Abstract

We have fabricated Fabry–Perot (FP) cavities in the THz region with a ZnTe crystal as a cavity layer by a simple stacking method. We observed more than a three times enhancement of the THz emission intensity in the FP cavities compared with the bare ZnTe crystal at the frequencies of the resonant modes and stopband edges. On the other hand, suppression of the THz emission occurs at frequencies in the stopband. The enhancement and suppression of the THz emission are caused by the modification of the optical density of state in the FP cavities compared to the vacuum.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Inoue and T. Ohtaka, eds., Photonic Crystals: Physics, Fabrication, and Applications (Springer, 2004).
  2. E. Burstein and C. Weisbuch, eds., Confined Electrons and Photons (Plenum, 1995).
    [CrossRef]
  3. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 37 (1946).
    [CrossRef]
  4. H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814-2816 (1990).
    [CrossRef]
  5. Y. Yamamoto, S. Machida, Y. Horikoshi, K. Igeta, and G. Björk, “Enhanced and inhibited spontaneous emission of free excitons in GaAs quantum wells in a microcavity,” Opt. Commun. 80, 337-342 (1991).
    [CrossRef]
  6. C. B. Poitras, M. Lipson, H. Du, M. A. Hahn, and T. Krauss, “Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity,” Appl. Phys. Lett. 82, 4032-4034 (2003).
    [CrossRef]
  7. R. H. Jordan, L. J. Rothberg, A. Dodabalapur, and R. E. Slusher, “Efficiency enhancement of microcavity organic light emitting diodes,” Appl. Phys. Lett. 69, 1997-1999 (1996).
    [CrossRef]
  8. M. S. Weaver, D. G. Lidzey, T. A. Fisher, M. A. Pate, D. O'Brien, A. Bleyer, A. Tajbakhah, D. D. C. Bradley, M. S. Skolnick, and G. Hill, “Recent progress in polymers for electroluminescence: microcavity devices and electron transport polymers,” Thin Solid Films 273, 39-47 (1996).
    [CrossRef]
  9. A. M. Vredenberg, N. E. J. Hunt, E. F. Schubert, D. C. Jacobson, J. M. Poate, and G. J. Zydzik, “Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity,” Phys. Rev. Lett. 71, 517-520 (1993).
    [CrossRef] [PubMed]
  10. L. Pavesi, C. Mazzoleni, A. Tredicucci, and V. Pellegrini, “Controlled photon emission in porous silicon microcavities,” Appl. Phys. Lett. 67, 3280-3282 (1995).
    [CrossRef]
  11. S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62, R2243-R2246 (2000).
    [CrossRef]
  12. H. Xin, Z. Wu, A. Young, and R. Ziolkowski, “THz thermal radiation enhancement using an electromagnetic crystal,” IEEE Trans. Anntena. Propag. 56, 2970-2980 (2008).
    [CrossRef]
  13. F. Cairo, F. De Martini, and D. Murra, “QED-vacuum confinement of inelastic quantum scattering at optical frequencies: A new perspective in Raman spectroscopy,” Phys. Rev. Lett. 70, 1413-1416 (1993).
    [CrossRef] [PubMed]
  14. A. Mazzei, S. Götzinger, L. de, S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropergating whispering-gallery modes by a single Rayleigh scatterer: A classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007).
    [CrossRef] [PubMed]
  15. P. Bermel, A. Rodriguez, J. D. Joannopoulous, and M. Soljačić, “Tailoring optical nonlinearities via the Purcell effect,” Phys. Rev. Lett. 99, 053601 (2007).
    [CrossRef] [PubMed]
  16. R. Loudon, The Quantum Theory of Light (Oxford, 2000).
  17. K.Sakai, ed., Terahertz Optoelectronics (Springer, 2005).
    [CrossRef]
  18. M. Iida, M. Tani, P. Gu, K. Sakai, M. Watanabe, H. Kitahara, S. Kato, M. Suenaga, H. Kondo, and M. W. Takeda, “Terahertz-photomixing efficiency of a photoconductive antenna embedded in a three-dimensional photonic crystal,” Jpn. J. Appl. Phys. Part 2 42, L1442-L1445 (2003).
    [CrossRef]
  19. A. Nahata, A. S. Weling, T. F. Heinz, and C. Wu, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321-2323 (1996).
    [CrossRef]
  20. M. Hangyo, T. Nagashima, and S. Nashima, “Spectroscopy by pulsed terahertz radiation,” Meas. Sci. Technol. 13, 1727-1738 (2002).
    [CrossRef]
  21. N. Matsumoto, T. Nakagawa, A. Ando, Y. Sakabe, S. Kirihara, and Y. Miyamoto, “Study of multilayer ceramic photonic crystals in THz region,” Jpn. J. Appl. Phys. 44, 7111-7114(2005).
    [CrossRef]
  22. H. Němec, P. Kužel, F. Garet, and L. Duvillaret, “Time-domain terahertz study of defect formation in one-dimensional photonic crystals,” Appl. Opt. 43, 1965-1970 (2004).
    [CrossRef] [PubMed]
  23. D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys. A 74, 291-293 (2002).
    [CrossRef]
  24. E. Kishimoto, M. Obayashi, Y. Hanafusa, H. Miyagawa, S. Koshiba, S. Nakanishi, H. Itoh, and N. Tsurumachi, “Transmission spectra of terahertz region hybrid one-dimensional photonic crystals,” in 2nd International Symposium on Portable Synchrotron Sources and Advanced Applications, Vol. 902 of AIP Conference Proceedings (American Institute of Physics, 2007), pp. 79-82.
    [CrossRef]
  25. T. Komikado, A. Inoue, K. Masuda, T. Ando, and S. Umegaki, “Multi-layered mirrors fabricated by spin-coating organic polymers,” Thin Soild Films 515, 3887-3892 (2007).
    [CrossRef]
  26. M. Schall, H. Helm, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. J. Infrared Millimeter Waves 20, 595-604 (1999).
    [CrossRef]
  27. R. P. Stanley, R. Houdré, U. Oesterle, M. Ilegems, and C. Weisbuch, “Impurity modes in one-dimensional periodic systems: The transition from photonic band gaps to microcavities,” Phys. Rev. A 48, 2246-2250 (1993).
    [CrossRef] [PubMed]

