Abstract

The absorption and scattering of oceanic aerosols are characterized using low- and high-power lasers in the near IR (1.064μm). The imaginary part of the refractive index of sea salt inferred from low-power absorption measurements is 200× less than the commonly accepted value from the literature. The measured absorption coefficients of natural and artificial saltwater are within 5% of the absorption of pure water (0.14cm1). High-power aerosol experiments are consistent with low-power liquid absorption measurements, which yield comparable absorption coefficients for pure water and saltwater. High-power illumination of test aerosols (CuSO4·5H2O) with an absorption coefficient α0.19cm1 and a dwell time of 100ms results in a consistent reduction in scattering from the aerosol column. The high-power laser scattering measurements are in good agreement with the theory, which accounts for the absorption, heating, and vaporization of the water-based aerosols. The measured absorption of oceanic aerosols in the laboratory is much less than the literature values at 1.064μm and should result in reduced heating and thermal blooming in open ocean atmospheres.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. G. Gebhardt, “High power laser propagation,” Appl. Opt. 15, 1479-1493 (1976).
    [CrossRef]
  2. P. Sprangle, J. Penano, and B. Hafizi, “Optimum wavelength and power for efficient laser propagation in various atmospheric environments,” J. Directed Energy 2, 71-95 (2006).
  3. E. P. Shettle and R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Rep. AFGL-TR-79-0214 (U.S. Air Force Geophysics Lab, 1979), p. 94.
  4. G. A. d'Almeida, P. Koepke, and E. P. Shettle, eds., Atmospheric Aerosols: Global Climatology and Radiative Characteristics (A. Deepak, 1991).
  5. F. E. Volz, “Infrared absorption by atmospheric aerosol substances,” J. Geophys. Res. 77, 1017-1031 (1972).
    [CrossRef]
  6. N. E. Dorsey, Properties of Ordinary Water-Substance in All Its Phases: Water Vapor, Water, and All the Ices (Reinhold, 1940), pp. 332-338.
  7. O. B. Toon, J. B. Pollack, and B. N. Khare, “The optical constants of several atmospheric aerosol species: ammonium sulfate, aluminum oxide, and sodium chloride,” J. Geophys. Res. 81, 5733-5748 (1976).
    [CrossRef]
  8. B. Richerzhagen, “Interferometer for measuring the absolute refractive index of liquid water as a function of temperature at 1.064 μm,” Appl. Opt. 35, 1650 (1996).
    [CrossRef]
  9. “CVI Laser Optics and Coatings” (CVI, 2003).
  10. J. A. Curcio and C. C. Petty, “The near infrared absorption spectrum of liquid water,” J. Opt. Soc. Am. 41, 302-304(1951).
    [CrossRef]
  11. E. O. Hulburt and J. F. Hutchinson, “Absorption coefficients of solutions for monochromatic radiation,” Carnegie Institute Publ. 260 (Carnegie Institute, 1918), pp. 6-69.
  12. G. M. Hale and M. R. Querry, “Optical constants of water in the 200 nm to 200 μm wavelength region,” Appl. Opt. 12, 555-563 (1973).
    [CrossRef]
  13. W. G. Driscoll, ed., Handbook of Optics (McGraw-Hill, 1978), pp. 8-33.
  14. G. J. Mullaney, W. H. Christiansen, and D. A. Russell, “Fog dissipation using a CO2 laser,” Appl. Phys. Lett. 13, 145-147(1968).
    [CrossRef]
  15. A.M. J. van Eijk and D. L. Merritt, “Improvements in the advanced navy aerosol model (ANAM),” Proc. SPIE 6303, 63030M (2006).
  16. F. A. Williams, “On vaporization of mist by radiation,” Int. J. Heat Mass Transfer 8, 575-587 (1965).
  17. R. L. Armstrong, “Aerosol heating and vaporization by pulsed light beams,” Appl. Opt. 23, 148-155 (1984).
    [CrossRef]
  18. G. Hanel, “ The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air,” Adv. Geophys. 19, 73-188 (1976).
    [CrossRef]
  19. I. N. Tang, H. R. Munkelwitz, and J. G. Davis, “ Aerosol growth studies-II. Preparation and growth measurements of monodisperse salt aerosols,” J. Aerosol Sci. 8, 149-159 (1977).
    [CrossRef]
  20. G. L. Clark and H. R. James, “ Laboratory analysis of the selective absorption of light by sea water,” J. Opt. Soc. Am. 29, 43-55 (1939).
    [CrossRef]
  21. S. A. Sullivan, “Experimental study of the absorption in distilled water, artificial sea water, and heavy water in the visible region of the spectrum,” J. Opt. Soc. Am. 53, 962-968(1963).
    [CrossRef]
  22. R. C. Smith and K. S. Baker, “ Optical properties of the clearest natural waters (200-800 nm),” Appl. Opt. 20, 177-184 (1981).
    [CrossRef]
  23. D. Leslie and M. Belen'kii, “Wavelength selection and propagation analysis for shipboard free electron laser,” Proc. SPIE 5413, 125-136 (2004).
  24. S. F. Fulghum and M. M. Tilleman, “ Interferometric calorimeter for the measurement of water-vapor absorption,” J. Opt. Soc. Am. B 8, 2401-2413 (1991).
    [CrossRef]

