Abstract

Tunable diode lasers (TDL) near 2.7μm are used to measure high-resolution direct absorption and wave length modulation with second harmonic (WMS-2f) spectra at high pressures for two CO2 transitions near 3633.08 and 3645.20cm1, belonging to the ν1+ν3 vibrational band. Important factors influencing the design of a high-pressure TDL sensor and the variation of WMS-2f line shape with changes in pressure and laser parameters are discussed. Measurements of line strength and line broadening parameters are carried out for the 3645.20cm1 transition in an atmospheric-pressure, high-temperature cell. A room-temperature high-pressure cell is then used to measure the pressure shift for both CO2 transitions. Deviation of the direct absorption and wavelength division spectroscopy (WMS) spectra from the Lorentzian profile is studied in a high-density (9.2  amagats) CO2–Ar mixture. The WMS spectra are shown to be negligibly affected by non-Lorentzian effects up to 10atm and room temperature, in contrast with direct absorption. Measurements of CO2 concentration and temperature are carried out in nonreactive shock-tube experiments (P812atm, T8001200K) to validate the accuracy and precision of wavelength-modulation-spectroscopy-based sensing. CO2 time histories are then measured in heptane ignition experiments and compared with reaction kinetics mechanisms to demonstrate the use of this sensor in high-pressure combustion systems.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Aoyagi, H. Osada, M. Misawa, Y. Goto, and H. Ishii, “Advanced diesel combustion using of wide range, high boosted and cooled EGR system by single cylinder engine,” SAE Technical Paper 2006-01-0077 (SAE, 2006).
  2. J.-P. Pirault, T. W. Ryan, T. F. Alger, and C. E. Roberts, “Performance predictions for high efficiency stoichiometric spark ignited engines,” SAE Technical Paper 2005-01-0995 (SAE, 2005).
  3. C. F. Edwards, K.-Y. Teh, and S. L. Miller, “Development of low-exergy-loss, high-efficiency chemical engines,” Global Climate and Energy Project Technical Report (Stanford University, 2006).
  4. C. K. Westbrook, “Chemical kinetics of hydrocarbon ignition in practical combustion systems,” in Proceedings of the Combustion Institute (Elsevier, 2000), Vol. 28, pp. 1563-1577.
    [CrossRef]
  5. S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” in Proceedings of the Combustion Institute (Elsevier, 2000), Vol. 28, pp. 587-594.
    [CrossRef]
  6. D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: Sensor development and initial demonstration,” in Proceedings of the Combustion Institute (Elsevier, 2007), Vol. 31, pp. 791-798.
    [CrossRef]
  7. T. F. E. Schlosser, H. Teichert, and V. Ebert, “In-situ-detection of potassium atoms in high-temperature coal-combustion systems using near-infrared-diode lasers,” Spectrochim. Acta 58, 2347-2359 (2002).
    [CrossRef]
  8. T. Fernholz, H. Teichert, and V. Ebert, “Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions,” Appl. Phys. B 75, 229-236 (2002).
    [CrossRef]
  9. G. B. Rieker, H. Li, X. Liu, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle, A. Kakuho, K. R. Sholes, T. Matsuura, and S. Takatani, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” in Proceedings of the Combustion Institute (Elsevier, 2007), Vol. 31, pp. 3041-3049.
    [CrossRef]
  10. L. A. Kranendonk, J. W. Walewski, T. Kim, and S. T. Sanders, “Wavelength-agile sensor applied for HCCI engine measurements,” in Proceedings of the Combustion Institute (Elsevier, 2005), Vol. 30, pp. 1619-1627.
    [CrossRef]
  11. G. Rieker, J. Jeffries, and R. Hanson, “Measurements of high-pressure CO2 absorption near 2.0 μm and implications on tunable diode laser sensor design,” Appl. Phys. B 94, 51-63 (2009).
    [CrossRef]
  12. Nanosystem and Technologies GmbH, http://www.nanoplus.com.
  13. A. Farooq, J. B. Jeffries, and R. K. Hanson, “In situ combustion measurements of H2O and temperature near 2.5 μm using tunable diode laser absorption,” Meas. Sci. Technol. 19, 075604 (2008).
    [CrossRef]
  14. S. W. K. Wunderle and V. Ebert, “2.7 μm DFB diode laser spectrometer for sensitive spatially resolved H2O vapor detection,” presented at the Topical Meeting on Laser Applications to Chemical, Security and Environmental Analysis, St. Petersburg, Florida, USA, 17-20 March 2008.
  15. A. Farooq, J. B. Jeffries, and R. K. Hanson, “CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7 μm,” Appl. Phys. B 90, 619-628(2008).
    [CrossRef]
  16. A. Farooq, J. B. Jeffries, and R. K. Hanson, “Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7 μm,” Appl. Phys. B 96, 161-173 (2009).
    [CrossRef]
  17. HITRAN, http://cfa-www.harvard.edu/HITRAN/ 2008.
  18. M. Y. Perrin and J. M. Hartmann, “Temperature-dependent measurements and modeling of absorption by CO2-N2 mixtures in the far line-wings of the 4.3 μm CO2 band,” J. Quant. Spectrosc. Radiat. Transfer 42, 311-317 (1989).
    [CrossRef]
  19. F. Niro, C. Boulet, and J. M. Hartmann, “Spectra calculations in central and wing regions of CO2 IR bands between 10 and 20 μm. I: model and laboratory measurements,” J. Quant. Spectrosc. Radiat. Transfer 88, 483-498 (2004).
    [CrossRef]
  20. J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers--comparison of experiment and theory,” Appl. Phys. B 26, 203-210 (1981).
    [CrossRef]
  21. G. B. Rieker, X. Liu, H. Li, J. B. Jeffries, and R. K. Hanson, “Measurements of near-IR water vapor absorption at high pressure and temperature,” Appl. Phys. B 87, 169-178 (2007).
    [CrossRef]
  22. P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803-5815 (1999).
    [CrossRef]
  23. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707-717 (1992).
    [CrossRef] [PubMed]
  24. T. Aizawa, “Diode-laser wavelength-modulation absorption spectroscopy for quantitative in situ measurements of temperature and OH radical concentration in combustion gases,” Appl. Opt. 40, 4894-4903 (2001).
    [CrossRef]
  25. H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45, 1052-1061(2006).
    [CrossRef] [PubMed]
  26. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545-562(1998).
    [CrossRef]
  27. V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, and J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026-4032 (1996).
    [CrossRef] [PubMed]
  28. D. T. Cassidy and J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1185-1190 (1982).
    [CrossRef] [PubMed]
  29. H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 89, 407-416 (2007).
    [CrossRef]
  30. J. T. Herbon, R. K. Hanson, C. T. Bowman, and D. M. Golden, “The reaction of CH3+O2: experimental determination of the rate coefficients for the product channels at high temperatures,” in Proceedings of the Combustion Institute (Elsevier, 2005), Vol. 30, pp. 955-963.
    [CrossRef]
  31. R. K. Hanson and D. F. Davidson, in Handbook of Shock Waves, G. Ben-Dor, O. Igra, and T. Elperin, eds. (Academic, 2001), Vol 1, Chap. 5.2.
  32. D. F. Davidson and R. K. Hanson, “Recent advances in shock tube/laser diagnostic methods for improved chemical kinetics measurements,” Shock Waves 19, 271-283 (2009).
    [CrossRef]
  33. Z. Hong, G. Pang, S. Vasu, D. Davidson, and R. Hanson, “The use of driver inserts to reduce non-ideal pressure variations behind reflected shock waves,” Shock Waves 19, 113-123(2009).
    [CrossRef]
  34. B. Sirjean, E. Dames, D. A. Sheen, X.-Q. You, C. Sung, A. T. Holley, F. N. Egolfopoulos, H. Wang, S. S. Vasu, D. F. Davidson, R. K. Hanson, H. Pitsch, C. T. Bowman, A. Kelley, C. K. Law, W. Tsang, N. P. Cernansky, D. L. Miller, A. Violi, and R. P. Lindstedt, “A high-temperature chemical kinetic model of n-alkane oxidation, JetSurfversion 0.2,” http://melchior.usc.edu/JetSurF/Version0_2/Index.html (2008).
  35. H. Seiser, H. Pitsch, K. Seshadri, W. J. Pitz, and H. J. Curran, “Extinction and autoignition of n-heptane in counterflow configuration,” in Proceedings of the Combustion Institute (Elsevier, 2000), Vol. 28, pp. 2029-2037.
    [CrossRef]

