24, 1426-1427 (1988).
[CrossRef]

Johnson, D. C.

Jones, R.

B. R. Koch, A. W. Fang, H. N. Poulsen, H. Park, D. J. Blumenthal, J. E. Bowers, R. Jones, M. J. Paniccia, and O. Cohen, “All-optical clock recovery with retiming and reshaping using a silicon evanescent mode-locked ring laser,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference Technical Digest (CD) (Optical Society of America, 2008), paper OMN1.
[PubMed]

Jourdran, M.

J. Renaudier, B. Lavigne, F. Lelarge, M. Jourdran, B. Dagens, O. Legouezigou, P. Gallion, and G.-H. Duan, “Standard-compliant jitter transfer function of all-optical clock recovery at 40 GHz based on a quantum-dot self-pulsating semiconductor laser,” IEEE Photon. Technol. Lett. 18, 1249-1251 (2006).
[CrossRef]

Kataoka, T.

H. Kawakami, Y. Miyamoto, T. Kataoka, and K. Hagimoto, “All-optical timing clock extraction using multiple wavelength pumped Brillouin amplifier,” IEICE Trans. Commun. E78-B, 694-701 (1995).

Kawakami, H.

H. Kawakami, Y. Miyamoto, T. Kataoka, and K. Hagimoto, “All-optical timing clock extraction using multiple wavelength pumped Brillouin amplifier,” IEICE Trans. Commun. E78-B, 694-701 (1995).

Kawanishi, S.

I. Shake, H. Takara, S. Kawanishi, and M. Saruwatari, “High-repetition-rate optical pulse generation by using chirped optical pulses,” Electron. Lett. 34, 792-793 (1998).
[CrossRef]

Kikuchi, K.

H. Yoshimi, Y. Takushima, and K. Kikuchi, “A simple method for estimating the eye-opening penalty caused by group-delay ripple of optical filters,” in Proceedings of 28th European Conference on Optical Communication (IEEE, 2002), paper 10.4.4.

Kim, J.

M. Oiwa, J. Kim, K. Tsuji, N. Onodera, and M. Saruwatari, “Experimental demonstration of timing jitter reduction based on the temporal Talbot effect using LCFBGs,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuA3.
[PubMed]

Kintzer, E. S.

L. E. Adams, E. S. Kintzer, and J. G. Fujimoto, “Performance and scalability of an all-optical clock recovery figure eight laser,” IEEE Photon. Technol. Lett. 8, 55-57 (1996).
[CrossRef]

Koch, B. R.

B. R. Koch, A. W. Fang, H. N. Poulsen, H. Park, D. J. Blumenthal, J. E. Bowers, R. Jones, M. J. Paniccia, and O. Cohen, “All-optical clock recovery with retiming and reshaping using a silicon evanescent mode-locked ring laser,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference Technical Digest (CD) (Optical Society of America, 2008), paper OMN1.
[PubMed]

B. R. Koch, J. S. Barton, M. Mašanović, Z. Hu, J. E. Bowers, and D. J. Blumenthal, “35 Gb/s monolithic all-optical clock recovery pulse source,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Tech. Dig. (CD) (Optical Society of America, 2007), paper OWP2.
[PubMed]

Komukai, T.

T. Komukai, T. Inui, and M. Nakazawa, “Origin of group delay ripple in chirped fiber Bragg grating and its effective reduction method,” Electron. Commun. Japan (Part II: Electronics) (English translation) 86, 76-84 (2003).
[CrossRef]

T. Komukai, T. Inui, and M. Nakazawa, “Very low group delay ripple characteristics of fibre Bragg grating with chirp induced by an S-curve bending technique,” Electron. Lett. 37, 449-451 (2001).
[CrossRef]

Kondo, Y.

T. Ohno, K. Sato, R. Iga, Y. Kondo, T. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode-locked laser diode,” Electron. Lett. 40, 265-267 (2004).
[CrossRef]

Kumar, P.

Y. Su, L. Wang, A. Agarwal, and P. Kumar, “Wavelength-tunable all-optical clock recovery using a fiber-optic parametric oscillator,” Opt. Commun. 184, 151-156 (2000).
[CrossRef]

L. Wang, Y. Su, A. Agarwal, and P. Kumar, “Polarization insensitive widely tunable all-optical clock recovery based on AM mode-locking of a fiber ring laser,” IEEE Photon. Technol. Lett. 12, 211-213 (2000).
[CrossRef]

Kunimatsu, D.

Kutsuzawa, S.

Lai, W. J.

