Abstract

We investigate a cavity ring down setup that offers the possibility to measure the spectrally resolved reflectivities of high reflectivity mirrors. The setup consists of a resonator (ring down cavity) and an intensified CCD camera system combined with a spectrograph for spectral resolution. A commercial supercontinuum laser (350-1750 nm) is applied as a compact excitation source. It is based on a photonic crystal fiber that is pumped by a q-switched microchip laser (1.6 ns pulse duration, 25 kHz repetition rate). This combination allows simultaneously recording the transmittance of the cavity over a wide wavelength range determined by the excitation source and the spectral sensitivity of the detector. The photon lifetimes inside the cavity (ring down times) are measured with high spectral resolution by means of an intensified camera system. Subsequently shifting the “gate” of the image intensifier from short to long delay times after the excitation pulse allows calculation of the reflectivity spectrum of the mirrors. Comparison of these results with measurements using a conventional setup (laser diode 675 nm and photomultiplier tube) clearly shows the high potential of the method due to the multichannel excitation and the detection scheme.

© 2009 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565-607 (2000).
    [CrossRef]
  2. S. M. Ball, I. M. Povey, E. G. Norton, and R. L. Jones, “Broadband cavity ringdown spectroscopy of the NO3 radical,” Chem. Phys. Lett. 342, 113-120 (2001).
    [CrossRef]
  3. R. N. Muir and A. J. Alexander, “Structure of monolayer dye films studied by Brewster angle cavity ringdown spectroscopy,” Phys. Chem. Chem. Phys. 5, 1279-1283 (2003).
    [CrossRef]
  4. R. Engeln, G. von Helden, A. J. A. van Roij, and G. Meijer, “Cavity ring down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732-2733 (1999).
    [CrossRef]
  5. A. J. Hallock, E. S. F. Berman, and R. N. Zare, “Use of broadband, continuous-wave diode lasers in cavity ring-down spectroscopy for liquid samples,” Appl. Spectrosc. 57, 571-573 (2003).
    [CrossRef]
  6. G. A. Marcus and H. A. Schwettman, “Cavity ringdown spectroscopy of thin films in the mid-infrared,” Appl. Opt. 41, 5167-5171 (2002).
    [CrossRef]
  7. Ch. Mühlig, G. Schmidl, J. Bergmann, and W. Triebel, “Characterization of high reflecting coatings and optical materials by direct absorption and cavity ring down measurements,” Proc. SPIE 7102, 71020T (2008).
  8. T. Baselt, T. Hammer, F. Basan, and P. Hartmann, “Application of a microchip laser pumped photonic crystal fiber supercontinuum source for high sensitive cavity ring down optical loss measurements,” Proc. SPIE 7195, 71951T (2009).
  9. K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyzewski, T. Stacewicz, and L. Wöste, “Towards supercontinuum cavity ring-down spectroscopy,” Appl. Phys. B 94, 369-373 (2009).
  10. K. Stelmaszczyk, P. Rohwetter, M. Fechner, M. Queißer, A. Czyzewski, T. Stacewicz, and L. Wöste, “Cavity ring-down absorption spectrography based on filament-generated supercontinuum light,” Opt. Express 17, 3673-3678 (2009).
  11. J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16, 10178-10188 (2008).
    [CrossRef]
  12. C. Vallance, “Innovations in cavity ringdown spectroscopy,” New J. Chem. 29, 867-874 (2005).
  13. J. J. Scherer, “Ringdown spectral photography,” Chem. Phys. Lett. 292, 143-153 (1998).
    [CrossRef]
  14. S. M. Ball and R. L. Jones, “Broadband cavity ring-down spectroscopy,” Chem. Rev. 103, 5239-5262 (2003).
    [CrossRef]
  15. A. Czyzewski, S. Chudzynski, K. Ernst, G. Karasinski, L. Kilianek, A. Pietruczuk, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, ”Cavity ring-down spectrography,” Opt. Commun. 191, 271-275 (2001).
    [CrossRef]
  16. S. Spuler and M. Linne, “Numerical analysis of beam propagation in pulsed cavity ring-down spectroscopy,” Appl. Opt. 41, 2858-2868 (2002).
    [CrossRef]
  17. J. T. Hodges, J. P. Looney, and R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10278-10288 (1996).
    [CrossRef]

2009 (3)

T. Baselt, T. Hammer, F. Basan, and P. Hartmann, “Application of a microchip laser pumped photonic crystal fiber supercontinuum source for high sensitive cavity ring down optical loss measurements,” Proc. SPIE 7195, 71951T (2009).