2008 (1)

H. Xin, Z. Wu, A. Young, and R. Ziolkowski, “THz thermal radiation enhancement using an electromagnetic crystal,” IEEE Trans. Anntena. Propag. 56, 2970-2980 (2008).
[CrossRef]

2007 (3)

A. Mazzei, S. Götzinger, L. de, S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropergating whispering-gallery modes by a single Rayleigh scatterer: A classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007).
[CrossRef] [PubMed]

P. Bermel, A. Rodriguez, J. D. Joannopoulous, and M. Soljačić, “Tailoring optical nonlinearities via the Purcell effect,” Phys. Rev. Lett. 99, 053601 (2007).
[CrossRef] [PubMed]

T. Komikado, A. Inoue, K. Masuda, T. Ando, and S. Umegaki, “Multi-layered mirrors fabricated by spin-coating organic polymers,” Thin Soild Films 515, 3887-3892 (2007).
[CrossRef]

2005 (1)

N. Matsumoto, T. Nakagawa, A. Ando, Y. Sakabe, S. Kirihara, and Y. Miyamoto, “Study of multilayer ceramic photonic crystals in THz region,” Jpn. J. Appl. Phys. 44, 7111-7114(2005).
[CrossRef]

2004 (1)

2003 (2)

M. Iida, M. Tani, P. Gu, K. Sakai, M. Watanabe, H. Kitahara, S. Kato, M. Suenaga, H. Kondo, and M. W. Takeda, “Terahertz-photomixing efficiency of a photoconductive antenna embedded in a three-dimensional photonic crystal,” Jpn. J. Appl. Phys. Part 2 42, L1442-L1445 (2003).
[CrossRef]

C. B. Poitras, M. Lipson, H. Du, M. A. Hahn, and T. Krauss, “Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity,” Appl. Phys. Lett. 82, 4032-4034 (2003).
[CrossRef]

2002 (2)

M. Hangyo, T. Nagashima, and S. Nashima, “Spectroscopy by pulsed terahertz radiation,” Meas. Sci. Technol. 13, 1727-1738 (2002).
[CrossRef]

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys. A 74, 291-293 (2002).
[CrossRef]

2000 (1)

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62, R2243-R2246 (2000).
[CrossRef]

1999 (1)

M. Schall, H. Helm, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. J. Infrared Millimeter Waves 20, 595-604 (1999).
[CrossRef]

1996 (3)

A. Nahata, A. S. Weling, T. F. Heinz, and C. Wu, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321-2323 (1996).
[CrossRef]

R. H. Jordan, L. J. Rothberg, A. Dodabalapur, and R. E. Slusher, “Efficiency enhancement of microcavity organic light emitting diodes,” Appl. Phys. Lett. 69, 1997-1999 (1996).
[CrossRef]

M. S. Weaver, D. G. Lidzey, T. A. Fisher, M. A. Pate, D. O'Brien, A. Bleyer, A. Tajbakhah, D. D. C. Bradley, M. S. Skolnick, and G. Hill, “Recent progress in polymers for electroluminescence: microcavity devices and electron transport polymers,” Thin Solid Films 273, 39-47 (1996).
[CrossRef]

1995 (1)

L. Pavesi, C. Mazzoleni, A. Tredicucci, and V. Pellegrini, “Controlled photon emission in porous silicon microcavities,” Appl. Phys. Lett. 67, 3280-3282 (1995).
[CrossRef]

1993 (3)

A. M. Vredenberg, N. E. J. Hunt, E. F. Schubert, D. C. Jacobson, J. M. Poate, and G. J. Zydzik, “Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity,” Phys. Rev. Lett. 71, 517-520 (1993).
[CrossRef] [PubMed]

F. Cairo, F. De Martini, and D. Murra, “QED-vacuum confinement of inelastic quantum scattering at optical frequencies: A new perspective in Raman spectroscopy,” Phys. Rev. Lett. 70, 1413-1416 (1993).
[CrossRef] [PubMed]

R. P. Stanley, R. Houdré, U. Oesterle, M. Ilegems, and C. Weisbuch, “Impurity modes in one-dimensional periodic systems: The transition from photonic band gaps to microcavities,” Phys. Rev. A 48, 2246-2250 (1993).
[CrossRef] [PubMed]

1991 (1)

Y. Yamamoto, S. Machida, Y. Horikoshi, K. Igeta, and G. Björk, “Enhanced and inhibited spontaneous emission of free excitons in GaAs quantum wells in a microcavity,” Opt. Commun. 80, 337-342 (1991).
[CrossRef]

1990 (1)

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814-2816 (1990).
[CrossRef]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 37 (1946).
[CrossRef]

Anan, T.

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814-2816 (1990).
[CrossRef]

Ando, A.

N. Matsumoto, T. Nakagawa, A. Ando, Y. Sakabe, S. Kirihara, and Y. Miyamoto, “Study of multilayer ceramic photonic crystals in THz region,” Jpn. J. Appl. Phys. 44, 7111-7114(2005).
[CrossRef]

Ando, T.

T. Komikado, A. Inoue, K. Masuda, T. Ando, and S. Umegaki, “Multi-layered mirrors fabricated by spin-coating organic polymers,” Thin Soild Films 515, 3887-3892 (2007).
[CrossRef]

Benson, O.

A. Mazzei, S. Götzinger, L. de, S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropergating whispering-gallery modes by a single Rayleigh scatterer: A classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007).
[CrossRef] [PubMed]

Bermel, P.

P. Bermel, A. Rodriguez, J. D. Joannopoulous, and M. Soljačić, “Tailoring optical nonlinearities via the Purcell effect,” Phys. Rev. Lett. 99, 053601 (2007).
[CrossRef] [PubMed]

Björk, G.

Y. Yamamoto, S. Machida, Y. Horikoshi, K. Igeta, and G. Björk, “Enhanced and inhibited spontaneous emission of free excitons in GaAs quantum wells in a microcavity,” Opt. Commun. 80, 337-342 (1991).
[CrossRef]

Bleyer, A.