2009 (4)

G. Rieker, J. Jeffries, and R. Hanson, “Measurements of high-pressure CO2 absorption near 2.0 μm and implications on tunable diode laser sensor design,” Appl. Phys. B 94, 51-63 (2009).
[CrossRef]

A. Farooq, J. B. Jeffries, and R. K. Hanson, “Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7 μm,” Appl. Phys. B 96, 161-173 (2009).
[CrossRef]

D. F. Davidson and R. K. Hanson, “Recent advances in shock tube/laser diagnostic methods for improved chemical kinetics measurements,” Shock Waves 19, 271-283 (2009).
[CrossRef]

Z. Hong, G. Pang, S. Vasu, D. Davidson, and R. Hanson, “The use of driver inserts to reduce non-ideal pressure variations behind reflected shock waves,” Shock Waves 19, 113-123(2009).
[CrossRef]

2008 (2)

A. Farooq, J. B. Jeffries, and R. K. Hanson, “In situ combustion measurements of H2O and temperature near 2.5 μm using tunable diode laser absorption,” Meas. Sci. Technol. 19, 075604 (2008).
[CrossRef]

A. Farooq, J. B. Jeffries, and R. K. Hanson, “CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7 μm,” Appl. Phys. B 90, 619-628(2008).
[CrossRef]

2007 (2)

G. B. Rieker, X. Liu, H. Li, J. B. Jeffries, and R. K. Hanson, “Measurements of near-IR water vapor absorption at high pressure and temperature,” Appl. Phys. B 87, 169-178 (2007).
[CrossRef]

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 89, 407-416 (2007).
[CrossRef]

2006 (1)

2004 (1)

F. Niro, C. Boulet, and J. M. Hartmann, “Spectra calculations in central and wing regions of CO2 IR bands between 10 and 20 μm. I: model and laboratory measurements,” J. Quant. Spectrosc. Radiat. Transfer 88, 483-498 (2004).
[CrossRef]

2002 (2)

T. F. E. Schlosser, H. Teichert, and V. Ebert, “In-situ-detection of potassium atoms in high-temperature coal-combustion systems using near-infrared-diode lasers,” Spectrochim. Acta 58, 2347-2359 (2002).
[CrossRef]

T. Fernholz, H. Teichert, and V. Ebert, “Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions,” Appl. Phys. B 75, 229-236 (2002).
[CrossRef]

2001 (1)

1999 (1)

1998 (1)

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545-562(1998).
[CrossRef]

1996 (1)

1992 (1)

1989 (1)

M. Y. Perrin and J. M. Hartmann, “Temperature-dependent measurements and modeling of absorption by CO2-N2 mixtures in the far line-wings of the 4.3 μm CO2 band,” J. Quant. Spectrosc. Radiat. Transfer 42, 311-317 (1989).
[CrossRef]

1982 (1)

1981 (1)

J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers--comparison of experiment and theory,” Appl. Phys. B 26, 203-210 (1981).
[CrossRef]

Aizawa, T.

Alger, T. F.

J.-P. Pirault, T. W. Ryan, T. F. Alger, and C. E. Roberts, “Performance predictions for high efficiency stoichiometric spark ignited engines,” SAE Technical Paper 2005-01-0995 (SAE, 2005).

Allen, M. G.

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545-562(1998).
[CrossRef]

G. B. Rieker, H. Li, X. Liu, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle, A. Kakuho, K. R. Sholes, T. Matsuura, and S. Takatani, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” in Proceedings of the Combustion Institute (Elsevier, 2007), Vol. 31, pp. 3041-3049.
[CrossRef]

Aoyagi, Y.

Y. Aoyagi, H. Osada, M. Misawa, Y. Goto, and H. Ishii, “Advanced diesel combustion using of wide range, high boosted and cooled EGR system by single cylinder engine,” SAE Technical Paper 2006-01-0077 (SAE, 2006).

Axner, O.

Baer, D. S.

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, and J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026-4032 (1996).
[CrossRef] [PubMed]

S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” in Proceedings of the Combustion Institute (Elsevier, 2000), Vol. 28, pp. 587-594.
[CrossRef]

Baldwin, J. A.

S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” in Proceedings of the Combustion Institute (Elsevier, 2000), Vol. 28, pp. 587-594.
[CrossRef]

Boulet, C.

F. Niro, C. Boulet, and J. M. Hartmann, “Spectra calculations in central and wing regions of CO2 IR bands between 10 and 20 μm. I: model and laboratory measurements,” J. Quant. Spectrosc. Radiat. Transfer 88, 483-498 (2004).
[CrossRef]

Bowman, C. T.

B. Sirjean, E. Dames, D. A. Sheen, X.-Q. You, C. Sung, A. T. Holley, F. N. Egolfopoulos, H. Wang, S. S. Vasu, D. F. Davidson, R. K. Hanson, H. Pitsch, C. T. Bowman, A. Kelley, C. K. Law, W. Tsang, N. P. Cernansky, D. L. Miller, A. Violi, and R. P. Lindstedt, “A high-temperature chemical kinetic model of n-alkane oxidation, JetSurfversion 0.2,” http://melchior.usc.edu/JetSurF/Version0_2/Index.html (2008).

J. T. Herbon, R. K. Hanson, C. T. Bowman, and D. M. Golden, “The reaction of CH3+O2: experimental determination of the rate coefficients for the product channels at high temperatures,” in Proceedings of the Combustion Institute (Elsevier, 2005), Vol. 30, pp. 955-963.
[CrossRef]

Cassidy, D. T.

Cernansky, N. P.

B. Sirjean, E. Dames, D. A. Sheen, X.-Q. You, C. Sung, A. T. Holley, F. N. Egolfopoulos, H. Wang, S. S. Vasu, D. F. Davidson, R. K. Hanson, H. Pitsch, C. T. Bowman, A. Kelley, C. K. Law, W. Tsang, N. P. Cernansky, D. L. Miller, A. Violi, and R. P. Lindstedt, “A high-temperature chemical kinetic model of n-alkane oxidation, JetSurfversion 0.2,” http://melchior.usc.edu/JetSurF/Version0_2/Index.html (2008).

Chou, S. I.

Curran, H. J.

H. Seiser, H. Pitsch, K. Seshadri, W. J. Pitz, and H. J. Curran, “Extinction and autoignition of n-heptane in counterflow configuration,” in Proceedings of the Combustion Institute (Elsevier, 2000), Vol. 28, pp. 2029-2037.
[CrossRef]

Dames, E.

B. Sirjean, E. Dames, D. A. Sheen, X.-Q. You, C. Sung, A. T. Holley, F. N. Egolfopoulos, H. Wang, S. S. Vasu, D. F. Davidson, R. K. Hanson, H. Pitsch, C. T. Bowman, A. Kelley, C. K. Law, W. Tsang, N. P. Cernansky, D. L. Miller, A. Violi, and R. P. Lindstedt, “A high-temperature chemical kinetic model of n-alkane oxidation, JetSurfversion 0.2,” http://melchior.usc.edu/JetSurF/Version0_2/Index.html (2008).

Davidson, D.