2006

P. Sprangle, J. Penano, and B. Hafizi, “Optimum wavelength and power for efficient laser propagation in various atmospheric environments,” J. Directed Energy 2, 71-95 (2006).

A.M. J. van Eijk and D. L. Merritt, “Improvements in the advanced navy aerosol model (ANAM),” Proc. SPIE 6303, 63030M (2006).

2004

D. Leslie and M. Belen'kii, “Wavelength selection and propagation analysis for shipboard free electron laser,” Proc. SPIE 5413, 125-136 (2004).

1996

1991

1984

1981

1977

I. N. Tang, H. R. Munkelwitz, and J. G. Davis, “ Aerosol growth studies-II. Preparation and growth measurements of monodisperse salt aerosols,” J. Aerosol Sci. 8, 149-159 (1977).
[CrossRef]

1976

G. Hanel, “ The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air,” Adv. Geophys. 19, 73-188 (1976).
[CrossRef]

F. G. Gebhardt, “High power laser propagation,” Appl. Opt. 15, 1479-1493 (1976).
[CrossRef]

O. B. Toon, J. B. Pollack, and B. N. Khare, “The optical constants of several atmospheric aerosol species: ammonium sulfate, aluminum oxide, and sodium chloride,” J. Geophys. Res. 81, 5733-5748 (1976).
[CrossRef]

1973

1972

F. E. Volz, “Infrared absorption by atmospheric aerosol substances,” J. Geophys. Res. 77, 1017-1031 (1972).
[CrossRef]

1968

G. J. Mullaney, W. H. Christiansen, and D. A. Russell, “Fog dissipation using a CO2 laser,” Appl. Phys. Lett. 13, 145-147(1968).
[CrossRef]

1965

F. A. Williams, “On vaporization of mist by radiation,” Int. J. Heat Mass Transfer 8, 575-587 (1965).

1963

1951

1939

Armstrong, R. L.

Baker, K. S.

Belen'kii, M.

D. Leslie and M. Belen'kii, “Wavelength selection and propagation analysis for shipboard free electron laser,” Proc. SPIE 5413, 125-136 (2004).

Christiansen, W. H.

G. J. Mullaney, W. H. Christiansen, and D. A. Russell, “Fog dissipation using a CO2 laser,” Appl. Phys. Lett. 13, 145-147(1968).
[CrossRef]

Clark, G. L.

Curcio, J. A.

Davis, J. G.

I. N. Tang, H. R. Munkelwitz, and J. G. Davis, “ Aerosol growth studies-II. Preparation and growth measurements of monodisperse salt aerosols,” J. Aerosol Sci. 8, 149-159 (1977).
[CrossRef]

Dorsey, N. E.

N. E. Dorsey, Properties of Ordinary Water-Substance in All Its Phases: Water Vapor, Water, and All the Ices (Reinhold, 1940), pp. 332-338.

Fenn, R. W.

E. P. Shettle and R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Rep. AFGL-TR-79-0214 (U.S. Air Force Geophysics Lab, 1979), p. 94.

Fulghum, S. F.

Gebhardt, F. G.

Hafizi, B.

P. Sprangle, J. Penano, and B. Hafizi, “Optimum wavelength and power for efficient laser propagation in various atmospheric environments,” J. Directed Energy 2, 71-95 (2006).