W. J. Lai, P. Shum, and L. N. Binh, “Stability and transient analyses of temporal Talbot-effect-based repetition-rate multiplication mode-locked laser systems,” IEEE Photon. Technol. Lett. 16, 437-439 (2004).
[CrossRef]

Laming, R. I.

K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770-778 (1998).
[CrossRef]

K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, and R. I. Laming, “Influence of nonideal chirped fiber grating characteristics on dispersion cancellation,” IEEE Photon. Technol. Lett. 10, 1476-1478 (1998).
[CrossRef]

Laporta, P.

Lavigne, B.

J. Renaudier, B. Lavigne, F. Lelarge, M. Jourdran, B. Dagens, O. Legouezigou, P. Gallion, and G.-H. Duan, “Standard-compliant jitter transfer function of all-optical clock recovery at 40 GHz based on a quantum-dot self-pulsating semiconductor laser,” IEEE Photon. Technol. Lett. 18, 1249-1251 (2006).
[CrossRef]

Lee, C. C.

L. F. K. Lui, L. Xu, C. C. Lee, P. K. A. Wai, H. Y. Tam, and C. Lu, “All-optical clock recovery using erbium-doped fiber laser incorporating an electroabsorption modulator and a linear optical amplifier,” IEEE Photon. Technol. Lett. 19, 720-722 (2007).
[CrossRef]

Legouezigou, O.

J. Renaudier, B. Lavigne, F. Lelarge, M. Jourdran, B. Dagens, O. Legouezigou, P. Gallion, and G.-H. Duan, “Standard-compliant jitter transfer function of all-optical clock recovery at 40 GHz based on a quantum-dot self-pulsating semiconductor laser,” IEEE Photon. Technol. Lett. 18, 1249-1251 (2006).
[CrossRef]

Lelarge, F.

J. Renaudier, B. Lavigne, F. Lelarge, M. Jourdran, B. Dagens, O. Legouezigou, P. Gallion, and G.-H. Duan, “Standard-compliant jitter transfer function of all-optical clock recovery at 40 GHz based on a quantum-dot self-pulsating semiconductor laser,” IEEE Photon. Technol. Lett. 18, 1249-1251 (2006).
[CrossRef]

Li, Y.

Litchinitser, N. M.

Longhi, S.

Lu, C.

L. F. K. Lui, L. Xu, C. C. Lee, P. K. A. Wai, H. Y. Tam, and C. Lu, “All-optical clock recovery using erbium-doped fiber laser incorporating an electroabsorption modulator and a linear optical amplifier,” IEEE Photon. Technol. Lett. 19, 720-722 (2007).
[CrossRef]

Lui, L. F. K.

L. F. K. Lui, L. Xu, C. C. Lee, P. K. A. Wai, H. Y. Tam, and C. Lu, “All-optical clock recovery using erbium-doped fiber laser incorporating an electroabsorption modulator and a linear optical amplifier,” IEEE Photon. Technol. Lett. 19, 720-722 (2007).
[CrossRef]

L. F. K. Lui, A. Zhang, P. K. A. Wai, H. Y. Tam, and M. S.Demokan, “40 Gb/s all-optical clock recovery based on an optical parametric oscillator with photonic crystal fiber,” in Proceedings of Joint Conference of the Opto-Electronics and Communications Conference and the Australian Conference on Optical Fibre Technology (IEEE, 2008), paper ThH-1.
[PubMed]

Manning, R. J.

D. M. Patrick and R. J. Manning, “20 Gbit/s all-optical clock recovery using semiconductor nonlinearity,” Electron. Lett. 30, 151-152 (1994).
[CrossRef]

Marano, M.

Mašanovic, M.

B. R. Koch, J. S. Barton, M. Mašanović, Z. Hu, J. E. Bowers, and D. J. Blumenthal, “35 Gb/s monolithic all-optical clock recovery pulse source,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Tech. Dig. (CD) (Optical Society of America, 2007), paper OWP2.
[PubMed]

Mateos, F.

Matsui, Y.

Matsumoto, T.

M. Jinno and T. Matsumoto, “Optical tank circuits used for all-optical timing recovery,” J. Quantum Electron. 28, 895-900 (1992).
[CrossRef]

M. Jinno and T. Matsumoto, “All-optical timing extraction using a 1.5 μm self pulsating multielectrode DFB LD,” Electron. Lett. 24, 1426-1427 (1988).
[CrossRef]

Mihailov, S. J.

Miyamoto, Y.