Z. Hong, G. Pang, S. Vasu, D. Davidson, and R. Hanson, “The use of driver inserts to reduce non-ideal pressure variations behind reflected shock waves,” Shock Waves 19, 113-123(2009).
[CrossRef]

Davidson, D. F.

D. F. Davidson and R. K. Hanson, “Recent advances in shock tube/laser diagnostic methods for improved chemical kinetics measurements,” Shock Waves 19, 271-283 (2009).
[CrossRef]

R. K. Hanson and D. F. Davidson, in Handbook of Shock Waves, G. Ben-Dor, O. Igra, and T. Elperin, eds. (Academic, 2001), Vol 1, Chap. 5.2.

B. Sirjean, E. Dames, D. A. Sheen, X.-Q. You, C. Sung, A. T. Holley, F. N. Egolfopoulos, H. Wang, S. S. Vasu, D. F. Davidson, R. K. Hanson, H. Pitsch, C. T. Bowman, A. Kelley, C. K. Law, W. Tsang, N. P. Cernansky, D. L. Miller, A. Violi, and R. P. Lindstedt, “A high-temperature chemical kinetic model of n-alkane oxidation, JetSurfversion 0.2,” http://melchior.usc.edu/JetSurF/Version0_2/Index.html (2008).

De Zilwa, S.

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: Sensor development and initial demonstration,” in Proceedings of the Combustion Institute (Elsevier, 2007), Vol. 31, pp. 791-798.
[CrossRef]

Dec, J. E.

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: Sensor development and initial demonstration,” in Proceedings of the Combustion Institute (Elsevier, 2007), Vol. 31, pp. 791-798.
[CrossRef]

Ebert, V.

T. Fernholz, H. Teichert, and V. Ebert, “Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions,” Appl. Phys. B 75, 229-236 (2002).
[CrossRef]

T. F. E. Schlosser, H. Teichert, and V. Ebert, “In-situ-detection of potassium atoms in high-temperature coal-combustion systems using near-infrared-diode lasers,” Spectrochim. Acta 58, 2347-2359 (2002).
[CrossRef]

S. W. K. Wunderle and V. Ebert, “2.7 μm DFB diode laser spectrometer for sensitive spatially resolved H2O vapor detection,” presented at the Topical Meeting on Laser Applications to Chemical, Security and Environmental Analysis, St. Petersburg, Florida, USA, 17-20 March 2008.

Edwards, C. F.

C. F. Edwards, K.-Y. Teh, and S. L. Miller, “Development of low-exergy-loss, high-efficiency chemical engines,” Global Climate and Energy Project Technical Report (Stanford University, 2006).

Egolfopoulos, F. N.

B. Sirjean, E. Dames, D. A. Sheen, X.-Q. You, C. Sung, A. T. Holley, F. N. Egolfopoulos, H. Wang, S. S. Vasu, D. F. Davidson, R. K. Hanson, H. Pitsch, C. T. Bowman, A. Kelley, C. K. Law, W. Tsang, N. P. Cernansky, D. L. Miller, A. Violi, and R. P. Lindstedt, “A high-temperature chemical kinetic model of n-alkane oxidation, JetSurfversion 0.2,” http://melchior.usc.edu/JetSurF/Version0_2/Index.html (2008).

Farooq, A.

A. Farooq, J. B. Jeffries, and R. K. Hanson, “Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7 μm,” Appl. Phys. B 96, 161-173 (2009).
[CrossRef]

A. Farooq, J. B. Jeffries, and R. K. Hanson, “In situ combustion measurements of H2O and temperature near 2.5 μm using tunable diode laser absorption,” Meas. Sci. Technol. 19, 075604 (2008).
[CrossRef]

A. Farooq, J. B. Jeffries, and R. K. Hanson, “CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7 μm,” Appl. Phys. B 90, 619-628(2008).
[CrossRef]

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 89, 407-416 (2007).
[CrossRef]

Fernholz, T.

T. Fernholz, H. Teichert, and V. Ebert, “Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions,” Appl. Phys. B 75, 229-236 (2002).
[CrossRef]

Golden, D. M.

J. T. Herbon, R. K. Hanson, C. T. Bowman, and D. M. Golden, “The reaction of CH3+O2: experimental determination of the rate coefficients for the product channels at high temperatures,” in Proceedings of the Combustion Institute (Elsevier, 2005), Vol. 30, pp. 955-963.
[CrossRef]

Goto, Y.

Y. Aoyagi, H. Osada, M. Misawa, Y. Goto, and H. Ishii, “Advanced diesel combustion using of wide range, high boosted and cooled EGR system by single cylinder engine,” SAE Technical Paper 2006-01-0077 (SAE, 2006).

Hanson, R.

Z. Hong, G. Pang, S. Vasu, D. Davidson, and R. Hanson, “The use of driver inserts to reduce non-ideal pressure variations behind reflected shock waves,” Shock Waves 19, 113-123(2009).
[CrossRef]

G. Rieker, J. Jeffries, and R. Hanson, “Measurements of high-pressure CO2 absorption near 2.0 μm and implications on tunable diode laser sensor design,” Appl. Phys. B 94, 51-63 (2009).
[CrossRef]

Hanson, R. K.

A. Farooq, J. B. Jeffries, and R. K. Hanson, “Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7 μm,” Appl. Phys. B 96, 161-173 (2009).
[CrossRef]

D. F. Davidson and R. K. Hanson, “Recent advances in shock tube/laser diagnostic methods for improved chemical kinetics measurements,” Shock Waves 19, 271-283 (2009).
[CrossRef]

A. Farooq, J. B. Jeffries, and R. K. Hanson, “CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7 μm,” Appl. Phys. B 90, 619-628(2008).
[CrossRef]

A. Farooq, J. B. Jeffries, and R. K. Hanson, “In situ combustion measurements of H2O and temperature near 2.5 μm using tunable diode laser absorption,” Meas. Sci. Technol. 19, 075604 (2008).
[CrossRef]

G. B. Rieker, X. Liu, H. Li, J. B. Jeffries, and R. K. Hanson, “Measurements of near-IR water vapor absorption at high pressure and temperature,” Appl. Phys. B 87, 169-178 (2007).
[CrossRef]

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 89, 407-416 (2007).
[CrossRef]

H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45, 1052-1061(2006).
[CrossRef] [PubMed]

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, and J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026-4032 (1996).
[CrossRef] [PubMed]

R. K. Hanson and D. F. Davidson, in Handbook of Shock Waves, G. Ben-Dor, O. Igra, and T. Elperin, eds. (Academic, 2001), Vol 1, Chap. 5.2.

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: Sensor development and initial demonstration,” in Proceedings of the Combustion Institute (Elsevier, 2007), Vol. 31, pp. 791-798.
[CrossRef]

G. B. Rieker, H. Li, X. Liu, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle, A. Kakuho, K. R. Sholes, T. Matsuura, and S. Takatani, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” in Proceedings of the Combustion Institute (Elsevier, 2007), Vol. 31, pp. 3041-3049.
[CrossRef]

B. Sirjean, E. Dames, D. A. Sheen, X.-Q. You, C. Sung, A. T. Holley, F. N. Egolfopoulos, H. Wang, S. S. Vasu, D. F. Davidson, R. K. Hanson, H. Pitsch, C. T. Bowman, A. Kelley, C. K. Law, W. Tsang, N. P. Cernansky, D. L. Miller, A. Violi, and R. P. Lindstedt, “A high-temperature chemical kinetic model of n-alkane oxidation, JetSurfversion 0.2,” http://melchior.usc.edu/JetSurF/Version0_2/Index.html (2008).

S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” in Proceedings of the Combustion Institute (Elsevier, 2000), Vol. 28, pp. 587-594.
[CrossRef]

J. T. Herbon, R. K. Hanson, C. T. Bowman, and D. M. Golden, “The reaction of CH3+O2: experimental determination of the rate coefficients for the product channels at high temperatures,” in Proceedings of the Combustion Institute (Elsevier, 2005), Vol. 30, pp. 955-963.
[CrossRef]

Hartmann, J. M.

F. Niro, C. Boulet, and J. M. Hartmann, “Spectra calculations in central and wing regions of CO2 IR bands between 10 and 20 μm. I: model and laboratory measurements,” J. Quant. Spectrosc. Radiat. Transfer 88, 483-498 (2004).
[CrossRef]

M. Y. Perrin and J. M. Hartmann, “Temperature-dependent measurements and modeling of absorption by CO2-N2 mixtures in the far line-wings of the 4.3 μm CO2 band,” J. Quant. Spectrosc. Radiat. Transfer 42, 311-317 (1989).
[CrossRef]

Herbon, J. T.

J. T. Herbon, R. K. Hanson, C. T. Bowman, and D. M. Golden, “The reaction of CH3+O2: experimental determination of the rate coefficients for the product channels at high temperatures,” in Proceedings of the Combustion Institute (Elsevier, 2005), Vol. 30, pp. 955-963.
[CrossRef]

Holley, A. T.

B. Sirjean, E. Dames, D. A. Sheen, X.-Q. You, C. Sung, A. T. Holley, F. N. Egolfopoulos, H. Wang, S. S. Vasu, D. F. Davidson, R. K. Hanson, H. Pitsch, C. T. Bowman, A. Kelley, C. K. Law, W. Tsang, N. P. Cernansky, D. L. Miller, A. Violi, and R. P. Lindstedt, “A high-temperature chemical kinetic model of n-alkane oxidation, JetSurfversion 0.2,” http://melchior.usc.edu/JetSurF/Version0_2/Index.html (2008).

Hong, Z.

Z. Hong, G. Pang, S. Vasu, D. Davidson, and R. Hanson, “The use of driver inserts to reduce non-ideal pressure variations behind reflected shock waves,” Shock Waves 19, 113-123(2009).
[CrossRef]

Hwang, W.

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: Sensor development and initial demonstration,” in Proceedings of the Combustion Institute (Elsevier, 2007), Vol. 31, pp. 791-798.
[CrossRef]

Ishii, H.

Y. Aoyagi, H. Osada, M. Misawa, Y. Goto, and H. Ishii, “Advanced diesel combustion using of wide range, high boosted and cooled EGR system by single cylinder engine,” SAE Technical Paper 2006-01-0077 (SAE, 2006).

Jeffries, J.

G. Rieker, J. Jeffries, and R. Hanson, “Measurements of high-pressure CO2 absorption near 2.0 μm and implications on tunable diode laser sensor design,” Appl. Phys. B 94, 51-63 (2009).
[CrossRef]

Jeffries, J. B.

A. Farooq, J. B. Jeffries, and R. K. Hanson, “Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7 μm,” Appl. Phys. B 96, 161-173 (2009).
[CrossRef]

A. Farooq, J. B. Jeffries, and R. K. Hanson, “CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7 μm,” Appl. Phys. B 90, 619-628(2008).
[CrossRef]

A. Farooq, J. B. Jeffries, and R. K. Hanson, “In situ combustion measurements of H2O and temperature near 2.5 μm using tunable diode laser absorption,” Meas. Sci. Technol. 19, 075604 (2008).
[CrossRef]

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 89, 407-416 (2007).
[CrossRef]

G. B. Rieker, X. Liu, H. Li, J. B. Jeffries, and R. K. Hanson, “Measurements of near-IR water vapor absorption at high pressure and temperature,” Appl. Phys. B 87, 169-178 (2007).
[CrossRef]

H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45, 1052-1061(2006).
[CrossRef] [PubMed]

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: Sensor development and initial demonstration,” in Proceedings of the Combustion Institute (Elsevier, 2007), Vol. 31, pp. 791-798.
[CrossRef]

G. B. Rieker, H. Li, X. Liu, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle, A. Kakuho, K. R. Sholes, T. Matsuura, and S. Takatani, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” in Proceedings of the Combustion Institute (Elsevier, 2007), Vol. 31, pp. 3041-3049.
[CrossRef]

Jenkins, T. P.

S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” in Proceedings of the Combustion Institute (Elsevier, 2000), Vol. 28, pp. 587-594.
[CrossRef]

Kakuho, A.

G. B. Rieker, H. Li, X. Liu, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle, A. Kakuho, K. R. Sholes, T. Matsuura, and S. Takatani, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” in Proceedings of the Combustion Institute (Elsevier, 2007), Vol. 31, pp. 3041-3049.
[CrossRef]

Kelley, A.

B. Sirjean, E. Dames, D. A. Sheen, X.-Q. You, C. Sung, A. T. Holley, F. N. Egolfopoulos, H. Wang, S. S. Vasu, D. F. Davidson, R. K. Hanson, H. Pitsch, C. T. Bowman, A. Kelley, C. K. Law, W. Tsang, N. P. Cernansky, D. L. Miller, A. Violi, and R. P. Lindstedt, “A high-temperature chemical kinetic model of n-alkane oxidation, JetSurfversion 0.2,” http://melchior.usc.edu/JetSurF/Version0_2/Index.html (2008).

Kim, T.

L. A. Kranendonk, J. W. Walewski, T. Kim, and S. T. Sanders, “Wavelength-agile sensor applied for HCCI engine measurements,” in Proceedings of the Combustion Institute (Elsevier, 2005), Vol. 30, pp. 1619-1627.
[CrossRef]

Kindle, H. S.

G. B. Rieker, H. Li, X. Liu, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle, A. Kakuho, K. R. Sholes, T. Matsuura, and S. Takatani, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” in Proceedings of the Combustion Institute (Elsevier, 2007), Vol. 31, pp. 3041-3049.
[CrossRef]

Kluczynski, P.

Kranendonk, L. A.

L. A. Kranendonk, J. W. Walewski, T. Kim, and S. T. Sanders, “Wavelength-agile sensor applied for HCCI engine measurements,” in Proceedings of the Combustion Institute (Elsevier, 2005), Vol. 30, pp. 1619-1627.
[CrossRef]

Labrie, D.

J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers--comparison of experiment and theory,” Appl. Phys. B 26, 203-210 (1981).
[CrossRef]

Law, C. K.

B. Sirjean, E. Dames, D. A. Sheen, X.-Q. You, C. Sung, A. T. Holley, F. N. Egolfopoulos, H. Wang, S. S. Vasu, D. F. Davidson, R. K. Hanson, H. Pitsch, C. T. Bowman, A. Kelley, C. K. Law, W. Tsang, N. P. Cernansky, D. L. Miller, A. Violi, and R. P. Lindstedt, “A high-temperature chemical kinetic model of n-alkane oxidation, JetSurfversion 0.2,” http://melchior.usc.edu/JetSurF/Version0_2/Index.html (2008).

Li, H.

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 89, 407-416 (2007).
[CrossRef]

G. B. Rieker, X. Liu, H. Li, J. B. Jeffries, and R. K. Hanson, “Measurements of near-IR water vapor absorption at high pressure and temperature,” Appl. Phys. B 87, 169-178 (2007).
[CrossRef]

H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45, 1052-1061(2006).
[CrossRef] [PubMed]

G. B. Rieker, H. Li, X. Liu, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle, A. Kakuho, K. R. Sholes, T. Matsuura, and S. Takatani, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” in Proceedings of the Combustion Institute (Elsevier, 2007), Vol. 31, pp. 3041-3049.
[CrossRef]

Lindstedt, R. P.

B. Sirjean, E. Dames, D. A. Sheen, X.-Q. You, C. Sung, A. T. Holley, F. N. Egolfopoulos, H. Wang, S. S. Vasu, D. F. Davidson, R. K. Hanson, H. Pitsch, C. T. Bowman, A. Kelley, C. K. Law, W. Tsang, N. P. Cernansky, D. L. Miller, A. Violi, and R. P. Lindstedt, “A high-temperature chemical kinetic model of n-alkane oxidation, JetSurfversion 0.2,” http://melchior.usc.edu/JetSurF/Version0_2/Index.html (2008).

Liu, J. T. C.

G. B. Rieker, H. Li, X. Liu, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle, A. Kakuho, K. R. Sholes, T. Matsuura, and S. Takatani, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” in Proceedings of the Combustion Institute (Elsevier, 2007), Vol. 31, pp. 3041-3049.
[CrossRef]

Liu, X.

G. B. Rieker, X. Liu, H. Li, J. B. Jeffries, and R. K. Hanson, “Measurements of near-IR water vapor absorption at high pressure and temperature,” Appl. Phys. B 87, 169-178 (2007).
[CrossRef]

H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45, 1052-1061(2006).
[CrossRef] [PubMed]

G. B. Rieker, H. Li, X. Liu, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle, A. Kakuho, K. R. Sholes, T. Matsuura, and S. Takatani, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” in Proceedings of the Combustion Institute (Elsevier, 2007), Vol. 31, pp. 3041-3049.
[CrossRef]

Matsuura, T.

G. B. Rieker, H. Li, X. Liu, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle, A. Kakuho, K. R. Sholes, T. Matsuura, and S. Takatani, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” in Proceedings of the Combustion Institute (Elsevier, 2007), Vol. 31, pp. 3041-3049.
[CrossRef]

Mattison, D. W.

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: Sensor development and initial demonstration,” in Proceedings of the Combustion Institute (Elsevier, 2007), Vol. 31, pp. 791-798.
[CrossRef]

Miller, D. L.

B. Sirjean, E. Dames, D. A. Sheen, X.-Q. You, C. Sung, A. T. Holley, F. N. Egolfopoulos, H. Wang, S. S. Vasu, D. F. Davidson, R. K. Hanson, H. Pitsch, C. T. Bowman, A. Kelley, C. K. Law, W. Tsang, N. P. Cernansky, D. L. Miller, A. Violi, and R. P. Lindstedt, “A high-temperature chemical kinetic model of n-alkane oxidation, JetSurfversion 0.2,” http://melchior.usc.edu/JetSurF/Version0_2/Index.html (2008).

Miller, S. L.

C. F. Edwards, K.-Y. Teh, and S. L. Miller, “Development of low-exergy-loss, high-efficiency chemical engines,” Global Climate and Energy Project Technical Report (Stanford University, 2006).

Misawa, M.

Y. Aoyagi, H. Osada, M. Misawa, Y. Goto, and H. Ishii, “Advanced diesel combustion using of wide range, high boosted and cooled EGR system by single cylinder engine,” SAE Technical Paper 2006-01-0077 (SAE, 2006).

Mulhall, P. A.

G. B. Rieker, H. Li, X. Liu, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle, A. Kakuho, K. R. Sholes, T. Matsuura, and S. Takatani, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” in Proceedings of the Combustion Institute (Elsevier, 2007), Vol. 31, pp. 3041-3049.
[CrossRef]

Nagali, V.

Niro, F.

F. Niro, C. Boulet, and J. M. Hartmann, “Spectra calculations in central and wing regions of CO2 IR bands between 10 and 20 μm. I: model and laboratory measurements,” J. Quant. Spectrosc. Radiat. Transfer 88, 483-498 (2004).
[CrossRef]

Osada, H.

Y. Aoyagi, H. Osada, M. Misawa, Y. Goto, and H. Ishii, “Advanced diesel combustion using of wide range, high boosted and cooled EGR system by single cylinder engine,” SAE Technical Paper 2006-01-0077 (SAE, 2006).

Pang, G.

Z. Hong, G. Pang, S. Vasu, D. Davidson, and R. Hanson, “The use of driver inserts to reduce non-ideal pressure variations behind reflected shock waves,” Shock Waves 19, 113-123(2009).
[CrossRef]

Perrin, M. Y.

M. Y. Perrin and J. M. Hartmann, “Temperature-dependent measurements and modeling of absorption by CO2-N2 mixtures in the far line-wings of the 4.3 μm CO2 band,” J. Quant. Spectrosc. Radiat. Transfer 42, 311-317 (1989).
[CrossRef]

Pirault, J.-P.

J.-P. Pirault, T. W. Ryan, T. F. Alger, and C. E. Roberts, “Performance predictions for high efficiency stoichiometric spark ignited engines,” SAE Technical Paper 2005-01-0995 (SAE, 2005).

Pitsch, H.

B. Sirjean, E. Dames, D. A. Sheen, X.-Q. You, C. Sung, A. T. Holley, F. N. Egolfopoulos, H. Wang, S. S. Vasu, D. F. Davidson, R. K. Hanson, H. Pitsch, C. T. Bowman, A. Kelley, C. K. Law, W. Tsang, N. P. Cernansky, D. L. Miller, A. Violi, and R. P. Lindstedt, “A high-temperature chemical kinetic model of n-alkane oxidation, JetSurfversion 0.2,” http://melchior.usc.edu/JetSurF/Version0_2/Index.html (2008).

H. Seiser, H. Pitsch, K. Seshadri, W. J. Pitz, and H. J. Curran, “Extinction and autoignition of n-heptane in counterflow configuration,” in Proceedings of the Combustion Institute (Elsevier, 2000), Vol. 28, pp. 2029-2037.
[CrossRef]

Pitz, W. J.

H. Seiser, H. Pitsch, K. Seshadri, W. J. Pitz, and H. J. Curran, “Extinction and autoignition of n-heptane in counterflow configuration,” in Proceedings of the Combustion Institute (Elsevier, 2000), Vol. 28, pp. 2029-2037.
[CrossRef]

Reid, J.

D. T. Cassidy and J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1185-1190 (1982).
[CrossRef] [PubMed]

J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers--comparison of experiment and theory,” Appl. Phys. B 26, 203-210 (1981).
[CrossRef]

Rieker, G.

G. Rieker, J. Jeffries, and R. Hanson, “Measurements of high-pressure CO2 absorption near 2.0 μm and implications on tunable diode laser sensor design,” Appl. Phys. B 94, 51-63 (2009).
[CrossRef]

Rieker, G. B.

G. B. Rieker, X. Liu, H. Li, J. B. Jeffries, and R. K. Hanson, “Measurements of near-IR water vapor absorption at high pressure and temperature,” Appl. Phys. B 87, 169-178 (2007).
[CrossRef]

H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45, 1052-1061(2006).
[CrossRef] [PubMed]

G. B. Rieker, H. Li, X. Liu, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle, A. Kakuho, K. R. Sholes, T. Matsuura, and S. Takatani, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” in Proceedings of the Combustion Institute (Elsevier, 2007), Vol. 31, pp. 3041-3049.
[CrossRef]

Roberts, C. E.

J.-P. Pirault, T. W. Ryan, T. F. Alger, and C. E. Roberts, “Performance predictions for high efficiency stoichiometric spark ignited engines,” SAE Technical Paper 2005-01-0995 (SAE, 2005).

Ryan, T. W.

J.-P. Pirault, T. W. Ryan, T. F. Alger, and C. E. Roberts, “Performance predictions for high efficiency stoichiometric spark ignited engines,” SAE Technical Paper 2005-01-0995 (SAE, 2005).

Sanders, S. T.

S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” in Proceedings of the Combustion Institute (Elsevier, 2000), Vol. 28, pp. 587-594.
[CrossRef]

L. A. Kranendonk, J. W. Walewski, T. Kim, and S. T. Sanders, “Wavelength-agile sensor applied for HCCI engine measurements,” in Proceedings of the Combustion Institute (Elsevier, 2005), Vol. 30, pp. 1619-1627.
[CrossRef]

Schlosser, T. F. E.

T. F. E. Schlosser, H. Teichert, and V. Ebert, “In-situ-detection of potassium atoms in high-temperature coal-combustion systems using near-infrared-diode lasers,” Spectrochim. Acta 58, 2347-2359 (2002).
[CrossRef]

Segall, J.

Seiser, H.

H. Seiser, H. Pitsch, K. Seshadri, W. J. Pitz, and H. J. Curran, “Extinction and autoignition of n-heptane in counterflow configuration,” in Proceedings of the Combustion Institute (Elsevier, 2000), Vol. 28, pp. 2029-2037.
[CrossRef]

Seshadri, K.

H. Seiser, H. Pitsch, K. Seshadri, W. J. Pitz, and H. J. Curran, “Extinction and autoignition of n-heptane in counterflow configuration,” in Proceedings of the Combustion Institute (Elsevier, 2000), Vol. 28, pp. 2029-2037.
[CrossRef]

Sheen, D. A.

B. Sirjean, E. Dames, D. A. Sheen, X.-Q. You, C. Sung, A. T. Holley, F. N. Egolfopoulos, H. Wang, S. S. Vasu, D. F. Davidson, R. K. Hanson, H. Pitsch, C. T. Bowman, A. Kelley, C. K. Law, W. Tsang, N. P. Cernansky, D. L. Miller, A. Violi, and R. P. Lindstedt, “A high-temperature chemical kinetic model of n-alkane oxidation, JetSurfversion 0.2,” http://melchior.usc.edu/JetSurF/Version0_2/Index.html (2008).

Sholes, K. R.

G. B. Rieker, H. Li, X. Liu, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle, A. Kakuho, K. R. Sholes, T. Matsuura, and S. Takatani, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” in Proceedings of the Combustion Institute (Elsevier, 2007), Vol. 31, pp. 3041-3049.
[CrossRef]

Silver, J. A.

Sirjean, B.

B. Sirjean, E. Dames, D. A. Sheen, X.-Q. You, C. Sung, A. T. Holley, F. N. Egolfopoulos, H. Wang, S. S. Vasu, D. F. Davidson, R. K. Hanson, H. Pitsch, C. T. Bowman, A. Kelley, C. K. Law, W. Tsang, N. P. Cernansky, D. L. Miller, A. Violi, and R. P. Lindstedt, “A high-temperature chemical kinetic model of n-alkane oxidation, JetSurfversion 0.2,” http://melchior.usc.edu/JetSurF/Version0_2/Index.html (2008).

Sjoberg, M.

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: Sensor development and initial demonstration,” in Proceedings of the Combustion Institute (Elsevier, 2007), Vol. 31, pp. 791-798.
[CrossRef]

Steeper, R. R.

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: Sensor development and initial demonstration,” in Proceedings of the Combustion Institute (Elsevier, 2007), Vol. 31, pp. 791-798.
[CrossRef]

Sung, C.

B. Sirjean, E. Dames, D. A. Sheen, X.-Q. You, C. Sung, A. T. Holley, F. N. Egolfopoulos, H. Wang, S. S. Vasu, D. F. Davidson, R. K. Hanson, H. Pitsch, C. T. Bowman, A. Kelley, C. K. Law, W. Tsang, N. P. Cernansky, D. L. Miller, A. Violi, and R. P. Lindstedt, “A high-temperature chemical kinetic model of n-alkane oxidation, JetSurfversion 0.2,” http://melchior.usc.edu/JetSurF/Version0_2/Index.html (2008).

Takatani, S.

G. B. Rieker, H. Li, X. Liu, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle, A. Kakuho, K. R. Sholes, T. Matsuura, and S. Takatani, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” in Proceedings of the Combustion Institute (Elsevier, 2007), Vol. 31, pp. 3041-3049.
[CrossRef]

Teh, K.-Y.

C. F. Edwards, K.-Y. Teh, and S. L. Miller, “Development of low-exergy-loss, high-efficiency chemical engines,” Global Climate and Energy Project Technical Report (Stanford University, 2006).

Teichert, H.

T. F. E. Schlosser, H. Teichert, and V. Ebert, “In-situ-detection of potassium atoms in high-temperature coal-combustion systems using near-infrared-diode lasers,” Spectrochim. Acta 58, 2347-2359 (2002).
[CrossRef]

T. Fernholz, H. Teichert, and V. Ebert, “Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions,” Appl. Phys. B 75, 229-236 (2002).
[CrossRef]

Tsang, W.

B. Sirjean, E. Dames, D. A. Sheen, X.-Q. You, C. Sung, A. T. Holley, F. N. Egolfopoulos, H. Wang, S. S. Vasu, D. F. Davidson, R. K. Hanson, H. Pitsch, C. T. Bowman, A. Kelley, C. K. Law, W. Tsang, N. P. Cernansky, D. L. Miller, A. Violi, and R. P. Lindstedt, “A high-temperature chemical kinetic model of n-alkane oxidation, JetSurfversion 0.2,” http://melchior.usc.edu/JetSurF/Version0_2/Index.html (2008).

Vasu, S.

Z. Hong, G. Pang, S. Vasu, D. Davidson, and R. Hanson, “The use of driver inserts to reduce non-ideal pressure variations behind reflected shock waves,” Shock Waves 19, 113-123(2009).
[CrossRef]

Vasu, S. S.

B. Sirjean, E. Dames, D. A. Sheen, X.-Q. You, C. Sung, A. T. Holley, F. N. Egolfopoulos, H. Wang, S. S. Vasu, D. F. Davidson, R. K. Hanson, H. Pitsch, C. T. Bowman, A. Kelley, C. K. Law, W. Tsang, N. P. Cernansky, D. L. Miller, A. Violi, and R. P. Lindstedt, “A high-temperature chemical kinetic model of n-alkane oxidation, JetSurfversion 0.2,” http://melchior.usc.edu/JetSurF/Version0_2/Index.html (2008).

Violi, A.

B. Sirjean, E. Dames, D. A. Sheen, X.-Q. You, C. Sung, A. T. Holley, F. N. Egolfopoulos, H. Wang, S. S. Vasu, D. F. Davidson, R. K. Hanson, H. Pitsch, C. T. Bowman, A. Kelley, C. K. Law, W. Tsang, N. P. Cernansky, D. L. Miller, A. Violi, and R. P. Lindstedt, “A high-temperature chemical kinetic model of n-alkane oxidation, JetSurfversion 0.2,” http://melchior.usc.edu/JetSurF/Version0_2/Index.html (2008).

Walewski, J. W.

L. A. Kranendonk, J. W. Walewski, T. Kim, and S. T. Sanders, “Wavelength-agile sensor applied for HCCI engine measurements,” in Proceedings of the Combustion Institute (Elsevier, 2005), Vol. 30, pp. 1619-1627.
[CrossRef]

Wang, H.

B. Sirjean, E. Dames, D. A. Sheen, X.-Q. You, C. Sung, A. T. Holley, F. N. Egolfopoulos, H. Wang, S. S. Vasu, D. F. Davidson, R. K. Hanson, H. Pitsch, C. T. Bowman, A. Kelley, C. K. Law, W. Tsang, N. P. Cernansky, D. L. Miller, A. Violi, and R. P. Lindstedt, “A high-temperature chemical kinetic model of n-alkane oxidation, JetSurfversion 0.2,” http://melchior.usc.edu/JetSurF/Version0_2/Index.html (2008).

Wehe, S. D.

G. B. Rieker, H. Li, X. Liu, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle, A. Kakuho, K. R. Sholes, T. Matsuura, and S. Takatani, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” in Proceedings of the Combustion Institute (Elsevier, 2007), Vol. 31, pp. 3041-3049.
[CrossRef]

Westbrook, C. K.

C. K. Westbrook, “Chemical kinetics of hydrocarbon ignition in practical combustion systems,” in Proceedings of the Combustion Institute (Elsevier, 2000), Vol. 28, pp. 1563-1577.
[CrossRef]

Wunderle, S. W. K.

S. W. K. Wunderle and V. Ebert, “2.7 μm DFB diode laser spectrometer for sensitive spatially resolved H2O vapor detection,” presented at the Topical Meeting on Laser Applications to Chemical, Security and Environmental Analysis, St. Petersburg, Florida, USA, 17-20 March 2008.

You, X.-Q.

B. Sirjean, E. Dames, D. A. Sheen, X.-Q. You, C. Sung, A. T. Holley, F. N. Egolfopoulos, H. Wang, S. S. Vasu, D. F. Davidson, R. K. Hanson, H. Pitsch, C. T. Bowman, A. Kelley, C. K. Law, W. Tsang, N. P. Cernansky, D. L. Miller, A. Violi, and R. P. Lindstedt, “A high-temperature chemical kinetic model of n-alkane oxidation, JetSurfversion 0.2,” http://melchior.usc.edu/JetSurF/Version0_2/Index.html (2008).

Appl. Opt. (6)

Appl. Phys. B (7)

H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 89, 407-416 (2007).
[CrossRef]

T. Fernholz, H. Teichert, and V. Ebert, “Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions,” Appl. Phys. B 75, 229-236 (2002).
[CrossRef]

G. Rieker, J. Jeffries, and R. Hanson, “Measurements of high-pressure CO2 absorption near 2.0 μm and implications on tunable diode laser sensor design,” Appl. Phys. B 94, 51-63 (2009).
[CrossRef]

A. Farooq, J. B. Jeffries, and R. K. Hanson, “CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7 μm,” Appl. Phys. B 90, 619-628(2008).
[CrossRef]

A. Farooq, J. B. Jeffries, and R. K. Hanson, “Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7 μm,” Appl. Phys. B 96, 161-173 (2009).
[CrossRef]

J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers--comparison of experiment and theory,” Appl. Phys. B 26, 203-210 (1981).
[CrossRef]

G. B. Rieker, X. Liu, H. Li, J. B. Jeffries, and R. K. Hanson, “Measurements of near-IR water vapor absorption at high pressure and temperature,” Appl. Phys. B 87, 169-178 (2007).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (2)

M. Y. Perrin and J. M. Hartmann, “Temperature-dependent measurements and modeling of absorption by CO2-N2 mixtures in the far line-wings of the 4.3 μm CO2 band,” J. Quant. Spectrosc. Radiat. Transfer 42, 311-317 (1989).
[CrossRef]

F. Niro, C. Boulet, and J. M. Hartmann, “Spectra calculations in central and wing regions of CO2 IR bands between 10 and 20 μm. I: model and laboratory measurements,” J. Quant. Spectrosc. Radiat. Transfer 88, 483-498 (2004).
[CrossRef]

Meas. Sci. Technol. (2)

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545-562(1998).
[CrossRef]

A. Farooq, J. B. Jeffries, and R. K. Hanson, “In situ combustion measurements of H2O and temperature near 2.5 μm using tunable diode laser absorption,” Meas. Sci. Technol. 19, 075604 (2008).
[CrossRef]

Shock Waves (2)

D. F. Davidson and R. K. Hanson, “Recent advances in shock tube/laser diagnostic methods for improved chemical kinetics measurements,” Shock Waves 19, 271-283 (2009).
[CrossRef]

Z. Hong, G. Pang, S. Vasu, D. Davidson, and R. Hanson, “The use of driver inserts to reduce non-ideal pressure variations behind reflected shock waves,” Shock Waves 19, 113-123(2009).
[CrossRef]

Spectrochim. Acta (1)

T. F. E. Schlosser, H. Teichert, and V. Ebert, “In-situ-detection of potassium atoms in high-temperature coal-combustion systems using near-infrared-diode lasers,” Spectrochim. Acta 58, 2347-2359 (2002).
[CrossRef]

Other (15)

J. T. Herbon, R. K. Hanson, C. T. Bowman, and D. M. Golden, “The reaction of CH3+O2: experimental determination of the rate coefficients for the product channels at high temperatures,” in Proceedings of the Combustion Institute (Elsevier, 2005), Vol. 30, pp. 955-963.
[CrossRef]

R. K. Hanson and D. F. Davidson, in Handbook of Shock Waves, G. Ben-Dor, O. Igra, and T. Elperin, eds. (Academic, 2001), Vol 1, Chap. 5.2.

B. Sirjean, E. Dames, D. A. Sheen, X.-Q. You, C. Sung, A. T. Holley, F. N. Egolfopoulos, H. Wang, S. S. Vasu, D. F. Davidson, R. K. Hanson, H. Pitsch, C. T. Bowman, A. Kelley, C. K. Law, W. Tsang, N. P. Cernansky, D. L. Miller, A. Violi, and R. P. Lindstedt, “A high-temperature chemical kinetic model of n-alkane oxidation, JetSurfversion 0.2,” http://melchior.usc.edu/JetSurF/Version0_2/Index.html (2008).

H. Seiser, H. Pitsch, K. Seshadri, W. J. Pitz, and H. J. Curran, “Extinction and autoignition of n-heptane in counterflow configuration,” in Proceedings of the Combustion Institute (Elsevier, 2000), Vol. 28, pp. 2029-2037.
[CrossRef]

S. W. K. Wunderle and V. Ebert, “2.7 μm DFB diode laser spectrometer for sensitive spatially resolved H2O vapor detection,” presented at the Topical Meeting on Laser Applications to Chemical, Security and Environmental Analysis, St. Petersburg, Florida, USA, 17-20 March 2008.

HITRAN, http://cfa-www.harvard.edu/HITRAN/ 2008.

Nanosystem and Technologies GmbH, http://www.nanoplus.com.

G. B. Rieker, H. Li, X. Liu, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle, A. Kakuho, K. R. Sholes, T. Matsuura, and S. Takatani, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” in Proceedings of the Combustion Institute (Elsevier, 2007), Vol. 31, pp. 3041-3049.
[CrossRef]

L. A. Kranendonk, J. W. Walewski, T. Kim, and S. T. Sanders, “Wavelength-agile sensor applied for HCCI engine measurements,” in Proceedings of the Combustion Institute (Elsevier, 2005), Vol. 30, pp. 1619-1627.
[CrossRef]

Y. Aoyagi, H. Osada, M. Misawa, Y. Goto, and H. Ishii, “Advanced diesel combustion using of wide range, high boosted and cooled EGR system by single cylinder engine,” SAE Technical Paper 2006-01-0077 (SAE, 2006).

J.-P. Pirault, T. W. Ryan, T. F. Alger, and C. E. Roberts, “Performance predictions for high efficiency stoichiometric spark ignited engines,” SAE Technical Paper 2005-01-0995 (SAE, 2005).

C. F. Edwards, K.-Y. Teh, and S. L. Miller, “Development of low-exergy-loss, high-efficiency chemical engines,” Global Climate and Energy Project Technical Report (Stanford University, 2006).

C. K. Westbrook, “Chemical kinetics of hydrocarbon ignition in practical combustion systems,” in Proceedings of the Combustion Institute (Elsevier, 2000), Vol. 28, pp. 1563-1577.
[CrossRef]

S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” in Proceedings of the Combustion Institute (Elsevier, 2000), Vol. 28, pp. 587-594.
[CrossRef]

D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: Sensor development and initial demonstration,” in Proceedings of the Combustion Institute (Elsevier, 2007), Vol. 31, pp. 791-798.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

Simulated absorbance for (a) the R(28) CO 2 transition near 3633.08 cm 1 , (b)the  R(50) CO 2 transition near 3645.20 cm 1 , and the P(70) transition near 3645.56 cm 1 . T = 1000 K , L = 14.13 cm , and X CO 2 = 1 % in Ar.

Fig. 2
Fig. 2

Comparison of the temperature sensitivity of the CO 2 line pair used previously [16] with the line pair used here.

Fig. 3
Fig. 3

Simulated background-subtracted WMS- 2 f / 1 f peak height as a function of modulation depth for the two CO 2 transitions near 3633.08 and 3645.20 cm 1 .

Fig. 4
Fig. 4

Measurement of maximum possible modulation depth as a function of the modulation frequency for the 3633 and 3645 cm 1 lasers.

Fig. 5
Fig. 5

WMS- 2 f simulations for the CO 2 transition near 3633.08 cm 1 . T = 1000 K , P = 10 atm , X CO 2 = 1 % in Ar, L = 14.13 cm , a = 0.20 cm 1 , i 0 = 0.20 . (a) Magnitude of the WMS- 2 f signal and (b) top three dominant components of the WMS- 2 f signal.

Fig. 6
Fig. 6

WMS- 2 f simulations for the CO 2 transition near 3633.08 cm 1 . T = 1000 K , P = 10 atm , X CO 2 = 1 % in Ar, L = 14.13 cm , a = 0.20 cm 1 , i 0 = 0.90 . (a) Magnitude of the WMS- 2 f signal and (b) top three dominant components of the WMS- 2 f signal.

Fig. 7
Fig. 7

WMS simulations for the CO 2 transition near 3633.08 cm 1 . P = 10 atm , X CO 2 = 1 % in Ar, L = 14.13 cm , a = 0.20 cm 1 , i 0 = 0.90 . (a) Magnitude of the WMS- 1 f signal and (b) magnitude of the background-subtracted WMS- 2 f / 1 f signal.

Fig. 8
Fig. 8

Linear laser IM amplitude for the 2743 nm laser as a function of (a) laser temperature with constant mean current of 160 mA and (b) laser current with constant temperature of 27 ° C . Modulation frequency ( f ) = 100 kHz , a = 0.115 cm 1 . A best quadratic fit to the measured data is shown as well.

Fig. 9
Fig. 9

Measured line strength versus temperature for the CO 2 transitions near 3645.10 and 3645.20 cm 1 . The one-parameter best fit is used to infer the line strength at reference temperature, S ( 296 K ) = 0.0177 and 0.0412 cm 2 / atm for these two lines, respectively.

Fig. 10
Fig. 10

Self-broadening coefficient versus temperature. Two-parameter best fit to the measured data gives (a)  3645.10 cm 1 transition: 2 γ self ( 296 K ) = 0.193 cm 1 / atm , n = 0.741 ; (b)  3645.20 cm 1 transition: 2 γ self ( 296 K ) = 0.143 cm 1 / atm , n = 0.632 .

Fig. 11
Fig. 11

Measured Ar-broadening coefficient versus temperature for the 3645.20 cm 1 transition. Two-parameter best fit to the measured data gives 2 γ CO 2 - Ar ( 296 K ) = 0.0949 cm 1 / atm , n = 0.652 .

Fig. 12
Fig. 12

Measured line center values versus pressure at room temperature ( 296 K ). Linear fit gives the pressure shift for (a)  3633.08 cm 1 transition: δ CO 2 - Ar ( 296 K ) = 0.0053 cm 1 / atm ; (b)  3645.20 cm 1 transition: δ CO 2 - Ar ( 296 K ) = 0.0048 cm 1 / atm .

Fig. 13
Fig. 13

Experimental setup with high-pressure static cell.

Fig. 14
Fig. 14

Direct absorption measurements for the CO 2 transition near 3645.20 cm 1 . T = 296 K , L = 100 cm , 0.49% CO 2 in Ar.

Fig. 15
Fig. 15

Background-subtracted WMS- 2 f / 1 f magnitude versus pressure. f = 100 kHz , T = 296 K , 2% CO 2 in Ar. 3633.08 cm 1 transition: L = 6 cm , a = 0.201 cm 1 ; 3645.20 cm 1 transition: L = 100 cm , a = 0.115 cm 1 .

Fig. 16
Fig. 16

Measurement of wavelength shift due to modulation for the 3633.08 cm 1 transition. f = 100 kHz , a = 0.201 cm 1 , mean laser current ( I ) = 90.65 mA , T = 296 K , L = 6 cm , P = 1 atm , 2% CO 2 in Ar. (a) Background-subtracted WMS- 2 f / 1 f measurements versus laser temperature, (b) unmodulated ( f = 0 ) laser wavelength versus laser temperature, (c) measured and simulated WMS- 2 f / 1 f magnitude, and (d) measured data points shifted by 0.14 cm 1 .

Fig. 17
Fig. 17

1 f -normalized WMS- 2 f magnitude for the two CO 2 transitions. f = 100 kHz , T = 296 K , 2% CO 2 in Ar. 3633.08 cm 1 transition: L = 6 cm , a = 0.201 cm 1 ; 3645.20 cm 1 transition: L = 100 cm , a = 0.115 cm 1 . (a)  P = 5 atm , (b)  P = 10 atm .

Fig. 18
Fig. 18

Experimental setup for the high-pressure shock-tube measurements: (a) schematic of the shock tube and (b) cross section of the shock tube.

Fig. 19
Fig. 19

Measurements in 2% CO 2 -Ar shocks, L = 14.13 cm . (a) Measured temperature and pressure trace for a shock arriving at t = 0 , reflected-shock conditions T 5 = 826 K , P 5 = 8.7 atm . (b) Temperature and CO 2 concentration measurements by the fixed-wavelength high-pressure WMS- 2 f / 1 f sensor, P 8 12 atm .

Fig. 20
Fig. 20

Measured CO 2 mole fraction behind a reflected shock wave arriving at t = 0 . Mixture: 0.2% heptane, 2.2% O 2 , balance Ar. T 5 = 1212 K , P 5 = 9.05 atm , L = 14.13 cm , driver gas 30% N 2 in He. Simulations using two kinetics mechanisms are also shown.

Tables (1)

Tables Icon

Table 1 Measured Spectroscopic Data for the CO 2 Transitions

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

( I t I 0 ) v = exp ( k v L ) ,
k v = P x i S i ( T ) ϕ v ,
α v ln ( I t I 0 ) = k v L = P x abs S i ( T ) ϕ v L .
ν ( t ) = ν ¯ + a cos ( ω t ) ,
I 0 ( t ) = I ¯ 0 [ 1 + i 0 cos ( ω t + ψ 1 ) + i 2 cos ( 2 ω t + ψ 2 ) ] .
S 2 f ( ν ¯ ) = G I ¯ 0 2 { [ H 2 + i 0 2 ( H 1 + H 3 ) cos ψ 1 + i 2 ( H 0 1 + H 4 2 ) cos ψ 2 ] 2 + [ i 0 2 ( H 1 H 3 ) sin ψ 1 + i 2 ( H 0 1 H 4 2 ) sin ψ 2 ] 2 } 1 / 2 ,
S 1 f ( ν ¯ ) = G I ¯ 0 2 { [ H 1 + i 0 ( H 0 + H 2 2 ) cos ψ 1 + i 2 2 ( H 1 + H 3 ) cos ψ 2 ] 2 + [ i 0 ( H 0 H 2 2 ) sin ψ 1 + i 2 2 ( H 1 H 3 ) sin ψ 2 ] 2 } 1 / 2 .
R = C 2 C 1 = ( S 2 f / S 1 f ) v ¯ 2 ( S 2 f / S 1 f ) v ¯ 1 = f ( T ) .
I 0 ( t ) / I 0 = 1 + 0.905 cos ( 2 π ft + 1.24 π ) + 0.0099 cos ( 4 π ft + 1.33 π ) ,
I 0 ( t ) / I 0 = 1 + 0.899 cos ( 2 π ft + 1.43 π ) + 0.0163 cos ( 4 π ft + 1.38 π ) .
( 2 f 1 f ) meas = ( 2 f x 1 f 2 f x bg 1 f bg ) 2 + ( 2 f y 1 f 2 f y bg 1 f bg ) 2 .

Metrics