Hale, G. M.

Hanel, G.

G. Hanel, “ The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air,” Adv. Geophys. 19, 73-188 (1976).
[CrossRef]

Hulburt, E. O.

E. O. Hulburt and J. F. Hutchinson, “Absorption coefficients of solutions for monochromatic radiation,” Carnegie Institute Publ. 260 (Carnegie Institute, 1918), pp. 6-69.

Hutchinson, J. F.

E. O. Hulburt and J. F. Hutchinson, “Absorption coefficients of solutions for monochromatic radiation,” Carnegie Institute Publ. 260 (Carnegie Institute, 1918), pp. 6-69.

James, H. R.

Khare, B. N.

O. B. Toon, J. B. Pollack, and B. N. Khare, “The optical constants of several atmospheric aerosol species: ammonium sulfate, aluminum oxide, and sodium chloride,” J. Geophys. Res. 81, 5733-5748 (1976).
[CrossRef]

Leslie, D.

D. Leslie and M. Belen'kii, “Wavelength selection and propagation analysis for shipboard free electron laser,” Proc. SPIE 5413, 125-136 (2004).

Merritt, D. L.

A.M. J. van Eijk and D. L. Merritt, “Improvements in the advanced navy aerosol model (ANAM),” Proc. SPIE 6303, 63030M (2006).

Mullaney, G. J.

G. J. Mullaney, W. H. Christiansen, and D. A. Russell, “Fog dissipation using a CO2 laser,” Appl. Phys. Lett. 13, 145-147(1968).
[CrossRef]

Munkelwitz, H. R.

I. N. Tang, H. R. Munkelwitz, and J. G. Davis, “ Aerosol growth studies-II. Preparation and growth measurements of monodisperse salt aerosols,” J. Aerosol Sci. 8, 149-159 (1977).
[CrossRef]

Penano, J.

P. Sprangle, J. Penano, and B. Hafizi, “Optimum wavelength and power for efficient laser propagation in various atmospheric environments,” J. Directed Energy 2, 71-95 (2006).

Petty, C. C.

Pollack, J. B.

O. B. Toon, J. B. Pollack, and B. N. Khare, “The optical constants of several atmospheric aerosol species: ammonium sulfate, aluminum oxide, and sodium chloride,” J. Geophys. Res. 81, 5733-5748 (1976).
[CrossRef]

Querry, M. R.

Richerzhagen, B.

Russell, D. A.

G. J. Mullaney, W. H. Christiansen, and D. A. Russell, “Fog dissipation using a CO2 laser,” Appl. Phys. Lett. 13, 145-147(1968).
[CrossRef]

Shettle, E. P.

E. P. Shettle and R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Rep. AFGL-TR-79-0214 (U.S. Air Force Geophysics Lab, 1979), p. 94.

Smith, R. C.

Sprangle, P.

P. Sprangle, J. Penano, and B. Hafizi, “Optimum wavelength and power for efficient laser propagation in various atmospheric environments,” J. Directed Energy 2, 71-95 (2006).

Sullivan, S. A.

Tang, I. N.

I. N. Tang, H. R. Munkelwitz, and J. G. Davis, “ Aerosol growth studies-II. Preparation and growth measurements of monodisperse salt aerosols,” J. Aerosol Sci. 8, 149-159 (1977).
[CrossRef]

Tilleman, M. M.

Toon, O. B.

O. B. Toon, J. B. Pollack, and B. N. Khare, “The optical constants of several atmospheric aerosol species: ammonium sulfate, aluminum oxide, and sodium chloride,” J. Geophys. Res. 81, 5733-5748 (1976).
[CrossRef]

van Eijk, M. J.

A.M. J. van Eijk and D. L. Merritt, “Improvements in the advanced navy aerosol model (ANAM),” Proc. SPIE 6303, 63030M (2006).

Volz, F. E.

F. E. Volz, “Infrared absorption by atmospheric aerosol substances,” J. Geophys. Res. 77, 1017-1031 (1972).
[CrossRef]

Williams, F. A.

F. A. Williams, “On vaporization of mist by radiation,” Int. J. Heat Mass Transfer 8, 575-587 (1965).

Adv. Geophys.