K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyzewski, T. Stacewicz, and L. Wöste, “Towards supercontinuum cavity ring-down spectroscopy,” Appl. Phys. B 94, 369-373 (2009).

K. Stelmaszczyk, P. Rohwetter, M. Fechner, M. Queißer, A. Czyzewski, T. Stacewicz, and L. Wöste, “Cavity ring-down absorption spectrography based on filament-generated supercontinuum light,” Opt. Express 17, 3673-3678 (2009).

2008 (2)

J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16, 10178-10188 (2008).
[CrossRef]

Ch. Mühlig, G. Schmidl, J. Bergmann, and W. Triebel, “Characterization of high reflecting coatings and optical materials by direct absorption and cavity ring down measurements,” Proc. SPIE 7102, 71020T (2008).

2005 (1)

C. Vallance, “Innovations in cavity ringdown spectroscopy,” New J. Chem. 29, 867-874 (2005).

2003 (3)

R. N. Muir and A. J. Alexander, “Structure of monolayer dye films studied by Brewster angle cavity ringdown spectroscopy,” Phys. Chem. Chem. Phys. 5, 1279-1283 (2003).
[CrossRef]

A. J. Hallock, E. S. F. Berman, and R. N. Zare, “Use of broadband, continuous-wave diode lasers in cavity ring-down spectroscopy for liquid samples,” Appl. Spectrosc. 57, 571-573 (2003).
[CrossRef]

S. M. Ball and R. L. Jones, “Broadband cavity ring-down spectroscopy,” Chem. Rev. 103, 5239-5262 (2003).
[CrossRef]

2002 (2)

2001 (2)

A. Czyzewski, S. Chudzynski, K. Ernst, G. Karasinski, L. Kilianek, A. Pietruczuk, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, ”Cavity ring-down spectrography,” Opt. Commun. 191, 271-275 (2001).
[CrossRef]

S. M. Ball, I. M. Povey, E. G. Norton, and R. L. Jones, “Broadband cavity ringdown spectroscopy of the NO3 radical,” Chem. Phys. Lett. 342, 113-120 (2001).
[CrossRef]

2000 (1)

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565-607 (2000).
[CrossRef]

1999 (1)

R. Engeln, G. von Helden, A. J. A. van Roij, and G. Meijer, “Cavity ring down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732-2733 (1999).
[CrossRef]

1998 (1)

J. J. Scherer, “Ringdown spectral photography,” Chem. Phys. Lett. 292, 143-153 (1998).
[CrossRef]

1996 (1)

J. T. Hodges, J. P. Looney, and R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10278-10288 (1996).
[CrossRef]

Alexander, A. J.

R. N. Muir and A. J. Alexander, “Structure of monolayer dye films studied by Brewster angle cavity ringdown spectroscopy,” Phys. Chem. Chem. Phys. 5, 1279-1283 (2003).
[CrossRef]

Ball, S. M.

S. M. Ball and R. L. Jones, “Broadband cavity ring-down spectroscopy,” Chem. Rev. 103, 5239-5262 (2003).
[CrossRef]

S. M. Ball, I. M. Povey, E. G. Norton, and R. L. Jones, “Broadband cavity ringdown spectroscopy of the NO3 radical,” Chem. Phys. Lett. 342, 113-120 (2001).
[CrossRef]

Basan, F.

T. Baselt, T. Hammer, F. Basan, and P. Hartmann, “Application of a microchip laser pumped photonic crystal fiber supercontinuum source for high sensitive cavity ring down optical loss measurements,” Proc. SPIE 7195, 71951T (2009).

Baselt, T.

T. Baselt, T. Hammer, F. Basan, and P. Hartmann, “Application of a microchip laser pumped photonic crystal fiber supercontinuum source for high sensitive cavity ring down optical loss measurements,” Proc. SPIE 7195, 71951T (2009).

Berden, G.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565-607 (2000).
[CrossRef]

Bergmann, J.

Ch. Mühlig, G. Schmidl, J. Bergmann, and W. Triebel, “Characterization of high reflecting coatings and optical materials by direct absorption and cavity ring down measurements,” Proc. SPIE 7102, 71020T (2008).