M. S. Weaver, D. G. Lidzey, T. A. Fisher, M. A. Pate, D. O'Brien, A. Bleyer, A. Tajbakhah, D. D. C. Bradley, M. S. Skolnick, and G. Hill, “Recent progress in polymers for electroluminescence: microcavity devices and electron transport polymers,” Thin Solid Films 273, 39-47 (1996).
[CrossRef]

Bradley, D. D. C.

M. S. Weaver, D. G. Lidzey, T. A. Fisher, M. A. Pate, D. O'Brien, A. Bleyer, A. Tajbakhah, D. D. C. Bradley, M. S. Skolnick, and G. Hill, “Recent progress in polymers for electroluminescence: microcavity devices and electron transport polymers,” Thin Solid Films 273, 39-47 (1996).
[CrossRef]

Brorson, S. D.

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814-2816 (1990).
[CrossRef]

Bur, J.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62, R2243-R2246 (2000).
[CrossRef]

Cairo, F.

F. Cairo, F. De Martini, and D. Murra, “QED-vacuum confinement of inelastic quantum scattering at optical frequencies: A new perspective in Raman spectroscopy,” Phys. Rev. Lett. 70, 1413-1416 (1993).
[CrossRef] [PubMed]

Choi, K. K.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62, R2243-R2246 (2000).
[CrossRef]

Chow, E.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62, R2243-R2246 (2000).
[CrossRef]

de, L.

A. Mazzei, S. Götzinger, L. de, S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropergating whispering-gallery modes by a single Rayleigh scatterer: A classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007).
[CrossRef] [PubMed]

De Martini, F.

F. Cairo, F. De Martini, and D. Murra, “QED-vacuum confinement of inelastic quantum scattering at optical frequencies: A new perspective in Raman spectroscopy,” Phys. Rev. Lett. 70, 1413-1416 (1993).
[CrossRef] [PubMed]

Dobbertin, T.

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys. A 74, 291-293 (2002).
[CrossRef]

Dodabalapur, A.

R. H. Jordan, L. J. Rothberg, A. Dodabalapur, and R. E. Slusher, “Efficiency enhancement of microcavity organic light emitting diodes,” Appl. Phys. Lett. 69, 1997-1999 (1996).
[CrossRef]

Du, H.

C. B. Poitras, M. Lipson, H. Du, M. A. Hahn, and T. Krauss, “Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity,” Appl. Phys. Lett. 82, 4032-4034 (2003).
[CrossRef]

Duvillaret, L.

Fisher, T. A.

M. S. Weaver, D. G. Lidzey, T. A. Fisher, M. A. Pate, D. O'Brien, A. Bleyer, A. Tajbakhah, D. D. C. Bradley, M. S. Skolnick, and G. Hill, “Recent progress in polymers for electroluminescence: microcavity devices and electron transport polymers,” Thin Solid Films 273, 39-47 (1996).
[CrossRef]

Fleming, J. G.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62, R2243-R2246 (2000).
[CrossRef]

Garet, F.

Goldberg, A.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62, R2243-R2246 (2000).
[CrossRef]

Götzinger, S.

A. Mazzei, S. Götzinger, L. de, S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropergating whispering-gallery modes by a single Rayleigh scatterer: A classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007).
[CrossRef] [PubMed]

Gu, P.

M. Iida, M. Tani, P. Gu, K. Sakai, M. Watanabe, H. Kitahara, S. Kato, M. Suenaga, H. Kondo, and M. W. Takeda, “Terahertz-photomixing efficiency of a photoconductive antenna embedded in a three-dimensional photonic crystal,” Jpn. J. Appl. Phys. Part 2 42, L1442-L1445 (2003).
[CrossRef]

Hahn, M. A.

C. B. Poitras, M. Lipson, H. Du, M. A. Hahn, and T. Krauss, “Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity,” Appl. Phys. Lett. 82, 4032-4034 (2003).
[CrossRef]

Hanafusa, Y.

E. Kishimoto, M. Obayashi, Y. Hanafusa, H. Miyagawa, S. Koshiba, S. Nakanishi, H. Itoh, and N. Tsurumachi, “Transmission spectra of terahertz region hybrid one-dimensional photonic crystals,” in 2nd International Symposium on Portable Synchrotron Sources and Advanced Applications, Vol. 902 of AIP Conference Proceedings (American Institute of Physics, 2007), pp. 79-82.
[CrossRef]

Hangyo, M.

M. Hangyo, T. Nagashima, and S. Nashima, “Spectroscopy by pulsed terahertz radiation,” Meas. Sci. Technol. 13, 1727-1738 (2002).
[CrossRef]

Heinz, T. F.

A. Nahata, A. S. Weling, T. F. Heinz, and C. Wu, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321-2323 (1996).
[CrossRef]

Helm, H.

M. Schall, H. Helm, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. J. Infrared Millimeter Waves 20, 595-604 (1999).
[CrossRef]

Hill, G.

M. S. Weaver, D. G. Lidzey, T. A. Fisher, M. A. Pate, D. O'Brien, A. Bleyer, A. Tajbakhah, D. D. C. Bradley, M. S. Skolnick, and G. Hill, “Recent progress in polymers for electroluminescence: microcavity devices and electron transport polymers,” Thin Solid Films 273, 39-47 (1996).
[CrossRef]

Horikoshi, Y.

Y. Yamamoto, S. Machida, Y. Horikoshi, K. Igeta, and G. Björk, “Enhanced and inhibited spontaneous emission of free excitons in GaAs quantum wells in a microcavity,” Opt. Commun. 80, 337-342 (1991).
[CrossRef]

Houdré, R.

R. P. Stanley, R. Houdré, U. Oesterle, M. Ilegems, and C. Weisbuch, “Impurity modes in one-dimensional periodic systems: The transition from photonic band gaps to microcavities,” Phys. Rev. A 48, 2246-2250 (1993).
[CrossRef] [PubMed]

Hunt, N. E. J.