G. Hanel, “ The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air,” Adv. Geophys. 19, 73-188 (1976).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

G. J. Mullaney, W. H. Christiansen, and D. A. Russell, “Fog dissipation using a CO2 laser,” Appl. Phys. Lett. 13, 145-147(1968).
[CrossRef]

Int. J. Heat Mass Transfer

F. A. Williams, “On vaporization of mist by radiation,” Int. J. Heat Mass Transfer 8, 575-587 (1965).

J. Aerosol Sci.

I. N. Tang, H. R. Munkelwitz, and J. G. Davis, “ Aerosol growth studies-II. Preparation and growth measurements of monodisperse salt aerosols,” J. Aerosol Sci. 8, 149-159 (1977).
[CrossRef]

J. Directed Energy

P. Sprangle, J. Penano, and B. Hafizi, “Optimum wavelength and power for efficient laser propagation in various atmospheric environments,” J. Directed Energy 2, 71-95 (2006).

J. Geophys. Res.

F. E. Volz, “Infrared absorption by atmospheric aerosol substances,” J. Geophys. Res. 77, 1017-1031 (1972).
[CrossRef]

O. B. Toon, J. B. Pollack, and B. N. Khare, “The optical constants of several atmospheric aerosol species: ammonium sulfate, aluminum oxide, and sodium chloride,” J. Geophys. Res. 81, 5733-5748 (1976).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Proc. SPIE

D. Leslie and M. Belen'kii, “Wavelength selection and propagation analysis for shipboard free electron laser,” Proc. SPIE 5413, 125-136 (2004).

A.M. J. van Eijk and D. L. Merritt, “Improvements in the advanced navy aerosol model (ANAM),” Proc. SPIE 6303, 63030M (2006).

Other

E. O. Hulburt and J. F. Hutchinson, “Absorption coefficients of solutions for monochromatic radiation,” Carnegie Institute Publ. 260 (Carnegie Institute, 1918), pp. 6-69.

W. G. Driscoll, ed., Handbook of Optics (McGraw-Hill, 1978), pp. 8-33.

N. E. Dorsey, Properties of Ordinary Water-Substance in All Its Phases: Water Vapor, Water, and All the Ices (Reinhold, 1940), pp. 332-338.

“CVI Laser Optics and Coatings” (CVI, 2003).

E. P. Shettle and R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Rep. AFGL-TR-79-0214 (U.S. Air Force Geophysics Lab, 1979), p. 94.

G. A. d'Almeida, P. Koepke, and E. P. Shettle, eds., Atmospheric Aerosols: Global Climatology and Radiative Characteristics (A. Deepak, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Setup used to measure the absorption of 1.064 μm laser radiation in various water samples and solutions.

Fig. 2
Fig. 2

Absorption measurements at 1.064 μm of solutions of NaCl and distilled water.

Fig. 3
Fig. 3

Absorption measurements of solutions made with store-bought sea salt.

Fig. 4
Fig. 4

Absorption measurements of a variety of solutions containing constituents of sea water.

Fig. 5
Fig. 5

Absorption coefficient versus Cu SO 4 · 5 H 2 O concentration.

Fig. 6
Fig. 6

Experimental setup to characterize the propagation of a high-power laser through an aerosol environment.

Fig. 7
Fig. 7

Aerosol distribution obtained using tap water.

Fig. 8
Fig. 8

Scattering data from the high-speed framing camera using pure-water aerosols and the high-power laser.

Fig. 9
Fig. 9

Scattering signal obtained from the high-speed framing camera using Cu SO 4 · 5 H 2 O aerosols (1% concentration) with the high-power laser.

Fig. 10
Fig. 10

Literature values for the imaginary part of the index of refraction of water [12], sea salt [5], and NaCl [7] as a function of wavelength.

Tables (2)

Tables Icon

Table 1 Dissolved Constituents of Natural Sea Water (Percentage by Mass)

Tables Icon

Table 2 Measured Absorption Coefficient and Change in Aerosol Scattering for Several Samples

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ R = α A 1 + ϵ γ T B I L 2 / v w ,
T 13 ( 1 R 12 ) ( 1 R 23 ) + ( 1 R 12 ) ( 1 R 23 ) R 12 R 23 .
T = T 13 2 e α L ,
w 2 = w 0 2 + M 4 ( λ π w 0 ) 2 ( z z 0 ) 2 ,
R A ( t ) = R A 0 exp ( t / τ ) ,

Metrics