Berman, E. S. F.

Chudzynski, S.

A. Czyzewski, S. Chudzynski, K. Ernst, G. Karasinski, L. Kilianek, A. Pietruczuk, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, ”Cavity ring-down spectrography,” Opt. Commun. 191, 271-275 (2001).
[CrossRef]

Czyzewski, A.

K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyzewski, T. Stacewicz, and L. Wöste, “Towards supercontinuum cavity ring-down spectroscopy,” Appl. Phys. B 94, 369-373 (2009).

K. Stelmaszczyk, P. Rohwetter, M. Fechner, M. Queißer, A. Czyzewski, T. Stacewicz, and L. Wöste, “Cavity ring-down absorption spectrography based on filament-generated supercontinuum light,” Opt. Express 17, 3673-3678 (2009).

A. Czyzewski, S. Chudzynski, K. Ernst, G. Karasinski, L. Kilianek, A. Pietruczuk, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, ”Cavity ring-down spectrography,” Opt. Commun. 191, 271-275 (2001).
[CrossRef]

Engeln, R.

R. Engeln, G. von Helden, A. J. A. van Roij, and G. Meijer, “Cavity ring down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732-2733 (1999).
[CrossRef]

Ernst, K.

A. Czyzewski, S. Chudzynski, K. Ernst, G. Karasinski, L. Kilianek, A. Pietruczuk, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, ”Cavity ring-down spectrography,” Opt. Commun. 191, 271-275 (2001).
[CrossRef]

Fechner, M.

K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyzewski, T. Stacewicz, and L. Wöste, “Towards supercontinuum cavity ring-down spectroscopy,” Appl. Phys. B 94, 369-373 (2009).

K. Stelmaszczyk, P. Rohwetter, M. Fechner, M. Queißer, A. Czyzewski, T. Stacewicz, and L. Wöste, “Cavity ring-down absorption spectrography based on filament-generated supercontinuum light,” Opt. Express 17, 3673-3678 (2009).

Hallock, A. J.

Hammer, T.

T. Baselt, T. Hammer, F. Basan, and P. Hartmann, “Application of a microchip laser pumped photonic crystal fiber supercontinuum source for high sensitive cavity ring down optical loss measurements,” Proc. SPIE 7195, 71951T (2009).

Hartmann, P.

T. Baselt, T. Hammer, F. Basan, and P. Hartmann, “Application of a microchip laser pumped photonic crystal fiber supercontinuum source for high sensitive cavity ring down optical loss measurements,” Proc. SPIE 7195, 71951T (2009).

Hodges, J. T.

J. T. Hodges, J. P. Looney, and R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10278-10288 (1996).
[CrossRef]

Hult, J.

Jones, R. L.

J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16, 10178-10188 (2008).
[CrossRef]

S. M. Ball and R. L. Jones, “Broadband cavity ring-down spectroscopy,” Chem. Rev. 103, 5239-5262 (2003).
[CrossRef]

S. M. Ball, I. M. Povey, E. G. Norton, and R. L. Jones, “Broadband cavity ringdown spectroscopy of the NO3 radical,” Chem. Phys. Lett. 342, 113-120 (2001).
[CrossRef]

Kaminski, C. F.

Karasinski, G.

A. Czyzewski, S. Chudzynski, K. Ernst, G. Karasinski, L. Kilianek, A. Pietruczuk, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, ”Cavity ring-down spectrography,” Opt. Commun. 191, 271-275 (2001).
[CrossRef]

Kilianek, L.

A. Czyzewski, S. Chudzynski, K. Ernst, G. Karasinski, L. Kilianek, A. Pietruczuk, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, ”Cavity ring-down spectrography,” Opt. Commun. 191, 271-275 (2001).
[CrossRef]

Koch, B.

A. Czyzewski, S. Chudzynski, K. Ernst, G. Karasinski, L. Kilianek, A. Pietruczuk, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, ”Cavity ring-down spectrography,” Opt. Commun. 191, 271-275 (2001).
[CrossRef]

Langridge, J. M.

Laurila, T.

Linne, M.

Looney, J. P.

J. T. Hodges, J. P. Looney, and R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10278-10288 (1996).
[CrossRef]

Marcus, G. A.