A. M. Vredenberg, N. E. J. Hunt, E. F. Schubert, D. C. Jacobson, J. M. Poate, and G. J. Zydzik, “Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity,” Phys. Rev. Lett. 71, 517-520 (1993).
[CrossRef] [PubMed]

Igeta, K.

Y. Yamamoto, S. Machida, Y. Horikoshi, K. Igeta, and G. Björk, “Enhanced and inhibited spontaneous emission of free excitons in GaAs quantum wells in a microcavity,” Opt. Commun. 80, 337-342 (1991).
[CrossRef]

Iida, M.

M. Iida, M. Tani, P. Gu, K. Sakai, M. Watanabe, H. Kitahara, S. Kato, M. Suenaga, H. Kondo, and M. W. Takeda, “Terahertz-photomixing efficiency of a photoconductive antenna embedded in a three-dimensional photonic crystal,” Jpn. J. Appl. Phys. Part 2 42, L1442-L1445 (2003).
[CrossRef]

Ilegems, M.

R. P. Stanley, R. Houdré, U. Oesterle, M. Ilegems, and C. Weisbuch, “Impurity modes in one-dimensional periodic systems: The transition from photonic band gaps to microcavities,” Phys. Rev. A 48, 2246-2250 (1993).
[CrossRef] [PubMed]

Inoue, A.

T. Komikado, A. Inoue, K. Masuda, T. Ando, and S. Umegaki, “Multi-layered mirrors fabricated by spin-coating organic polymers,” Thin Soild Films 515, 3887-3892 (2007).
[CrossRef]

Ippen, E. P.

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814-2816 (1990).
[CrossRef]

Itoh, H.

E. Kishimoto, M. Obayashi, Y. Hanafusa, H. Miyagawa, S. Koshiba, S. Nakanishi, H. Itoh, and N. Tsurumachi, “Transmission spectra of terahertz region hybrid one-dimensional photonic crystals,” in 2nd International Symposium on Portable Synchrotron Sources and Advanced Applications, Vol. 902 of AIP Conference Proceedings (American Institute of Physics, 2007), pp. 79-82.
[CrossRef]

Jacobson, D. C.

A. M. Vredenberg, N. E. J. Hunt, E. F. Schubert, D. C. Jacobson, J. M. Poate, and G. J. Zydzik, “Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity,” Phys. Rev. Lett. 71, 517-520 (1993).
[CrossRef] [PubMed]

Joannopoulous, J. D.

P. Bermel, A. Rodriguez, J. D. Joannopoulous, and M. Soljačić, “Tailoring optical nonlinearities via the Purcell effect,” Phys. Rev. Lett. 99, 053601 (2007).
[CrossRef] [PubMed]

Jordan, R. H.

R. H. Jordan, L. J. Rothberg, A. Dodabalapur, and R. E. Slusher, “Efficiency enhancement of microcavity organic light emitting diodes,” Appl. Phys. Lett. 69, 1997-1999 (1996).
[CrossRef]

Kammoun, A.

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys. A 74, 291-293 (2002).
[CrossRef]

Kato, S.

M. Iida, M. Tani, P. Gu, K. Sakai, M. Watanabe, H. Kitahara, S. Kato, M. Suenaga, H. Kondo, and M. W. Takeda, “Terahertz-photomixing efficiency of a photoconductive antenna embedded in a three-dimensional photonic crystal,” Jpn. J. Appl. Phys. Part 2 42, L1442-L1445 (2003).
[CrossRef]

Keiding, S. R.

M. Schall, H. Helm, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. J. Infrared Millimeter Waves 20, 595-604 (1999).
[CrossRef]

Kirihara, S.

N. Matsumoto, T. Nakagawa, A. Ando, Y. Sakabe, S. Kirihara, and Y. Miyamoto, “Study of multilayer ceramic photonic crystals in THz region,” Jpn. J. Appl. Phys. 44, 7111-7114(2005).
[CrossRef]

Kishimoto, E.

E. Kishimoto, M. Obayashi, Y. Hanafusa, H. Miyagawa, S. Koshiba, S. Nakanishi, H. Itoh, and N. Tsurumachi, “Transmission spectra of terahertz region hybrid one-dimensional photonic crystals,” in 2nd International Symposium on Portable Synchrotron Sources and Advanced Applications, Vol. 902 of AIP Conference Proceedings (American Institute of Physics, 2007), pp. 79-82.
[CrossRef]

Kitahara, H.

M. Iida, M. Tani, P. Gu, K. Sakai, M. Watanabe, H. Kitahara, S. Kato, M. Suenaga, H. Kondo, and M. W. Takeda, “Terahertz-photomixing efficiency of a photoconductive antenna embedded in a three-dimensional photonic crystal,” Jpn. J. Appl. Phys. Part 2 42, L1442-L1445 (2003).
[CrossRef]

Knobloch, P.

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys. A 74, 291-293 (2002).
[CrossRef]

Koch, M.

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys. A 74, 291-293 (2002).
[CrossRef]

Komikado, T.

T. Komikado, A. Inoue, K. Masuda, T. Ando, and S. Umegaki, “Multi-layered mirrors fabricated by spin-coating organic polymers,” Thin Soild Films 515, 3887-3892 (2007).
[CrossRef]

Kondo, H.

M. Iida, M. Tani, P. Gu, K. Sakai, M. Watanabe, H. Kitahara, S. Kato, M. Suenaga, H. Kondo, and M. W. Takeda, “Terahertz-photomixing efficiency of a photoconductive antenna embedded in a three-dimensional photonic crystal,” Jpn. J. Appl. Phys. Part 2 42, L1442-L1445 (2003).
[CrossRef]

Koshiba, S.

E. Kishimoto, M. Obayashi, Y. Hanafusa, H. Miyagawa, S. Koshiba, S. Nakanishi, H. Itoh, and N. Tsurumachi, “Transmission spectra of terahertz region hybrid one-dimensional photonic crystals,” in 2nd International Symposium on Portable Synchrotron Sources and Advanced Applications, Vol. 902 of AIP Conference Proceedings (American Institute of Physics, 2007), pp. 79-82.
[CrossRef]

Krauss, T.

C. B. Poitras, M. Lipson, H. Du, M. A. Hahn, and T. Krauss, “Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity,” Appl. Phys. Lett. 82, 4032-4034 (2003).
[CrossRef]

Kužel, P.

Lidzey, D. G.

M. S. Weaver, D. G. Lidzey, T. A. Fisher, M. A. Pate, D. O'Brien, A. Bleyer, A. Tajbakhah, D. D. C. Bradley, M. S. Skolnick, and G. Hill, “Recent progress in polymers for electroluminescence: microcavity devices and electron transport polymers,” Thin Solid Films 273, 39-47 (1996).
[CrossRef]

Lin, S. Y.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62, R2243-R2246 (2000).
[CrossRef]

Lipson, M.

C. B. Poitras, M. Lipson, H. Du, M. A. Hahn, and T. Krauss, “Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity,” Appl. Phys. Lett. 82, 4032-4034 (2003).
[CrossRef]

Loudon, R.

R. Loudon, The Quantum Theory of Light (Oxford, 2000).

Machida, S.

Y. Yamamoto, S. Machida, Y. Horikoshi, K. Igeta, and G. Björk, “Enhanced and inhibited spontaneous emission of free excitons in GaAs quantum wells in a microcavity,” Opt. Commun. 80, 337-342 (1991).
[CrossRef]

Masuda, K.

T. Komikado, A. Inoue, K. Masuda, T. Ando, and S. Umegaki, “Multi-layered mirrors fabricated by spin-coating organic polymers,” Thin Soild Films 515, 3887-3892 (2007).
[CrossRef]

Matsumoto, N.

N. Matsumoto, T. Nakagawa, A. Ando, Y. Sakabe, S. Kirihara, and Y. Miyamoto, “Study of multilayer ceramic photonic crystals in THz region,” Jpn. J. Appl. Phys. 44, 7111-7114(2005).
[CrossRef]

Mazzei, A.

A. Mazzei, S. Götzinger, L. de, S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropergating whispering-gallery modes by a single Rayleigh scatterer: A classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007).
[CrossRef] [PubMed]

Mazzoleni, C.

L. Pavesi, C. Mazzoleni, A. Tredicucci, and V. Pellegrini, “Controlled photon emission in porous silicon microcavities,” Appl. Phys. Lett. 67, 3280-3282 (1995).
[CrossRef]

Menezes, S.

A. Mazzei, S. Götzinger, L. de, S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropergating whispering-gallery modes by a single Rayleigh scatterer: A classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007).
[CrossRef] [PubMed]

Miyagawa, H.

E. Kishimoto, M. Obayashi, Y. Hanafusa, H. Miyagawa, S. Koshiba, S. Nakanishi, H. Itoh, and N. Tsurumachi, “Transmission spectra of terahertz region hybrid one-dimensional photonic crystals,” in 2nd International Symposium on Portable Synchrotron Sources and Advanced Applications, Vol. 902 of AIP Conference Proceedings (American Institute of Physics, 2007), pp. 79-82.
[CrossRef]

Miyamoto, Y.

N. Matsumoto, T. Nakagawa, A. Ando, Y. Sakabe, S. Kirihara, and Y. Miyamoto, “Study of multilayer ceramic photonic crystals in THz region,” Jpn. J. Appl. Phys. 44, 7111-7114(2005).
[CrossRef]

Murra, D.

F. Cairo, F. De Martini, and D. Murra, “QED-vacuum confinement of inelastic quantum scattering at optical frequencies: A new perspective in Raman spectroscopy,” Phys. Rev. Lett. 70, 1413-1416 (1993).
[CrossRef] [PubMed]

Nagashima, T.

M. Hangyo, T. Nagashima, and S. Nashima, “Spectroscopy by pulsed terahertz radiation,” Meas. Sci. Technol. 13, 1727-1738 (2002).
[CrossRef]

Nahata, A.

A. Nahata, A. S. Weling, T. F. Heinz, and C. Wu, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321-2323 (1996).
[CrossRef]

Nakagawa, T.

N. Matsumoto, T. Nakagawa, A. Ando, Y. Sakabe, S. Kirihara, and Y. Miyamoto, “Study of multilayer ceramic photonic crystals in THz region,” Jpn. J. Appl. Phys. 44, 7111-7114(2005).
[CrossRef]

Nakanishi, S.

E. Kishimoto, M. Obayashi, Y. Hanafusa, H. Miyagawa, S. Koshiba, S. Nakanishi, H. Itoh, and N. Tsurumachi, “Transmission spectra of terahertz region hybrid one-dimensional photonic crystals,” in 2nd International Symposium on Portable Synchrotron Sources and Advanced Applications, Vol. 902 of AIP Conference Proceedings (American Institute of Physics, 2007), pp. 79-82.
[CrossRef]

Nashima, S.

M. Hangyo, T. Nagashima, and S. Nashima, “Spectroscopy by pulsed terahertz radiation,” Meas. Sci. Technol. 13, 1727-1738 (2002).
[CrossRef]

Nemec, H.

Nishi, K.

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814-2816 (1990).
[CrossRef]

Obayashi, M.

E. Kishimoto, M. Obayashi, Y. Hanafusa, H. Miyagawa, S. Koshiba, S. Nakanishi, H. Itoh, and N. Tsurumachi, “Transmission spectra of terahertz region hybrid one-dimensional photonic crystals,” in 2nd International Symposium on Portable Synchrotron Sources and Advanced Applications, Vol. 902 of AIP Conference Proceedings (American Institute of Physics, 2007), pp. 79-82.
[CrossRef]

O'Brien, D.

M. S. Weaver, D. G. Lidzey, T. A. Fisher, M. A. Pate, D. O'Brien, A. Bleyer, A. Tajbakhah, D. D. C. Bradley, M. S. Skolnick, and G. Hill, “Recent progress in polymers for electroluminescence: microcavity devices and electron transport polymers,” Thin Solid Films 273, 39-47 (1996).
[CrossRef]

Oesterle, U.

R. P. Stanley, R. Houdré, U. Oesterle, M. Ilegems, and C. Weisbuch, “Impurity modes in one-dimensional periodic systems: The transition from photonic band gaps to microcavities,” Phys. Rev. A 48, 2246-2250 (1993).
[CrossRef] [PubMed]

Pate, M. A.

M. S. Weaver, D. G. Lidzey, T. A. Fisher, M. A. Pate, D. O'Brien, A. Bleyer, A. Tajbakhah, D. D. C. Bradley, M. S. Skolnick, and G. Hill, “Recent progress in polymers for electroluminescence: microcavity devices and electron transport polymers,” Thin Solid Films 273, 39-47 (1996).
[CrossRef]

Pavesi, L.

L. Pavesi, C. Mazzoleni, A. Tredicucci, and V. Pellegrini, “Controlled photon emission in porous silicon microcavities,” Appl. Phys. Lett. 67, 3280-3282 (1995).
[CrossRef]

Pellegrini, V.

L. Pavesi, C. Mazzoleni, A. Tredicucci, and V. Pellegrini, “Controlled photon emission in porous silicon microcavities,” Appl. Phys. Lett. 67, 3280-3282 (1995).
[CrossRef]

Poate, J. M.

A. M. Vredenberg, N. E. J. Hunt, E. F. Schubert, D. C. Jacobson, J. M. Poate, and G. J. Zydzik, “Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity,” Phys. Rev. Lett. 71, 517-520 (1993).
[CrossRef] [PubMed]

Poitras, C. B.

C. B. Poitras, M. Lipson, H. Du, M. A. Hahn, and T. Krauss, “Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity,” Appl. Phys. Lett. 82, 4032-4034 (2003).
[CrossRef]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 37 (1946).
[CrossRef]

Rodriguez, A.

P. Bermel, A. Rodriguez, J. D. Joannopoulous, and M. Soljačić, “Tailoring optical nonlinearities via the Purcell effect,” Phys. Rev. Lett. 99, 053601 (2007).
[CrossRef] [PubMed]

Rothberg, L. J.

R. H. Jordan, L. J. Rothberg, A. Dodabalapur, and R. E. Slusher, “Efficiency enhancement of microcavity organic light emitting diodes,” Appl. Phys. Lett. 69, 1997-1999 (1996).
[CrossRef]

Sakabe, Y.

N. Matsumoto, T. Nakagawa, A. Ando, Y. Sakabe, S. Kirihara, and Y. Miyamoto, “Study of multilayer ceramic photonic crystals in THz region,” Jpn. J. Appl. Phys. 44, 7111-7114(2005).
[CrossRef]

Sakai, K.

M. Iida, M. Tani, P. Gu, K. Sakai, M. Watanabe, H. Kitahara, S. Kato, M. Suenaga, H. Kondo, and M. W. Takeda, “Terahertz-photomixing efficiency of a photoconductive antenna embedded in a three-dimensional photonic crystal,” Jpn. J. Appl. Phys. Part 2 42, L1442-L1445 (2003).
[CrossRef]

Sandoghdar, V.

A. Mazzei, S. Götzinger, L. de, S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropergating whispering-gallery modes by a single Rayleigh scatterer: A classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007).
[CrossRef] [PubMed]

Schall, M.

M. Schall, H. Helm, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. J. Infrared Millimeter Waves 20, 595-604 (1999).
[CrossRef]

Schubert, E. F.

A. M. Vredenberg, N. E. J. Hunt, E. F. Schubert, D. C. Jacobson, J. M. Poate, and G. J. Zydzik, “Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity,” Phys. Rev. Lett. 71, 517-520 (1993).
[CrossRef] [PubMed]

Skolnick, M. S.

M. S. Weaver, D. G. Lidzey, T. A. Fisher, M. A. Pate, D. O'Brien, A. Bleyer, A. Tajbakhah, D. D. C. Bradley, M. S. Skolnick, and G. Hill, “Recent progress in polymers for electroluminescence: microcavity devices and electron transport polymers,” Thin Solid Films 273, 39-47 (1996).
[CrossRef]

Slusher, R. E.

R. H. Jordan, L. J. Rothberg, A. Dodabalapur, and R. E. Slusher, “Efficiency enhancement of microcavity organic light emitting diodes,” Appl. Phys. Lett. 69, 1997-1999 (1996).
[CrossRef]

Soljacic, M.

P. Bermel, A. Rodriguez, J. D. Joannopoulous, and M. Soljačić, “Tailoring optical nonlinearities via the Purcell effect,” Phys. Rev. Lett. 99, 053601 (2007).
[CrossRef] [PubMed]

Stanley, R. P.

R. P. Stanley, R. Houdré, U. Oesterle, M. Ilegems, and C. Weisbuch, “Impurity modes in one-dimensional periodic systems: The transition from photonic band gaps to microcavities,” Phys. Rev. A 48, 2246-2250 (1993).
[CrossRef] [PubMed]

Suenaga, M.

M. Iida, M. Tani, P. Gu, K. Sakai, M. Watanabe, H. Kitahara, S. Kato, M. Suenaga, H. Kondo, and M. W. Takeda, “Terahertz-photomixing efficiency of a photoconductive antenna embedded in a three-dimensional photonic crystal,” Jpn. J. Appl. Phys. Part 2 42, L1442-L1445 (2003).
[CrossRef]

Tajbakhah, A.

M. S. Weaver, D. G. Lidzey, T. A. Fisher, M. A. Pate, D. O'Brien, A. Bleyer, A. Tajbakhah, D. D. C. Bradley, M. S. Skolnick, and G. Hill, “Recent progress in polymers for electroluminescence: microcavity devices and electron transport polymers,” Thin Solid Films 273, 39-47 (1996).
[CrossRef]

Takeda, M. W.

M. Iida, M. Tani, P. Gu, K. Sakai, M. Watanabe, H. Kitahara, S. Kato, M. Suenaga, H. Kondo, and M. W. Takeda, “Terahertz-photomixing efficiency of a photoconductive antenna embedded in a three-dimensional photonic crystal,” Jpn. J. Appl. Phys. Part 2 42, L1442-L1445 (2003).
[CrossRef]

Tani, M.

M. Iida, M. Tani, P. Gu, K. Sakai, M. Watanabe, H. Kitahara, S. Kato, M. Suenaga, H. Kondo, and M. W. Takeda, “Terahertz-photomixing efficiency of a photoconductive antenna embedded in a three-dimensional photonic crystal,” Jpn. J. Appl. Phys. Part 2 42, L1442-L1445 (2003).
[CrossRef]

Tredicucci, A.

L. Pavesi, C. Mazzoleni, A. Tredicucci, and V. Pellegrini, “Controlled photon emission in porous silicon microcavities,” Appl. Phys. Lett. 67, 3280-3282 (1995).
[CrossRef]

Tsurumachi, N.

E. Kishimoto, M. Obayashi, Y. Hanafusa, H. Miyagawa, S. Koshiba, S. Nakanishi, H. Itoh, and N. Tsurumachi, “Transmission spectra of terahertz region hybrid one-dimensional photonic crystals,” in 2nd International Symposium on Portable Synchrotron Sources and Advanced Applications, Vol. 902 of AIP Conference Proceedings (American Institute of Physics, 2007), pp. 79-82.
[CrossRef]

Turchinovich, D.

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys. A 74, 291-293 (2002).
[CrossRef]

Umegaki, S.

T. Komikado, A. Inoue, K. Masuda, T. Ando, and S. Umegaki, “Multi-layered mirrors fabricated by spin-coating organic polymers,” Thin Soild Films 515, 3887-3892 (2007).
[CrossRef]

Vredenberg, A. M.

A. M. Vredenberg, N. E. J. Hunt, E. F. Schubert, D. C. Jacobson, J. M. Poate, and G. J. Zydzik, “Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity,” Phys. Rev. Lett. 71, 517-520 (1993).
[CrossRef] [PubMed]

Watanabe, M.

M. Iida, M. Tani, P. Gu, K. Sakai, M. Watanabe, H. Kitahara, S. Kato, M. Suenaga, H. Kondo, and M. W. Takeda, “Terahertz-photomixing efficiency of a photoconductive antenna embedded in a three-dimensional photonic crystal,” Jpn. J. Appl. Phys. Part 2 42, L1442-L1445 (2003).
[CrossRef]

Weaver, M. S.

M. S. Weaver, D. G. Lidzey, T. A. Fisher, M. A. Pate, D. O'Brien, A. Bleyer, A. Tajbakhah, D. D. C. Bradley, M. S. Skolnick, and G. Hill, “Recent progress in polymers for electroluminescence: microcavity devices and electron transport polymers,” Thin Solid Films 273, 39-47 (1996).
[CrossRef]

Weisbuch, C.

R. P. Stanley, R. Houdré, U. Oesterle, M. Ilegems, and C. Weisbuch, “Impurity modes in one-dimensional periodic systems: The transition from photonic band gaps to microcavities,” Phys. Rev. A 48, 2246-2250 (1993).
[CrossRef] [PubMed]

Weling, A. S.

A. Nahata, A. S. Weling, T. F. Heinz, and C. Wu, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321-2323 (1996).
[CrossRef]

Wu, C.

A. Nahata, A. S. Weling, T. F. Heinz, and C. Wu, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321-2323 (1996).
[CrossRef]

Wu, Z.

H. Xin, Z. Wu, A. Young, and R. Ziolkowski, “THz thermal radiation enhancement using an electromagnetic crystal,” IEEE Trans. Anntena. Propag. 56, 2970-2980 (2008).
[CrossRef]

Xin, H.

H. Xin, Z. Wu, A. Young, and R. Ziolkowski, “THz thermal radiation enhancement using an electromagnetic crystal,” IEEE Trans. Anntena. Propag. 56, 2970-2980 (2008).
[CrossRef]

Yamada, H.

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814-2816 (1990).
[CrossRef]

Yamamoto, Y.

Y. Yamamoto, S. Machida, Y. Horikoshi, K. Igeta, and G. Björk, “Enhanced and inhibited spontaneous emission of free excitons in GaAs quantum wells in a microcavity,” Opt. Commun. 80, 337-342 (1991).
[CrossRef]

Yokoyama, H.

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814-2816 (1990).
[CrossRef]

Young, A.

H. Xin, Z. Wu, A. Young, and R. Ziolkowski, “THz thermal radiation enhancement using an electromagnetic crystal,” IEEE Trans. Anntena. Propag. 56, 2970-2980 (2008).
[CrossRef]

Ziolkowski, R.

H. Xin, Z. Wu, A. Young, and R. Ziolkowski, “THz thermal radiation enhancement using an electromagnetic crystal,” IEEE Trans. Anntena. Propag. 56, 2970-2980 (2008).
[CrossRef]

Zumofen, G.

A. Mazzei, S. Götzinger, L. de, S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropergating whispering-gallery modes by a single Rayleigh scatterer: A classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007).
[CrossRef] [PubMed]

Zydzik, G. J.

A. M. Vredenberg, N. E. J. Hunt, E. F. Schubert, D. C. Jacobson, J. M. Poate, and G. J. Zydzik, “Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity,” Phys. Rev. Lett. 71, 517-520 (1993).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. A (1)

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys. A 74, 291-293 (2002).
[CrossRef]

Appl. Phys. Lett. (5)

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814-2816 (1990).
[CrossRef]

C. B. Poitras, M. Lipson, H. Du, M. A. Hahn, and T. Krauss, “Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity,” Appl. Phys. Lett. 82, 4032-4034 (2003).
[CrossRef]

R. H. Jordan, L. J. Rothberg, A. Dodabalapur, and R. E. Slusher, “Efficiency enhancement of microcavity organic light emitting diodes,” Appl. Phys. Lett. 69, 1997-1999 (1996).
[CrossRef]

L. Pavesi, C. Mazzoleni, A. Tredicucci, and V. Pellegrini, “Controlled photon emission in porous silicon microcavities,” Appl. Phys. Lett. 67, 3280-3282 (1995).
[CrossRef]

A. Nahata, A. S. Weling, T. F. Heinz, and C. Wu, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321-2323 (1996).
[CrossRef]

IEEE Trans. Anntena. Propag. (1)

H. Xin, Z. Wu, A. Young, and R. Ziolkowski, “THz thermal radiation enhancement using an electromagnetic crystal,” IEEE Trans. Anntena. Propag. 56, 2970-2980 (2008).
[CrossRef]

Int. J. Infrared Millimeter Waves (1)

M. Schall, H. Helm, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. J. Infrared Millimeter Waves 20, 595-604 (1999).
[CrossRef]

Jpn. J. Appl. Phys. (2)

M. Iida, M. Tani, P. Gu, K. Sakai, M. Watanabe, H. Kitahara, S. Kato, M. Suenaga, H. Kondo, and M. W. Takeda, “Terahertz-photomixing efficiency of a photoconductive antenna embedded in a three-dimensional photonic crystal,” Jpn. J. Appl. Phys. Part 2 42, L1442-L1445 (2003).
[CrossRef]

N. Matsumoto, T. Nakagawa, A. Ando, Y. Sakabe, S. Kirihara, and Y. Miyamoto, “Study of multilayer ceramic photonic crystals in THz region,” Jpn. J. Appl. Phys. 44, 7111-7114(2005).
[CrossRef]

Meas. Sci. Technol. (1)

M. Hangyo, T. Nagashima, and S. Nashima, “Spectroscopy by pulsed terahertz radiation,” Meas. Sci. Technol. 13, 1727-1738 (2002).
[CrossRef]

Opt. Commun. (1)

Y. Yamamoto, S. Machida, Y. Horikoshi, K. Igeta, and G. Björk, “Enhanced and inhibited spontaneous emission of free excitons in GaAs quantum wells in a microcavity,” Opt. Commun. 80, 337-342 (1991).
[CrossRef]

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 37 (1946).
[CrossRef]

Phys. Rev. A (1)

R. P. Stanley, R. Houdré, U. Oesterle, M. Ilegems, and C. Weisbuch, “Impurity modes in one-dimensional periodic systems: The transition from photonic band gaps to microcavities,” Phys. Rev. A 48, 2246-2250 (1993).
[CrossRef] [PubMed]

Phys. Rev. B (1)

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62, R2243-R2246 (2000).
[CrossRef]

Phys. Rev. Lett. (4)

F. Cairo, F. De Martini, and D. Murra, “QED-vacuum confinement of inelastic quantum scattering at optical frequencies: A new perspective in Raman spectroscopy,” Phys. Rev. Lett. 70, 1413-1416 (1993).
[CrossRef] [PubMed]

A. Mazzei, S. Götzinger, L. de, S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropergating whispering-gallery modes by a single Rayleigh scatterer: A classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007).
[CrossRef] [PubMed]

P. Bermel, A. Rodriguez, J. D. Joannopoulous, and M. Soljačić, “Tailoring optical nonlinearities via the Purcell effect,” Phys. Rev. Lett. 99, 053601 (2007).
[CrossRef] [PubMed]

A. M. Vredenberg, N. E. J. Hunt, E. F. Schubert, D. C. Jacobson, J. M. Poate, and G. J. Zydzik, “Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity,” Phys. Rev. Lett. 71, 517-520 (1993).
[CrossRef] [PubMed]

Thin Soild Films (1)

T. Komikado, A. Inoue, K. Masuda, T. Ando, and S. Umegaki, “Multi-layered mirrors fabricated by spin-coating organic polymers,” Thin Soild Films 515, 3887-3892 (2007).
[CrossRef]

Thin Solid Films (1)

M. S. Weaver, D. G. Lidzey, T. A. Fisher, M. A. Pate, D. O'Brien, A. Bleyer, A. Tajbakhah, D. D. C. Bradley, M. S. Skolnick, and G. Hill, “Recent progress in polymers for electroluminescence: microcavity devices and electron transport polymers,” Thin Solid Films 273, 39-47 (1996).
[CrossRef]

Other (5)

K. Inoue and T. Ohtaka, eds., Photonic Crystals: Physics, Fabrication, and Applications (Springer, 2004).

E. Burstein and C. Weisbuch, eds., Confined Electrons and Photons (Plenum, 1995).
[CrossRef]

R. Loudon, The Quantum Theory of Light (Oxford, 2000).

K.Sakai, ed., Terahertz Optoelectronics (Springer, 2005).
[CrossRef]

E. Kishimoto, M. Obayashi, Y. Hanafusa, H. Miyagawa, S. Koshiba, S. Nakanishi, H. Itoh, and N. Tsurumachi, “Transmission spectra of terahertz region hybrid one-dimensional photonic crystals,” in 2nd International Symposium on Portable Synchrotron Sources and Advanced Applications, Vol. 902 of AIP Conference Proceedings (American Institute of Physics, 2007), pp. 79-82.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Transmission spectra of the (a) DBR and (b) FP cavity in the THz region. The solid lines are experimental results; the dashed lines are calculations by the transfer matrix method.

Fig. 2
Fig. 2

Schematic illustration of the FP cavities in the THz region. (a) Sample A made of polypropylene films and air spacers with a 1040 μm thick ZnTe crystal as a cavity layer. The thin layers of polyvinylcarbazole and cellulose acetate are spin coated on both sides of the polypropylene films for antireflection. (b) Sample B made of MgO substrates and air spacers with a 120 μm thick ZnTe crystal.

Fig. 3
Fig. 3

(a) Transmission spectra of sample A. The solid lines are experimental results; the dashed lines are calculations. (b) Absorption spectrum of the bare ZnTe crystal.

Fig. 4
Fig. 4

(a) Spectra of THz wave emitted from sample A (solid line) and the bare ZnTe crystal (dashed line). (b) Ratio of the generated THz intensities between sample A and the reference bare ZnTe crystal.

Fig. 5
Fig. 5

(a) Transmission spectra of sample B. The solid lines are experimental results, and the dashed lines are calculations. (b) ODOS spectrum of sample B. (c) Ratio of the generated THz intensities between sample B and the reference bare ZnTe crystal.

Metrics