Abstract

The linewidth of external cavity diode lasers (ECDLs) is an increasingly important characteristic for experiments in coherent optical communications and atomic physics. The Schawlow–Townes and time-averaged linewidths depend on free parameters of the design, such as cavity length, power, and grating characteristics. We show that the linewidth is also sensitive to the focus, set by the distance between the laser and the collimating lens, due to the effect on the external cavity backcoupling efficiency. By considering these factors, a simple ECDL can readily achieve linewidths below 100kHz.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ip, A. Lau, D. Barros, and J. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16, 753-791 (2008).
    [CrossRef]
  2. M. W. Fleming and A. Mooradian, “Spectral characteristics of external-cavity controlled semiconductor lasers,” IEEE J. Quantum Electron. 17, 44-59 (1981).
    [CrossRef]
  3. R. Wyatt and W. J. Devlin, “10 kHz linewidth 1.5 μm InGaAsP external cavity laser with 55 nm tuning range,” Electron. Lett. 19, 110-112 (1983).
    [CrossRef]
  4. C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1-20 (1991).
    [CrossRef]
  5. K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098-1111 (1992).
    [CrossRef]
  6. K. G. Libbrecht, R. A. Boyd, P. A. Willems, T. L. Gustavson, and D. K. Kim, “Teaching physics with 670 nm diode lasers-construction of stabilized lasers and lithium cells,” Am. J. Phys. 63, 729-737 (1995).
    [CrossRef]
  7. C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141-5151 (2002).
  8. L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541-549 (1995).
    [CrossRef]
  9. A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236-1239 (1998).
    [CrossRef]
  10. T. Hof, D. Fick, and H. J. Jänsch, “Application of diode lasers as a spectroscopic tool at 670 nm,” Opt. Commun. 124, 283-286(1996).
    [CrossRef]
  11. K. C. Harvey and C. J. Myatt, “External-cavity diode laser using a grazing-incidence diffraction grating,” Opt. Lett. 16, 910-912 (1991).
    [CrossRef]
  12. S. Lecomte, E. Fretel, G. Mileti, and P. Thomann, “Self-aligned extended-cavity diode laser stabilized by the Zeeman effect on the cesium D2 line,” Appl. Opt. 39, 1426-1429 (2000).
    [CrossRef]
  13. P. Zorabedian, “Tunable external-cavity semiconductor lasers,” in Tunable Lasers Handbook, F. J. Duarte, ed. (Academic, 1995), pp. 349-442.
  14. G. Galbács, “A review of applications and experimental improvements related to diode laser atomic spectroscopy,” Appl. Spectrosc. Rev. 41, 259-303 (2006).
  15. B. Mroziewicz, “External cavity wavelength tunable semiconductor lasers--a review,” Opto-Electron. Rev. 16, 347-366 (2008).
  16. W. R. Trutna, Jr., and L. F. Stokes, “Continuously tuned external cavity semiconductor laser,” J. Lightwave Technol. 11, 1279-1286 (1993).
    [CrossRef]
  17. C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477-4479 (2001).
    [CrossRef]
  18. A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940-1949 (1958).
    [CrossRef]
  19. C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259-264 (1982).
    [CrossRef]
  20. O. Nilsson, S. Saito, and Y. Yamamoto, “Oscillation frequency, linewidth reduction and frequency modulation characteristics for a diode laser with external grating feedback,” Electron. Lett. 17, 589-591 (1981).
    [CrossRef]
  21. K. Kikuchi, T. Okoshi, and R. Arata, “Measurement of linewidth and FM-noise spectrum of 1.52 μm InGaAsP lasers,” Electron. Lett. 20, 535-536 (1984).
    [CrossRef]
  22. N. Olsson and J. Van Der Ziel, “Performance characteristics of 1.5 μm external cavity semiconductor lasers for coherent optical communication,” J. Lightwave Technol. 5, 510-515 (1987).
    [CrossRef]
  23. H. Loh, Y. J. Lin, I. Teper, M. Cetina, J. Simon, J. K. Thompson, and V. Vuletić, “Influence of grating parameters on the linewidths of external-cavity diode lasers,” Appl. Opt. 45, 9191-9197 (2006).
    [CrossRef]
  24. G. Genty, A. Grohn, H. Talvitie, M. Kaivola, and H. Ludvigsen, “Analysis of the linewidth of a grating-feedback GaAlAs laser,” IEEE J. Quantum Electron. 36, 1193-1198 (2000).
    [CrossRef]
  25. G. Genty, M. Kaivola, and H. Ludvigsen, “Measurements of linewidth variations within external-cavity modes of a grating-cavity laser,” Opt. Commun. 203, 295-300 (2002).
    [CrossRef]
  26. S. E. Harris and R. W. Wallace, “Acousto-optic tunable filter,” J. Opt. Soc. Am. 59, 744-747 (1969).
    [CrossRef]
  27. T. W. Hansch, “Repetitively pulsed tunable dye laser for high resolution spectroscopy,” Appl. Opt. 11, 895-898 (1972).
    [CrossRef]
  28. M. G. Littman and H. J. Metcalf, “Spectrally narrow pulsed dye laser without beam expander,” Appl. Opt. 17, 2224-2227(1978).
    [CrossRef]
  29. M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, and E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175-180 (2000).
    [CrossRef]
  30. We used an LT230P-B collimating tube from Thorlabs, Newton, New Jersey; an Ultima kinematic mount and Spectraphysics 33001FL02-330H gold-coated holographic grating from Newport, Irvine, California; a Melcor CP1.4-71-045L thermoelectric cooler from Laird Thermal North America, Cleveland, Ohio; an AE0203D04 piezoelectric actuator from NEC Tokin America, San Jose, California; and a DL-7140-201 diode from Sanyo, Tokyo, Japan. Note: certain commercial equipment, instruments, and materials are identified in to adequately specify the experimental procedure. Such identification does not imply recommendation or endorsement nor does it imply that the materials or equipment are necessarily the best available for the purpose.
  31. T. P. Dinneen, C. D. Wallace, and P. L. Gould, “Narrow linewidth, highly stable, tunable diode laser system,” Opt. Commun. 92, 277-282 (1992).
    [CrossRef]
  32. H. S. Moon, L. Lee, K. Kim, and J. B. Kim, “Laser frequency stabilizations using electromagnetically induced transparency,” Appl. Phys. Lett. 84, 3001-3003 (2004).
    [CrossRef]
  33. R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
    [CrossRef]
  34. H. Talvitie, A. Pietiläinen, H. Ludvigsen, and E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68, 1-7 (1997).
    [CrossRef]
  35. K. G. Libbrecht and J. L. Hall, “A low-noise high-speed diode laser current controller,” Rev. Sci. Instrum. 64, 2133-2135(1993).
    [CrossRef]
  36. DLC-202 ECDL controller from MOG Laboratories, Brunswick, Victoria, Australia.
  37. L. D. Turner, K. P. Weber, C. J. Hawthorn, and R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun. 201, 391-397 (2002).
    [CrossRef]
  38. H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312-1392 (1966).
    [CrossRef]
  39. P. Zorabedian and W. R. Trutna, Jr, “Interference-filter-tuned, alignment-stabilized, semiconductor external-cavity laser,” Opt. Lett. 13, 826-828 (1988).
    [CrossRef]
  40. X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266, 609-613(2006).
    [CrossRef]
  41. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630-631 (1980).
    [CrossRef]

2009 (1)

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
[CrossRef]

2008 (2)

B. Mroziewicz, “External cavity wavelength tunable semiconductor lasers--a review,” Opto-Electron. Rev. 16, 347-366 (2008).

E. Ip, A. Lau, D. Barros, and J. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16, 753-791 (2008).
[CrossRef]

2006 (3)

H. Loh, Y. J. Lin, I. Teper, M. Cetina, J. Simon, J. K. Thompson, and V. Vuletić, “Influence of grating parameters on the linewidths of external-cavity diode lasers,” Appl. Opt. 45, 9191-9197 (2006).
[CrossRef]

G. Galbács, “A review of applications and experimental improvements related to diode laser atomic spectroscopy,” Appl. Spectrosc. Rev. 41, 259-303 (2006).

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266, 609-613(2006).
[CrossRef]

2004 (1)

H. S. Moon, L. Lee, K. Kim, and J. B. Kim, “Laser frequency stabilizations using electromagnetically induced transparency,” Appl. Phys. Lett. 84, 3001-3003 (2004).
[CrossRef]

2002 (3)

G. Genty, M. Kaivola, and H. Ludvigsen, “Measurements of linewidth variations within external-cavity modes of a grating-cavity laser,” Opt. Commun. 203, 295-300 (2002).
[CrossRef]

L. D. Turner, K. P. Weber, C. J. Hawthorn, and R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun. 201, 391-397 (2002).
[CrossRef]

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141-5151 (2002).

2001 (1)

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477-4479 (2001).
[CrossRef]

2000 (3)

M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, and E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175-180 (2000).
[CrossRef]

G. Genty, A. Grohn, H. Talvitie, M. Kaivola, and H. Ludvigsen, “Analysis of the linewidth of a grating-feedback GaAlAs laser,” IEEE J. Quantum Electron. 36, 1193-1198 (2000).
[CrossRef]

S. Lecomte, E. Fretel, G. Mileti, and P. Thomann, “Self-aligned extended-cavity diode laser stabilized by the Zeeman effect on the cesium D2 line,” Appl. Opt. 39, 1426-1429 (2000).
[CrossRef]

1998 (1)

A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236-1239 (1998).
[CrossRef]

1997 (1)

H. Talvitie, A. Pietiläinen, H. Ludvigsen, and E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68, 1-7 (1997).
[CrossRef]

1996 (1)

T. Hof, D. Fick, and H. J. Jänsch, “Application of diode lasers as a spectroscopic tool at 670 nm,” Opt. Commun. 124, 283-286(1996).
[CrossRef]

1995 (2)

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541-549 (1995).
[CrossRef]

K. G. Libbrecht, R. A. Boyd, P. A. Willems, T. L. Gustavson, and D. K. Kim, “Teaching physics with 670 nm diode lasers-construction of stabilized lasers and lithium cells,” Am. J. Phys. 63, 729-737 (1995).
[CrossRef]

1993 (2)

W. R. Trutna, Jr., and L. F. Stokes, “Continuously tuned external cavity semiconductor laser,” J. Lightwave Technol. 11, 1279-1286 (1993).
[CrossRef]

K. G. Libbrecht and J. L. Hall, “A low-noise high-speed diode laser current controller,” Rev. Sci. Instrum. 64, 2133-2135(1993).
[CrossRef]

1992 (2)

T. P. Dinneen, C. D. Wallace, and P. L. Gould, “Narrow linewidth, highly stable, tunable diode laser system,” Opt. Commun. 92, 277-282 (1992).
[CrossRef]

K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098-1111 (1992).
[CrossRef]

1991 (2)

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1-20 (1991).
[CrossRef]

K. C. Harvey and C. J. Myatt, “External-cavity diode laser using a grazing-incidence diffraction grating,” Opt. Lett. 16, 910-912 (1991).
[CrossRef]

1988 (1)

1987 (1)

N. Olsson and J. Van Der Ziel, “Performance characteristics of 1.5 μm external cavity semiconductor lasers for coherent optical communication,” J. Lightwave Technol. 5, 510-515 (1987).
[CrossRef]

1984 (1)

K. Kikuchi, T. Okoshi, and R. Arata, “Measurement of linewidth and FM-noise spectrum of 1.52 μm InGaAsP lasers,” Electron. Lett. 20, 535-536 (1984).
[CrossRef]

1983 (1)

R. Wyatt and W. J. Devlin, “10 kHz linewidth 1.5 μm InGaAsP external cavity laser with 55 nm tuning range,” Electron. Lett. 19, 110-112 (1983).
[CrossRef]

1982 (1)

C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259-264 (1982).
[CrossRef]

1981 (2)

O. Nilsson, S. Saito, and Y. Yamamoto, “Oscillation frequency, linewidth reduction and frequency modulation characteristics for a diode laser with external grating feedback,” Electron. Lett. 17, 589-591 (1981).
[CrossRef]

M. W. Fleming and A. Mooradian, “Spectral characteristics of external-cavity controlled semiconductor lasers,” IEEE J. Quantum Electron. 17, 44-59 (1981).
[CrossRef]

1980 (1)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630-631 (1980).
[CrossRef]

1978 (1)

1972 (1)

1969 (1)

1966 (1)

H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312-1392 (1966).
[CrossRef]

1958 (1)

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940-1949 (1958).
[CrossRef]

Abel, R. P.

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
[CrossRef]

Adams, C. S.

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
[CrossRef]

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141-5151 (2002).

Arata, R.

K. Kikuchi, T. Okoshi, and R. Arata, “Measurement of linewidth and FM-noise spectrum of 1.52 μm InGaAsP lasers,” Electron. Lett. 20, 535-536 (1984).
[CrossRef]

Arnold, A. S.

A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236-1239 (1998).
[CrossRef]

Baillard, X.

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266, 609-613(2006).
[CrossRef]

Barros, D.

Bason, M. G.

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
[CrossRef]

Bize, S.

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266, 609-613(2006).
[CrossRef]

Boshier, M. G.

A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236-1239 (1998).
[CrossRef]

Boyd, R. A.

K. G. Libbrecht, R. A. Boyd, P. A. Willems, T. L. Gustavson, and D. K. Kim, “Teaching physics with 670 nm diode lasers-construction of stabilized lasers and lithium cells,” Am. J. Phys. 63, 729-737 (1995).
[CrossRef]

Cetina, M.

Clairon, A.

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266, 609-613(2006).
[CrossRef]

Cox, S. G.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141-5151 (2002).

Devlin, W. J.

R. Wyatt and W. J. Devlin, “10 kHz linewidth 1.5 μm InGaAsP external cavity laser with 55 nm tuning range,” Electron. Lett. 19, 110-112 (1983).
[CrossRef]

Dinneen, T. P.

T. P. Dinneen, C. D. Wallace, and P. L. Gould, “Narrow linewidth, highly stable, tunable diode laser system,” Opt. Commun. 92, 277-282 (1992).
[CrossRef]

Esslinger, T.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Fick, D.

T. Hof, D. Fick, and H. J. Jänsch, “Application of diode lasers as a spectroscopic tool at 670 nm,” Opt. Commun. 124, 283-286(1996).
[CrossRef]

Fleming, M. W.

M. W. Fleming and A. Mooradian, “Spectral characteristics of external-cavity controlled semiconductor lasers,” IEEE J. Quantum Electron. 17, 44-59 (1981).
[CrossRef]

Fretel, E.

Galbács, G.

G. Galbács, “A review of applications and experimental improvements related to diode laser atomic spectroscopy,” Appl. Spectrosc. Rev. 41, 259-303 (2006).

Gauguet, A.

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266, 609-613(2006).
[CrossRef]

Genty, G.

G. Genty, M. Kaivola, and H. Ludvigsen, “Measurements of linewidth variations within external-cavity modes of a grating-cavity laser,” Opt. Commun. 203, 295-300 (2002).
[CrossRef]

G. Genty, A. Grohn, H. Talvitie, M. Kaivola, and H. Ludvigsen, “Analysis of the linewidth of a grating-feedback GaAlAs laser,” IEEE J. Quantum Electron. 36, 1193-1198 (2000).
[CrossRef]

Gould, P. L.

T. P. Dinneen, C. D. Wallace, and P. L. Gould, “Narrow linewidth, highly stable, tunable diode laser system,” Opt. Commun. 92, 277-282 (1992).
[CrossRef]

Griffin, P. F.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141-5151 (2002).

Grohn, A.

G. Genty, A. Grohn, H. Talvitie, M. Kaivola, and H. Ludvigsen, “Analysis of the linewidth of a grating-feedback GaAlAs laser,” IEEE J. Quantum Electron. 36, 1193-1198 (2000).
[CrossRef]

Gustavson, T. L.

K. G. Libbrecht, R. A. Boyd, P. A. Willems, T. L. Gustavson, and D. K. Kim, “Teaching physics with 670 nm diode lasers-construction of stabilized lasers and lithium cells,” Am. J. Phys. 63, 729-737 (1995).
[CrossRef]

Hall, J. L.

K. G. Libbrecht and J. L. Hall, “A low-noise high-speed diode laser current controller,” Rev. Sci. Instrum. 64, 2133-2135(1993).
[CrossRef]

Hansch, T. W.

Hänsch, T. W.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Harris, S. E.

Harvey, K. C.

Hawthorn, C. J.

L. D. Turner, K. P. Weber, C. J. Hawthorn, and R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun. 201, 391-397 (2002).
[CrossRef]

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477-4479 (2001).
[CrossRef]

Hemmerich, A.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Henry, C.

C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259-264 (1982).
[CrossRef]

Hof, T.

T. Hof, D. Fick, and H. J. Jänsch, “Application of diode lasers as a spectroscopic tool at 670 nm,” Opt. Commun. 124, 283-286(1996).
[CrossRef]

Hollberg, L.

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1-20 (1991).
[CrossRef]

Hughes, I. G.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141-5151 (2002).

Ikonen, E.

M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, and E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175-180 (2000).
[CrossRef]

H. Talvitie, A. Pietiläinen, H. Ludvigsen, and E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68, 1-7 (1997).
[CrossRef]

Ip, E.

Jänsch, H. J.

T. Hof, D. Fick, and H. J. Jänsch, “Application of diode lasers as a spectroscopic tool at 670 nm,” Opt. Commun. 124, 283-286(1996).
[CrossRef]

Kahn, J.

Kaivola, M.

G. Genty, M. Kaivola, and H. Ludvigsen, “Measurements of linewidth variations within external-cavity modes of a grating-cavity laser,” Opt. Commun. 203, 295-300 (2002).
[CrossRef]

G. Genty, A. Grohn, H. Talvitie, M. Kaivola, and H. Ludvigsen, “Analysis of the linewidth of a grating-feedback GaAlAs laser,” IEEE J. Quantum Electron. 36, 1193-1198 (2000).
[CrossRef]

Kikuchi, K.

K. Kikuchi, T. Okoshi, and R. Arata, “Measurement of linewidth and FM-noise spectrum of 1.52 μm InGaAsP lasers,” Electron. Lett. 20, 535-536 (1984).
[CrossRef]

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630-631 (1980).
[CrossRef]

Kim, D. K.

K. G. Libbrecht, R. A. Boyd, P. A. Willems, T. L. Gustavson, and D. K. Kim, “Teaching physics with 670 nm diode lasers-construction of stabilized lasers and lithium cells,” Am. J. Phys. 63, 729-737 (1995).
[CrossRef]

Kim, J. B.

H. S. Moon, L. Lee, K. Kim, and J. B. Kim, “Laser frequency stabilizations using electromagnetically induced transparency,” Appl. Phys. Lett. 84, 3001-3003 (2004).
[CrossRef]

Kim, K.

H. S. Moon, L. Lee, K. Kim, and J. B. Kim, “Laser frequency stabilizations using electromagnetically induced transparency,” Appl. Phys. Lett. 84, 3001-3003 (2004).
[CrossRef]

Kogelnik, H.

H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312-1392 (1966).
[CrossRef]

König, W.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Kuittinen, M.

M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, and E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175-180 (2000).
[CrossRef]

Laakkonen, P.

M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, and E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175-180 (2000).
[CrossRef]

Lau, A.

Laurent, P.

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266, 609-613(2006).
[CrossRef]

Lecomte, S.

Lee, L.

H. S. Moon, L. Lee, K. Kim, and J. B. Kim, “Laser frequency stabilizations using electromagnetically induced transparency,” Appl. Phys. Lett. 84, 3001-3003 (2004).
[CrossRef]

Lemonde, P.

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266, 609-613(2006).
[CrossRef]

Li, T.

H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312-1392 (1966).
[CrossRef]

Libbrecht, K. G.

K. G. Libbrecht, R. A. Boyd, P. A. Willems, T. L. Gustavson, and D. K. Kim, “Teaching physics with 670 nm diode lasers-construction of stabilized lasers and lithium cells,” Am. J. Phys. 63, 729-737 (1995).
[CrossRef]

K. G. Libbrecht and J. L. Hall, “A low-noise high-speed diode laser current controller,” Rev. Sci. Instrum. 64, 2133-2135(1993).
[CrossRef]

Lin, Y. J.

Littman, M. G.

Loh, H.

Ludvigsen, H.

G. Genty, M. Kaivola, and H. Ludvigsen, “Measurements of linewidth variations within external-cavity modes of a grating-cavity laser,” Opt. Commun. 203, 295-300 (2002).
[CrossRef]

G. Genty, A. Grohn, H. Talvitie, M. Kaivola, and H. Ludvigsen, “Analysis of the linewidth of a grating-feedback GaAlAs laser,” IEEE J. Quantum Electron. 36, 1193-1198 (2000).
[CrossRef]

H. Talvitie, A. Pietiläinen, H. Ludvigsen, and E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68, 1-7 (1997).
[CrossRef]

MacAdam, K. B.

K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098-1111 (1992).
[CrossRef]

Merimaa, M.

M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, and E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175-180 (2000).
[CrossRef]

Metcalf, H. J.

Mileti, G.

Mohapatra, A. K.

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
[CrossRef]

Moon, H. S.

H. S. Moon, L. Lee, K. Kim, and J. B. Kim, “Laser frequency stabilizations using electromagnetically induced transparency,” Appl. Phys. Lett. 84, 3001-3003 (2004).
[CrossRef]

Mooradian, A.

M. W. Fleming and A. Mooradian, “Spectral characteristics of external-cavity controlled semiconductor lasers,” IEEE J. Quantum Electron. 17, 44-59 (1981).
[CrossRef]

Mroziewicz, B.

B. Mroziewicz, “External cavity wavelength tunable semiconductor lasers--a review,” Opto-Electron. Rev. 16, 347-366 (2008).

Myatt, C. J.

Nakayama, A.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630-631 (1980).
[CrossRef]

Nilsson, O.

O. Nilsson, S. Saito, and Y. Yamamoto, “Oscillation frequency, linewidth reduction and frequency modulation characteristics for a diode laser with external grating feedback,” Electron. Lett. 17, 589-591 (1981).
[CrossRef]

Okoshi, T.

K. Kikuchi, T. Okoshi, and R. Arata, “Measurement of linewidth and FM-noise spectrum of 1.52 μm InGaAsP lasers,” Electron. Lett. 20, 535-536 (1984).
[CrossRef]

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630-631 (1980).
[CrossRef]

Olsson, N.

N. Olsson and J. Van Der Ziel, “Performance characteristics of 1.5 μm external cavity semiconductor lasers for coherent optical communication,” J. Lightwave Technol. 5, 510-515 (1987).
[CrossRef]

Pearman, C. P.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141-5151 (2002).

Pietiläinen, A.

H. Talvitie, A. Pietiläinen, H. Ludvigsen, and E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68, 1-7 (1997).
[CrossRef]

Pritchard, J. D.

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
[CrossRef]

Raitzsch, U.

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
[CrossRef]

Ricci, L.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Rosenbusch, P.

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266, 609-613(2006).
[CrossRef]

Saito, S.

O. Nilsson, S. Saito, and Y. Yamamoto, “Oscillation frequency, linewidth reduction and frequency modulation characteristics for a diode laser with external grating feedback,” Electron. Lett. 17, 589-591 (1981).
[CrossRef]

Schawlow, A. L.

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940-1949 (1958).
[CrossRef]

Scholten, R. E.

L. D. Turner, K. P. Weber, C. J. Hawthorn, and R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun. 201, 391-397 (2002).
[CrossRef]

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477-4479 (2001).
[CrossRef]

Simon, J.

Smith, D. A.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141-5151 (2002).

Steinbach, A.

K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098-1111 (1992).
[CrossRef]

Stokes, L. F.

W. R. Trutna, Jr., and L. F. Stokes, “Continuously tuned external cavity semiconductor laser,” J. Lightwave Technol. 11, 1279-1286 (1993).
[CrossRef]

Talvitie, H.

G. Genty, A. Grohn, H. Talvitie, M. Kaivola, and H. Ludvigsen, “Analysis of the linewidth of a grating-feedback GaAlAs laser,” IEEE J. Quantum Electron. 36, 1193-1198 (2000).
[CrossRef]

M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, and E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175-180 (2000).
[CrossRef]

H. Talvitie, A. Pietiläinen, H. Ludvigsen, and E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68, 1-7 (1997).
[CrossRef]

Teper, I.

Thomann, P.

Thompson, J. K.

Tittonen, I.

M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, and E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175-180 (2000).
[CrossRef]

Townes, C. H.

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940-1949 (1958).
[CrossRef]

Trutna, W. R.

W. R. Trutna, Jr., and L. F. Stokes, “Continuously tuned external cavity semiconductor laser,” J. Lightwave Technol. 11, 1279-1286 (1993).
[CrossRef]

P. Zorabedian and W. R. Trutna, Jr, “Interference-filter-tuned, alignment-stabilized, semiconductor external-cavity laser,” Opt. Lett. 13, 826-828 (1988).
[CrossRef]

Turner, L. D.

L. D. Turner, K. P. Weber, C. J. Hawthorn, and R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun. 201, 391-397 (2002).
[CrossRef]

Van Der Ziel, J.

N. Olsson and J. Van Der Ziel, “Performance characteristics of 1.5 μm external cavity semiconductor lasers for coherent optical communication,” J. Lightwave Technol. 5, 510-515 (1987).
[CrossRef]

Vuletic, V.

H. Loh, Y. J. Lin, I. Teper, M. Cetina, J. Simon, J. K. Thompson, and V. Vuletić, “Influence of grating parameters on the linewidths of external-cavity diode lasers,” Appl. Opt. 45, 9191-9197 (2006).
[CrossRef]

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Wallace, C. D.

T. P. Dinneen, C. D. Wallace, and P. L. Gould, “Narrow linewidth, highly stable, tunable diode laser system,” Opt. Commun. 92, 277-282 (1992).
[CrossRef]

Wallace, R. W.

Weatherill, K. J.

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
[CrossRef]

Weber, K. P.

L. D. Turner, K. P. Weber, C. J. Hawthorn, and R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun. 201, 391-397 (2002).
[CrossRef]

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477-4479 (2001).
[CrossRef]

Weidemüller, M.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Wieman, C.

K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098-1111 (1992).
[CrossRef]

Wieman, C. E.

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1-20 (1991).
[CrossRef]

Willems, P. A.

K. G. Libbrecht, R. A. Boyd, P. A. Willems, T. L. Gustavson, and D. K. Kim, “Teaching physics with 670 nm diode lasers-construction of stabilized lasers and lithium cells,” Am. J. Phys. 63, 729-737 (1995).
[CrossRef]

Wilson, J. S.

A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236-1239 (1998).
[CrossRef]

Wyatt, R.

R. Wyatt and W. J. Devlin, “10 kHz linewidth 1.5 μm InGaAsP external cavity laser with 55 nm tuning range,” Electron. Lett. 19, 110-112 (1983).
[CrossRef]

Yamamoto, Y.

O. Nilsson, S. Saito, and Y. Yamamoto, “Oscillation frequency, linewidth reduction and frequency modulation characteristics for a diode laser with external grating feedback,” Electron. Lett. 17, 589-591 (1981).
[CrossRef]

Zimmermann, C.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Zorabedian, P.

P. Zorabedian and W. R. Trutna, Jr, “Interference-filter-tuned, alignment-stabilized, semiconductor external-cavity laser,” Opt. Lett. 13, 826-828 (1988).
[CrossRef]

P. Zorabedian, “Tunable external-cavity semiconductor lasers,” in Tunable Lasers Handbook, F. J. Duarte, ed. (Academic, 1995), pp. 349-442.

Am. J. Phys. (2)

K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098-1111 (1992).
[CrossRef]

K. G. Libbrecht, R. A. Boyd, P. A. Willems, T. L. Gustavson, and D. K. Kim, “Teaching physics with 670 nm diode lasers-construction of stabilized lasers and lithium cells,” Am. J. Phys. 63, 729-737 (1995).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (2)

H. S. Moon, L. Lee, K. Kim, and J. B. Kim, “Laser frequency stabilizations using electromagnetically induced transparency,” Appl. Phys. Lett. 84, 3001-3003 (2004).
[CrossRef]

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
[CrossRef]

Appl. Spectrosc. Rev. (1)

G. Galbács, “A review of applications and experimental improvements related to diode laser atomic spectroscopy,” Appl. Spectrosc. Rev. 41, 259-303 (2006).

Electron. Lett. (4)

O. Nilsson, S. Saito, and Y. Yamamoto, “Oscillation frequency, linewidth reduction and frequency modulation characteristics for a diode laser with external grating feedback,” Electron. Lett. 17, 589-591 (1981).
[CrossRef]

K. Kikuchi, T. Okoshi, and R. Arata, “Measurement of linewidth and FM-noise spectrum of 1.52 μm InGaAsP lasers,” Electron. Lett. 20, 535-536 (1984).
[CrossRef]

R. Wyatt and W. J. Devlin, “10 kHz linewidth 1.5 μm InGaAsP external cavity laser with 55 nm tuning range,” Electron. Lett. 19, 110-112 (1983).
[CrossRef]

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630-631 (1980).
[CrossRef]

IEEE J. Quantum Electron. (3)

M. W. Fleming and A. Mooradian, “Spectral characteristics of external-cavity controlled semiconductor lasers,” IEEE J. Quantum Electron. 17, 44-59 (1981).
[CrossRef]

C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259-264 (1982).
[CrossRef]

G. Genty, A. Grohn, H. Talvitie, M. Kaivola, and H. Ludvigsen, “Analysis of the linewidth of a grating-feedback GaAlAs laser,” IEEE J. Quantum Electron. 36, 1193-1198 (2000).
[CrossRef]

J. Lightwave Technol. (2)

N. Olsson and J. Van Der Ziel, “Performance characteristics of 1.5 μm external cavity semiconductor lasers for coherent optical communication,” J. Lightwave Technol. 5, 510-515 (1987).
[CrossRef]

W. R. Trutna, Jr., and L. F. Stokes, “Continuously tuned external cavity semiconductor laser,” J. Lightwave Technol. 11, 1279-1286 (1993).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. B (1)

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141-5151 (2002).

Opt. Commun. (7)

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541-549 (1995).
[CrossRef]

T. Hof, D. Fick, and H. J. Jänsch, “Application of diode lasers as a spectroscopic tool at 670 nm,” Opt. Commun. 124, 283-286(1996).
[CrossRef]

M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, and E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175-180 (2000).
[CrossRef]

G. Genty, M. Kaivola, and H. Ludvigsen, “Measurements of linewidth variations within external-cavity modes of a grating-cavity laser,” Opt. Commun. 203, 295-300 (2002).
[CrossRef]

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266, 609-613(2006).
[CrossRef]

L. D. Turner, K. P. Weber, C. J. Hawthorn, and R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun. 201, 391-397 (2002).
[CrossRef]

T. P. Dinneen, C. D. Wallace, and P. L. Gould, “Narrow linewidth, highly stable, tunable diode laser system,” Opt. Commun. 92, 277-282 (1992).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Opto-Electron. Rev. (1)

B. Mroziewicz, “External cavity wavelength tunable semiconductor lasers--a review,” Opto-Electron. Rev. 16, 347-366 (2008).

Phys. Rev. (1)

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940-1949 (1958).
[CrossRef]

Proc. IEEE (1)

H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312-1392 (1966).
[CrossRef]

Rev. Sci. Instrum. (5)

H. Talvitie, A. Pietiläinen, H. Ludvigsen, and E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68, 1-7 (1997).
[CrossRef]

K. G. Libbrecht and J. L. Hall, “A low-noise high-speed diode laser current controller,” Rev. Sci. Instrum. 64, 2133-2135(1993).
[CrossRef]

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477-4479 (2001).
[CrossRef]

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1-20 (1991).
[CrossRef]

A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236-1239 (1998).
[CrossRef]

Other (3)

P. Zorabedian, “Tunable external-cavity semiconductor lasers,” in Tunable Lasers Handbook, F. J. Duarte, ed. (Academic, 1995), pp. 349-442.

We used an LT230P-B collimating tube from Thorlabs, Newton, New Jersey; an Ultima kinematic mount and Spectraphysics 33001FL02-330H gold-coated holographic grating from Newport, Irvine, California; a Melcor CP1.4-71-045L thermoelectric cooler from Laird Thermal North America, Cleveland, Ohio; an AE0203D04 piezoelectric actuator from NEC Tokin America, San Jose, California; and a DL-7140-201 diode from Sanyo, Tokyo, Japan. Note: certain commercial equipment, instruments, and materials are identified in to adequately specify the experimental procedure. Such identification does not imply recommendation or endorsement nor does it imply that the materials or equipment are necessarily the best available for the purpose.

DLC-202 ECDL controller from MOG Laboratories, Brunswick, Victoria, Australia.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of a Littrow configuration ECDL showing the laser diode, collimating lens, diffraction grating, and output beam. θ is the Littrow angle, L D is the diode cavity length, L ext is the external cavity length, d f is the distance from the diode to the lens, and d c is the distance between the lens and the grating. A single longitudinal cavity mode is selected by dispersive feedback from the grating.

Fig. 2
Fig. 2

Littrow configured ECDL with a fixed output beam direction, adapted with permission from C. J. Hawthorn, K. P. Weber, and R. E. Scholten, Rev. Sci. Instrum. 72, 4477 (2001). © 2001 American Institute of Physics.

Fig. 3
Fig. 3

Calculated ratio of source size to backreflected spot size for the two axes of an elliptical Gaussian beam emitted from a 780 nm ECDL with L ext = 20 mm . Also shown is the total backreflected efficiency for the effective area of the source. The source size is 4.2 μm × 2.0 μm , calculated from the divergence full angles specified by the diode manufacturer, 8 ° and 17 ° .

Fig. 4
Fig. 4

Free-running laser linewidth measurements of an ECDL operating in the p plane (top), s plane (middle), and p plane with a short focal distance z (bottom). Linewidths were measured using a self-heterodyne technique [41] with a 2 km length of multimode optical fiber giving a resolution limit of Δ f = 25 kHz . Measurememts were taken on an rf spectrum analyzer with a resolution bandwidth of 3 kHz averaging 40 sweeps with a sweep time of 225 ms . Parameters for each ECDL configuration are listed in Table 1. The ECDL output power was approximately five times greater for the p plane than for the s plane. Lorentzian (Γ) fits excluded the central 1 MHz and Gaussian (FWHM) fits were to the central 1 MHz only.

Fig. 5
Fig. 5

Self-heterodyne laser linewidth measurement with low-noise current supply [36], active frequency feedback [36], and z = 2 m collimating focus distance. The inherent resolution bandwidth limit of the measurement technique is approximately 25 kHz .

Tables (1)

Tables Icon

Table 1 Parameters for Calculating Δ ν for a 780 nm AlGaAs Diode that Operates in a Littrow Configured External Cavity a

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ ν = π h ν m ( Δ ν c ) 2 ( 1 + α 2 ) P m n sp ,
Δ ν c = c 2 π L eff ( κ L L D ln R eff ) ,
1 q = C q 0 + D A q 0 + B ,
[ A B C D ] = [ 1 d f 0 1 ] [ 1 0 1 f 1 ] [ 1 2 d c 0 1 ] [ 1 0 1 f 1 ] [ 1 d f 0 1 ] ,
w 2 = λ π 1 ( 1 / q ) .
1 f = 1 d f + 1 z .

Metrics