Meijer, G.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565-607 (2000).
[CrossRef]

R. Engeln, G. von Helden, A. J. A. van Roij, and G. Meijer, “Cavity ring down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732-2733 (1999).
[CrossRef]

Mühlig, Ch.

Ch. Mühlig, G. Schmidl, J. Bergmann, and W. Triebel, “Characterization of high reflecting coatings and optical materials by direct absorption and cavity ring down measurements,” Proc. SPIE 7102, 71020T (2008).

Muir, R. N.

R. N. Muir and A. J. Alexander, “Structure of monolayer dye films studied by Brewster angle cavity ringdown spectroscopy,” Phys. Chem. Chem. Phys. 5, 1279-1283 (2003).
[CrossRef]

Norton, E. G.

S. M. Ball, I. M. Povey, E. G. Norton, and R. L. Jones, “Broadband cavity ringdown spectroscopy of the NO3 radical,” Chem. Phys. Lett. 342, 113-120 (2001).
[CrossRef]

Peeters, R.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565-607 (2000).
[CrossRef]

Pietruczuk, A.

A. Czyzewski, S. Chudzynski, K. Ernst, G. Karasinski, L. Kilianek, A. Pietruczuk, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, ”Cavity ring-down spectrography,” Opt. Commun. 191, 271-275 (2001).
[CrossRef]

Povey, I. M.

S. M. Ball, I. M. Povey, E. G. Norton, and R. L. Jones, “Broadband cavity ringdown spectroscopy of the NO3 radical,” Chem. Phys. Lett. 342, 113-120 (2001).
[CrossRef]

Queißer, M.

K. Stelmaszczyk, P. Rohwetter, M. Fechner, M. Queißer, A. Czyzewski, T. Stacewicz, and L. Wöste, “Cavity ring-down absorption spectrography based on filament-generated supercontinuum light,” Opt. Express 17, 3673-3678 (2009).

K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyzewski, T. Stacewicz, and L. Wöste, “Towards supercontinuum cavity ring-down spectroscopy,” Appl. Phys. B 94, 369-373 (2009).

Rairoux, P.

A. Czyzewski, S. Chudzynski, K. Ernst, G. Karasinski, L. Kilianek, A. Pietruczuk, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, ”Cavity ring-down spectrography,” Opt. Commun. 191, 271-275 (2001).
[CrossRef]

Rohwetter, P.

K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyzewski, T. Stacewicz, and L. Wöste, “Towards supercontinuum cavity ring-down spectroscopy,” Appl. Phys. B 94, 369-373 (2009).

K. Stelmaszczyk, P. Rohwetter, M. Fechner, M. Queißer, A. Czyzewski, T. Stacewicz, and L. Wöste, “Cavity ring-down absorption spectrography based on filament-generated supercontinuum light,” Opt. Express 17, 3673-3678 (2009).

Scherer, J. J.

J. J. Scherer, “Ringdown spectral photography,” Chem. Phys. Lett. 292, 143-153 (1998).
[CrossRef]

Schmidl, G.

Ch. Mühlig, G. Schmidl, J. Bergmann, and W. Triebel, “Characterization of high reflecting coatings and optical materials by direct absorption and cavity ring down measurements,” Proc. SPIE 7102, 71020T (2008).

Schwettman, H. A.

Spuler, S.

Stacewicz, T.

K. Stelmaszczyk, P. Rohwetter, M. Fechner, M. Queißer, A. Czyzewski, T. Stacewicz, and L. Wöste, “Cavity ring-down absorption spectrography based on filament-generated supercontinuum light,” Opt. Express 17, 3673-3678 (2009).

K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyzewski, T. Stacewicz, and L. Wöste, “Towards supercontinuum cavity ring-down spectroscopy,” Appl. Phys. B 94, 369-373 (2009).

A. Czyzewski, S. Chudzynski, K. Ernst, G. Karasinski, L. Kilianek, A. Pietruczuk, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, ”Cavity ring-down spectrography,” Opt. Commun. 191, 271-275 (2001).
[CrossRef]

Stelmaszczyk, K.

K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyzewski, T. Stacewicz, and L. Wöste, “Towards supercontinuum cavity ring-down spectroscopy,” Appl. Phys. B 94, 369-373 (2009).