H. Kawakami, Y. Miyamoto, T. Kataoka, and K. Hagimoto, “All-optical timing clock extraction using multiple wavelength pumped Brillouin amplifier,” IEICE Trans. Commun. E78-B, 694-701 (1995).

Möhrle, M.

C. Bornholdt, B. Sartorius, S. Schelhase, M. Möhrle, and S. Bauer, “Self-pulsating DFB laser for all-optical clock recovery at 40 Gbit/s,” Electron. Lett. 36, 327-328 (2000).
[CrossRef]

Mok, J. T.

J. T. Mok and B. J. Eggleton, “Impact of group delay ripple on repetition-rate multiplication through Talbot self-imaging effect,” Opt. Commun. 232, 167-178 (2004).
[CrossRef]

Muriel, M. A.

J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum. Electron. 7, 728-744 (2001).
[CrossRef]

J. Azaña and M. A. Muriel, “Technique for multiplying the repetition rates of periodic trains of pulses by means of a temporal self-imaging effect in chirped fiber gratings,” Opt. Lett. 24, 1672-1674 (1999).
[CrossRef]

Nakazawa, M.

T. Komukai, T. Inui, and M. Nakazawa, “Origin of group delay ripple in chirped fiber Bragg grating and its effective reduction method,” Electron. Commun. Japan (Part II: Electronics) (English translation) 86, 76-84 (2003).
[CrossRef]

T. Komukai, T. Inui, and M. Nakazawa, “Very low group delay ripple characteristics of fibre Bragg grating with chirp induced by an S-curve bending technique,” Electron. Lett. 37, 449-451 (2001).
[CrossRef]

Ogawa, Y.

S. Arahira and Y. Ogawa, “Retiming and reshaping function of all-optical clock extraction at 160 Gb/s in monolithic mode-locked laser diode,” IEEE J. Quantum Electron. 41, 937-944 (2005).
[CrossRef]

S. Arahira, S. Kutsuzawa, Y. Matsui, D. Kunimatsu, and Y. Ogawa, “Repetition-frequency multiplication of mode-locked pulses using fiber dispersion,” J. Lightwave Technol. 16, 405-410 (1998).
[CrossRef]

Ohno, T.

T. Ohno, K. Sato, R. Iga, Y. Kondo, T. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode-locked laser diode,” Electron. Lett. 40, 265-267 (2004).
[CrossRef]

Oiwa, M.

M. Oiwa, J. Kim, K. Tsuji, N. Onodera, and M. Saruwatari, “Experimental demonstration of timing jitter reduction based on the temporal Talbot effect using LCFBGs,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuA3.
[PubMed]

Onodera, N.

M. Oiwa, J. Kim, K. Tsuji, N. Onodera, and M. Saruwatari, “Experimental demonstration of timing jitter reduction based on the temporal Talbot effect using LCFBGs,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuA3.
[PubMed]

Paniccia, M. J.

B. R. Koch, A. W. Fang, H. N. Poulsen, H. Park, D. J. Blumenthal, J. E. Bowers, R. Jones, M. J. Paniccia, and O. Cohen, “All-optical clock recovery with retiming and reshaping using a silicon evanescent mode-locked ring laser,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference Technical Digest (CD) (Optical Society of America, 2008), paper OMN1.
[PubMed]

Park, H.

B. R. Koch, A. W. Fang, H. N. Poulsen, H. Park, D. J. Blumenthal, J. E. Bowers, R. Jones, M. J. Paniccia, and O. Cohen, “All-optical clock recovery with retiming and reshaping using a silicon evanescent mode-locked ring laser,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference Technical Digest (CD) (Optical Society of America, 2008), paper OMN1.
[PubMed]

Park, Y.

Patrick, D. M.

D. M. Patrick and R. J. Manning, “20 Gbit/s all-optical clock recovery using semiconductor nonlinearity,” Electron. Lett. 30, 151-152 (1994).
[CrossRef]

A. D. Ellis, K. Smith, and D. M. Patrick, “All-optical clock recovery at bit rates up to 40 Gbit/s,” Electron. Lett. 29, 1323-1324 (1993).
[CrossRef]

Pérez, M. V.

Poulsen, H. N.

B. R. Koch, A. W. Fang, H. N. Poulsen, H. Park, D. J. Blumenthal, J. E. Bowers, R. Jones, M. J. Paniccia, and O. Cohen, “All-optical clock recovery with retiming and reshaping using a silicon evanescent mode-locked ring laser,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference Technical Digest (CD) (Optical Society of America, 2008), paper OMN1.
[PubMed]

Pruneri, V.

Pudo, D.

D. Pudo, C. R. Fernández-Pousa, and L. R. Chen, “Timing jitter transfer function in the temporal Talbot effect,” IEEE Photon. Technol. Lett. 20, 496-498 (2008).
[CrossRef]

D. Pudo, M. Depa, and L. R. Chen, “Single and multiwavelength all-optical clock recovery in single-mode fiber using the temporal Talbot effect,” J. Lightwave Technol. 25, 2898-2903 (2007).
[CrossRef]

D. Pudo and L. R. Chen, “Simple estimation of pulse amplitude noise and timing jitter evolution through the temporal Talbot effect,” Opt. Express 15, 6351-6357 (2007).
[CrossRef] [PubMed]

D. Pudo, M. Depa, L. R. Chen, M. Ibsen, and D. J. Richardson, “Temporal-Talbot effect based all-optical clock recovery using Bragg gratings,” in European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference Technical Digest (Optical Society of America, 2007), paper CI7_5.
[CrossRef] [PubMed]

Renaudier, J.

J. Renaudier, B. Lavigne, F. Lelarge, M. Jourdran, B. Dagens, O. Legouezigou, P. Gallion, and G.-H. Duan, “Standard-compliant jitter transfer function of all-optical clock recovery at 40 GHz based on a quantum-dot self-pulsating semiconductor laser,” IEEE Photon. Technol. Lett. 18, 1249-1251 (2006).
[CrossRef]

Reyes, P. I.

Richardson, D. J.

D. Pudo, M. Depa, L. R. Chen, M. Ibsen, and D. J. Richardson, “Temporal-Talbot effect based all-optical clock recovery using Bragg gratings,” in European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference Technical Digest (Optical Society of America, 2007), paper CI7_5.
[CrossRef] [PubMed]

Sartorius, B.

C. Bornholdt, B. Sartorius, S. Schelhase, M. Möhrle, and S. Bauer, “Self-pulsating DFB laser for all-optical clock recovery at 40 Gbit/s,” Electron. Lett. 36, 327-328 (2000).
[CrossRef]

Saruwatari, M.

I. Shake, H. Takara, S. Kawanishi, and M. Saruwatari, “High-repetition-rate optical pulse generation by using chirped optical pulses,” Electron. Lett. 34, 792-793 (1998).
[CrossRef]

M. Oiwa, J. Kim, K. Tsuji, N. Onodera, and M. Saruwatari, “Experimental demonstration of timing jitter reduction based on the temporal Talbot effect using LCFBGs,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuA3.
[PubMed]

Sato, K.

T. Ohno, K. Sato, R. Iga, Y. Kondo, T. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode-locked laser diode,” Electron. Lett. 40, 265-267 (2004).
[CrossRef]

Schelhase, S.

C. Bornholdt, B. Sartorius, S. Schelhase, M. Möhrle, and S. Bauer, “Self-pulsating DFB laser for all-optical clock recovery at 40 Gbit/s,” Electron. Lett. 36, 327-328 (2000).
[CrossRef]

Shake, I.

I. Shake, H. Takara, S. Kawanishi, and M. Saruwatari, “High-repetition-rate optical pulse generation by using chirped optical pulses,” Electron. Lett. 34, 792-793 (1998).
[CrossRef]

Shum, P.

W. J. Lai, P. Shum, and L. N. Binh, “Stability and transient analyses of temporal Talbot-effect-based repetition-rate multiplication mode-locked laser systems,” IEEE Photon. Technol. Lett. 16, 437-439 (2004).
[CrossRef]

Smith, K.

A. D. Ellis, K. Smith, and D. M. Patrick, “All-optical clock recovery at bit rates up to 40 Gbit/s,” Electron. Lett. 29, 1323-1324 (1993).
[CrossRef]

Soccolich, C.

Su, Y.

Y. Su, L. Wang, A. Agarwal, and P. Kumar, “Wavelength-tunable all-optical clock recovery using a fiber-optic parametric oscillator,” Opt. Commun. 184, 151-156 (2000).
[CrossRef]

L. Wang, Y. Su, A. Agarwal, and P. Kumar, “Polarization insensitive widely tunable all-optical clock recovery based on AM mode-locking of a fiber ring laser,” IEEE Photon. Technol. Lett. 12, 211-213 (2000).
[CrossRef]

Sumetsky, M.

Svelto, O.

Takara, H.

I. Shake, H. Takara, S. Kawanishi, and M. Saruwatari, “High-repetition-rate optical pulse generation by using chirped optical pulses,” Electron. Lett. 34, 792-793 (1998).
[CrossRef]

Takushima, Y.

H. Yoshimi, Y. Takushima, and K. Kikuchi, “A simple method for estimating the eye-opening penalty caused by group-delay ripple of optical filters,” in Proceedings of 28th European Conference on Optical Communication (IEEE, 2002), paper 10.4.4.

Tam, H. Y.

L. F. K. Lui, L. Xu, C. C. Lee, P. K. A. Wai, H. Y. Tam, and C. Lu, “All-optical clock recovery using erbium-doped fiber laser incorporating an electroabsorption modulator and a linear optical amplifier,” IEEE Photon. Technol. Lett. 19, 720-722 (2007).
[CrossRef]

L. F. K. Lui, A. Zhang, P. K. A. Wai, H. Y. Tam, and M. S.Demokan, “40 Gb/s all-optical clock recovery based on an optical parametric oscillator with photonic crystal fiber,” in Proceedings of Joint Conference of the Opto-Electronics and Communications Conference and the Australian Conference on Optical Fibre Technology (IEEE, 2008), paper ThH-1.
[PubMed]

Theophilopoulos, G.

K. Vlachos, G. Theophilopoulos, A. Hatziefremidis, and H. Avramopoulos, “30 Gb/s all-optical clock recovery circuit,” IEEE Photon. Technol. Lett. 12, 705-707 (2000).
[CrossRef]

Tsuji, K.

M. Oiwa, J. Kim, K. Tsuji, N. Onodera, and M. Saruwatari, “Experimental demonstration of timing jitter reduction based on the temporal Talbot effect using LCFBGs,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuA3.
[PubMed]

Vlachos, K.

K. Vlachos, G. Theophilopoulos, A. Hatziefremidis, and H. Avramopoulos, “30 Gb/s all-optical clock recovery circuit,” IEEE Photon. Technol. Lett. 12, 705-707 (2000).
[CrossRef]

Wai, P. K. A.

L. F. K. Lui, L. Xu, C. C. Lee, P. K. A. Wai, H. Y. Tam, and C. Lu, “All-optical clock recovery using erbium-doped fiber laser incorporating an electroabsorption modulator and a linear optical amplifier,” IEEE Photon. Technol. Lett. 19, 720-722 (2007).
[CrossRef]

L. F. K. Lui, A. Zhang, P. K. A. Wai, H. Y. Tam, and M. S.Demokan, “40 Gb/s all-optical clock recovery based on an optical parametric oscillator with photonic crystal fiber,” in Proceedings of Joint Conference of the Opto-Electronics and Communications Conference and the Australian Conference on Optical Fibre Technology (IEEE, 2008), paper ThH-1.
[PubMed]

Wang, L.

Y. Su, L. Wang, A. Agarwal, and P. Kumar, “Wavelength-tunable all-optical clock recovery using a fiber-optic parametric oscillator,” Opt. Commun. 184, 151-156 (2000).
[CrossRef]

L. Wang, Y. Su, A. Agarwal, and P. Kumar, “Polarization insensitive widely tunable all-optical clock recovery based on AM mode-locking of a fiber ring laser,” IEEE Photon. Technol. Lett. 12, 211-213 (2000).
[CrossRef]

Westbrook, P. S.

Wey, J. S.

Xu, L.

L. F. K. Lui, L. Xu, C. C. Lee, P. K. A. Wai, H. Y. Tam, and C. Lu, “All-optical clock recovery using erbium-doped fiber laser incorporating an electroabsorption modulator and a linear optical amplifier,” IEEE Photon. Technol. Lett. 19, 720-722 (2007).
[CrossRef]

Yoshimi, H.

H. Yoshimi, Y. Takushima, and K. Kikuchi, “A simple method for estimating the eye-opening penalty caused by group-delay ripple of optical filters,” in Proceedings of 28th European Conference on Optical Communication (IEEE, 2002), paper 10.4.4.

Yoshino, K.

T. Ohno, K. Sato, R. Iga, Y. Kondo, T. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode-locked laser diode,” Electron. Lett. 40, 265-267 (2004).
[CrossRef]

Zervas, M. N.

S. Longhi, M. Marano, P. Laporta, O. Svelto, M. Belmonte, B. Agogliati, L. Arcangeli, V. Pruneri, M. N. Zervas, and M. Ibsen, “40 GHz pulse-train generation at 1.5 μm with a chirped fiber grating as a frequency multiplier,” Opt. Lett. 25, 1481-1483 (2000).
[CrossRef]

K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, and R. I. Laming, “Influence of nonideal chirped fiber grating characteristics on dispersion cancellation,” IEEE Photon. Technol. Lett. 10, 1476-1478 (1998).
[CrossRef]

K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770-778 (1998).
[CrossRef]

Zhang, A.

L. F. K. Lui, A. Zhang, P. K. A. Wai, H. Y. Tam, and M. S.Demokan, “40 Gb/s all-optical clock recovery based on an optical parametric oscillator with photonic crystal fiber,” in Proceedings of Joint Conference of the Opto-Electronics and Communications Conference and the Australian Conference on Optical Fibre Technology (IEEE, 2008), paper ThH-1.
[PubMed]

Appl. Opt. (2)

Electron. Commun. Japan (Part II: Electronics) (English translation) (1)

T. Komukai, T. Inui, and M. Nakazawa, “Origin of group delay ripple in chirped fiber Bragg grating and its effective reduction method,” Electron. Commun. Japan (Part II: Electronics) (English translation) 86, 76-84 (2003).
[CrossRef]

Electron. Lett. (8)

T. Komukai, T. Inui, and M. Nakazawa, “Very low group delay ripple characteristics of fibre Bragg grating with chirp induced by an S-curve bending technique,” Electron. Lett. 37, 449-451 (2001).
[CrossRef]

I. Shake, H. Takara, S. Kawanishi, and M. Saruwatari, “High-repetition-rate optical pulse generation by using chirped optical pulses,” Electron. Lett. 34, 792-793 (1998).
[CrossRef]

A. D. Ellis, K. Smith, and D. M. Patrick, “All-optical clock recovery at bit rates up to 40 Gbit/s,” Electron. Lett. 29, 1323-1324 (1993).
[CrossRef]

D. M. Patrick and R. J. Manning, “20 Gbit/s all-optical clock recovery using semiconductor nonlinearity,” Electron. Lett. 30, 151-152 (1994).
[CrossRef]

S. Bigo and E. Desurvire, “20 GHz all-optical clock recovery based on fibre laser mode-locking with fibre nonlinear loop mirror as variable intensity/phase modulator,” Electron. Lett. 31, 1855-1857 (1995).
[CrossRef]

M. Jinno and T. Matsumoto, “All-optical timing extraction using a 1.5 μm self pulsating multielectrode DFB LD,” Electron. Lett. 24, 1426-1427 (1988).
[CrossRef]

C. Bornholdt, B. Sartorius, S. Schelhase, M. Möhrle, and S. Bauer, “Self-pulsating DFB laser for all-optical clock recovery at 40 Gbit/s,” Electron. Lett. 36, 327-328 (2000).
[CrossRef]

T. Ohno, K. Sato, R. Iga, Y. Kondo, T. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode-locked laser diode,” Electron. Lett. 40, 265-267 (2004).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. Arahira and Y. Ogawa, “Retiming and reshaping function of all-optical clock extraction at 160 Gb/s in monolithic mode-locked laser diode,” IEEE J. Quantum Electron. 41, 937-944 (2005).
[CrossRef]

K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770-778 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum. Electron. (1)

J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum. Electron. 7, 728-744 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (8)

W. J. Lai, P. Shum, and L. N. Binh, “Stability and transient analyses of temporal Talbot-effect-based repetition-rate multiplication mode-locked laser systems,” IEEE Photon. Technol. Lett. 16, 437-439 (2004).
[CrossRef]

D. Pudo, C. R. Fernández-Pousa, and L. R. Chen, “Timing jitter transfer function in the temporal Talbot effect,” IEEE Photon. Technol. Lett. 20, 496-498 (2008).
[CrossRef]

J. Renaudier, B. Lavigne, F. Lelarge, M. Jourdran, B. Dagens, O. Legouezigou, P. Gallion, and G.-H. Duan, “Standard-compliant jitter transfer function of all-optical clock recovery at 40 GHz based on a quantum-dot self-pulsating semiconductor laser,” IEEE Photon. Technol. Lett. 18, 1249-1251 (2006).
[CrossRef]

L. E. Adams, E. S. Kintzer, and J. G. Fujimoto, “Performance and scalability of an all-optical clock recovery figure eight laser,” IEEE Photon. Technol. Lett. 8, 55-57 (1996).
[CrossRef]

L. Wang, Y. Su, A. Agarwal, and P. Kumar, “Polarization insensitive widely tunable all-optical clock recovery based on AM mode-locking of a fiber ring laser,” IEEE Photon. Technol. Lett. 12, 211-213 (2000).
[CrossRef]

K. Vlachos, G. Theophilopoulos, A. Hatziefremidis, and H. Avramopoulos, “30 Gb/s all-optical clock recovery circuit,” IEEE Photon. Technol. Lett. 12, 705-707 (2000).
[CrossRef]

L. F. K. Lui, L. Xu, C. C. Lee, P. K. A. Wai, H. Y. Tam, and C. Lu, “All-optical clock recovery using erbium-doped fiber laser incorporating an electroabsorption modulator and a linear optical amplifier,” IEEE Photon. Technol. Lett. 19, 720-722 (2007).
[CrossRef]

K. Ennser, M. Ibsen, M. Durkin, M. N. Zervas, and R. I. Laming, “Influence of nonideal chirped fiber grating characteristics on dispersion cancellation,” IEEE Photon. Technol. Lett. 10, 1476-1478 (1998).
[CrossRef]

IEICE Trans. Commun. (1)

H. Kawakami, Y. Miyamoto, T. Kataoka, and K. Hagimoto, “All-optical timing clock extraction using multiple wavelength pumped Brillouin amplifier,” IEICE Trans. Commun. E78-B, 694-701 (1995).

J. Lightwave Technol. (3)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

J. Quantum Electron. (1)

M. Jinno and T. Matsumoto, “Optical tank circuits used for all-optical timing recovery,” J. Quantum Electron. 28, 895-900 (1992).
[CrossRef]

Opt. Commun. (2)

Y. Su, L. Wang, A. Agarwal, and P. Kumar, “Wavelength-tunable all-optical clock recovery using a fiber-optic parametric oscillator,” Opt. Commun. 184, 151-156 (2000).
[CrossRef]

J. T. Mok and B. J. Eggleton, “Impact of group delay ripple on repetition-rate multiplication through Talbot self-imaging effect,” Opt. Commun. 232, 167-178 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Other (6)

H. Yoshimi, Y. Takushima, and K. Kikuchi, “A simple method for estimating the eye-opening penalty caused by group-delay ripple of optical filters,” in Proceedings of 28th European Conference on Optical Communication (IEEE, 2002), paper 10.4.4.

B. R. Koch, J. S. Barton, M. Mašanović, Z. Hu, J. E. Bowers, and D. J. Blumenthal, “35 Gb/s monolithic all-optical clock recovery pulse source,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Tech. Dig. (CD) (Optical Society of America, 2007), paper OWP2.
[PubMed]

L. F. K. Lui, A. Zhang, P. K. A. Wai, H. Y. Tam, and M. S.Demokan, “40 Gb/s all-optical clock recovery based on an optical parametric oscillator with photonic crystal fiber,” in Proceedings of Joint Conference of the Opto-Electronics and Communications Conference and the Australian Conference on Optical Fibre Technology (IEEE, 2008), paper ThH-1.
[PubMed]

B. R. Koch, A. W. Fang, H. N. Poulsen, H. Park, D. J. Blumenthal, J. E. Bowers, R. Jones, M. J. Paniccia, and O. Cohen, “All-optical clock recovery with retiming and reshaping using a silicon evanescent mode-locked ring laser,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference Technical Digest (CD) (Optical Society of America, 2008), paper OMN1.
[PubMed]

D. Pudo, M. Depa, L. R. Chen, M. Ibsen, and D. J. Richardson, “Temporal-Talbot effect based all-optical clock recovery using Bragg gratings,” in European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference Technical Digest (Optical Society of America, 2007), paper CI7_5.
[CrossRef] [PubMed]

M. Oiwa, J. Kim, K. Tsuji, N. Onodera, and M. Saruwatari, “Experimental demonstration of timing jitter reduction based on the temporal Talbot effect using LCFBGs,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuA3.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic diagram of all-optical clock recovery based on the integer temporal Talbot effect.

Fig. 2
Fig. 2

Schematic diagrams of the impact of the (a) reflection-bandwidth limitation and (b) GDR of LCFBG on all-optical clock recovery based on the integer temporal Talbot effect.

Fig. 3
Fig. 3

Process of numerical simulations for all-optical clock recovery based on the inverted integer temporal Talbot effect ( m = 1 and n = 1 ).

Fig. 4
Fig. 4

Process for designing generalized analytical models (GDR-FS and GDR). (a) Group delay and GDR characteristics of a sample LCFBG. (b) GDR-FS of a sample LCFBG [curve (i)] and generalized GDR-FS [curve (ii)]. (c), (d) Examples of group delay and GDR characteristics obtained from the generalized GDR-FS with various (c)  A 1 values and (d) φ sets.

Fig. 5
Fig. 5

Definitions of two evaluation parameters (peak variation and pulse visibility) for the recovered clock pulses.

Fig. 6
Fig. 6

(a) Eye pattern of the input signal ( 2 7 1 PRBS, F d = 1 % ) and clock patterns of recovered clock pulses for different reflection bandwidths δ λ of LCFBGs. (b) Peak variation and (c) pulse visibility of recovered clock pulses as a function of duty factor F d of input pulses for different δ λ .

Fig. 7
Fig. 7

(a) Peak variation and (b) pulse visibility of recovered clock pulses as a function of peak-to-peak GDR value of LCFBGs with different combinations of A 1 and φ in Eq. (6). (c) An eye pattern of the input signal ( 2 7 1 PRBS, F d = 1 % ) and clock patterns of recovered clock pulses for three different data points, A, B, and C, for the peak-to-peak GDR of 0, 20, and 40 ps , respectively.

Fig. 8
Fig. 8

(a) Eye pattern of input 10 Gbit / s signal ( 2 7 1 PRBS, F d = 1 % , σ in = 600 fs ) and clock patterns of recovered clock pulses with reduced timing jitter for different reflection bandwidths δ λ of LCFBGs with no GDR. (b) RMS timing jitter of recovered clock pulses σ out as a function of input signal ( 2 7 1 PRBS) jitter σ in for different δ λ values of LCFBGs with no GDR.

Fig. 9
Fig. 9

(a) Eye pattern of a 10 Gbit / s input signal ( 2 7 1 PRBS, F d = 1 % , σ in = 600 fs ) and recovered clock patterns with reduced timing jitter for different reflection bandwidths δ λ of LCFBGs with 20 ps GDR in peak to peak. (b) RMS timing jitter of recovered clock pulses σ out as a function of input signal ( 2 7 1 PRBS) jitter σ in for different δ λ values of LCFBGs with 20 ps GDR in peak to peak. The shape of the GDR at data point B in Fig. 7 is used in these simulations.

Fig. 10
Fig. 10

(a) Eye pattern of a 10 Gbit / s input signal ( 2 7 1 PRBS, F d = 1 % , σ in = 600 fs ), and recovered clock patterns with reduced timing jitter for different peak-to-peak GDR values (0, 20, and 40 ps , corresponding to data points A, B, and C in Fig. 7, respectively). (b) RMS timing jitter of recovered clock pulses σ out as a function of input signal ( 2 7 1 PRBS) jitter σ in for A, B, and C.

Fig. 11
Fig. 11

(a) Experimental setup used for comparison of experimental and simulation results. (b) Input (upper row)/output (lower row) waveforms obtained by the experiment (left column), and the simulation assuming the same conditions as the experiment (right column). (c) Output waveforms obtained by simulations assuming LCFBGs with 20 ps peak-to-peak GDR (left) and with no GDR (right). In (c), simulation conditions, except the GDR amplitude, are the same as those assumed in simulations whose results are shown in (b).

Tables (1)

Tables Icon

Table 1 Comparison of SMFs (or DCFs) and LCFBGs as a Dispersive Medium for the Temporal Talbot Effect

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

H ( ω ) = | H ( ω ) | exp { j [ Φ ( ω c ) + Φ ˙ ω + 1 2 Φ ¨ ω 2 ] } exp [ j Φ GDR ( ω ) ] = | H ( ω ) | exp [ j ( Φ ˙ ω + 1 2 Φ ¨ ω 2 ) ] exp [ j Φ GDR ( ω ) ] ,
a ^ out ( t ) = I 1 [ H ( ω ) A ^ in ( ω ) ] = I 1 { | H ( ω ) | exp [ j ( Φ ˙ ω + 1 2 Φ ¨ ω 2 ) ] exp [ j Φ GDR ( ω ) ] I [ a ^ in ( t ) ] } ,
ϕ N = 1 2 Φ ¨ ω 2 = 2 π 2 N 2 f in 2 Φ ¨ ,
ϕ N = ± n π N 2 m = 2 π 2 N 2 f in 2 Φ ¨ ,
f out = m f in = n 2 π f in | Φ ¨ | ,
S ( p ) = A 1 exp ( 1 8 p ) sin 2 [ π 2 ( A 2 p ) A 3 ] exp ( j φ ) ,

Metrics