K. Stelmaszczyk, P. Rohwetter, M. Fechner, M. Queißer, A. Czyzewski, T. Stacewicz, and L. Wöste, “Cavity ring-down absorption spectrography based on filament-generated supercontinuum light,” Opt. Express 17, 3673-3678 (2009).

A. Czyzewski, S. Chudzynski, K. Ernst, G. Karasinski, L. Kilianek, A. Pietruczuk, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, ”Cavity ring-down spectrography,” Opt. Commun. 191, 271-275 (2001).
[CrossRef]

Triebel, W.

Ch. Mühlig, G. Schmidl, J. Bergmann, and W. Triebel, “Characterization of high reflecting coatings and optical materials by direct absorption and cavity ring down measurements,” Proc. SPIE 7102, 71020T (2008).

Vallance, C.

C. Vallance, “Innovations in cavity ringdown spectroscopy,” New J. Chem. 29, 867-874 (2005).

van Roij, A. J. A.

R. Engeln, G. von Helden, A. J. A. van Roij, and G. Meijer, “Cavity ring down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732-2733 (1999).
[CrossRef]

van Zee, R. D.

J. T. Hodges, J. P. Looney, and R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10278-10288 (1996).
[CrossRef]

von Helden, G.

R. Engeln, G. von Helden, A. J. A. van Roij, and G. Meijer, “Cavity ring down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732-2733 (1999).
[CrossRef]

Watt, R. S.

Wöste, L.

K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyzewski, T. Stacewicz, and L. Wöste, “Towards supercontinuum cavity ring-down spectroscopy,” Appl. Phys. B 94, 369-373 (2009).

K. Stelmaszczyk, P. Rohwetter, M. Fechner, M. Queißer, A. Czyzewski, T. Stacewicz, and L. Wöste, “Cavity ring-down absorption spectrography based on filament-generated supercontinuum light,” Opt. Express 17, 3673-3678 (2009).

Zare, R. N.

Appl. Opt. (2)

Appl. Phys. B (1)

K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyzewski, T. Stacewicz, and L. Wöste, “Towards supercontinuum cavity ring-down spectroscopy,” Appl. Phys. B 94, 369-373 (2009).

Appl. Spectrosc. (1)

Chem. Phys. Lett. (2)

J. J. Scherer, “Ringdown spectral photography,” Chem. Phys. Lett. 292, 143-153 (1998).
[CrossRef]

S. M. Ball, I. M. Povey, E. G. Norton, and R. L. Jones, “Broadband cavity ringdown spectroscopy of the NO3 radical,” Chem. Phys. Lett. 342, 113-120 (2001).
[CrossRef]

Chem. Rev. (1)

S. M. Ball and R. L. Jones, “Broadband cavity ring-down spectroscopy,” Chem. Rev. 103, 5239-5262 (2003).
[CrossRef]

Int. Rev. Phys. Chem. (1)

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565-607 (2000).
[CrossRef]

J. Chem. Phys. (2)

R. Engeln, G. von Helden, A. J. A. van Roij, and G. Meijer, “Cavity ring down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732-2733 (1999).
[CrossRef]

J. T. Hodges, J. P. Looney, and R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10278-10288 (1996).
[CrossRef]

New J. Chem. (1)

C. Vallance, “Innovations in cavity ringdown spectroscopy,” New J. Chem. 29, 867-874 (2005).

Opt. Commun. (1)

A. Czyzewski, S. Chudzynski, K. Ernst, G. Karasinski, L. Kilianek, A. Pietruczuk, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, ”Cavity ring-down spectrography,” Opt. Commun. 191, 271-275 (2001).
[CrossRef]

Opt. Express (2)

Phys. Chem. Chem. Phys. (1)

R. N. Muir and A. J. Alexander, “Structure of monolayer dye films studied by Brewster angle cavity ringdown spectroscopy,” Phys. Chem. Chem. Phys. 5, 1279-1283 (2003).
[CrossRef]

Proc. SPIE (2)

Ch. Mühlig, G. Schmidl, J. Bergmann, and W. Triebel, “Characterization of high reflecting coatings and optical materials by direct absorption and cavity ring down measurements,” Proc. SPIE 7102, 71020T (2008).

T. Baselt, T. Hammer, F. Basan, and P. Hartmann, “Application of a microchip laser pumped photonic crystal fiber supercontinuum source for high sensitive cavity ring down optical loss measurements,” Proc. SPIE 7195, 71951T (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics