Abstract

Multilayer stacks of silver and BaF2 alternate layers have been deposited by thermal evaporation on a silica substrate with the aim to obtain Ag clusters dispersed in a BaF2 insulator matrix. The Ag layer thickness was approximately 1.2nm; the thickness of the BaF2 layer was approximately 25nm. The samples were thermally treated for a 1 h thermal annealing process at 500°C. These kinds of multilayer device also have several applications in the field of optics for the realization of antireflection coatings. However, optical characterization of dielectric matrices that contain layered metallic nanoparticles still remains an unsolved problem in the field of nanostructured optical coatings. Therefore, the surface plasmon resonance peak that appears in the optical absorption spectra because of the formation of Ag nanoclusters inside the BaF2 insulator matrix has been monitored and fitted by numerical codes. In particular, a previously published theoretical model, based on the Maxwell–Garnett effective medium theory, modified to take into account the effects that are due to the particle shapes and the spatial arrangement of the clusters, has been employed to fit the optical absorption spectra.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. N. Afonso, J. Solis, R. Serna, J. Gonzalo, J. M. Ballesteros, and J. C. G. de Sande, “Pulsed laser deposition of nanocomposite thin films for photonic applications,” Proc. SPIE 3618, 453-464 (1999).
    [CrossRef]
  2. A. Polman, E. Snoeks, G. N. van den Hoven, M. L. Brongersma, R. Serna, J. H. Shin, P. Kik, and E. Radius, “Ion beam synthesis of planar opto-electronic devices,” Nucl. Instrum. Methods Phys. Res. B 106, 393-399 (1995).
    [CrossRef]
  3. R. Joerger, R. Gampp, A. Heinzel, W. Graf, M. Kohl, P. Gantenbein, and P. Oelhafen, “Optical properties of inhomogeneous media,” Sol. Energy Mater. Sol. Cells 54, 351-361(1998).
    [CrossRef]
  4. M. J. Bloemer and J. W. Haus, “Versatile waveguide polarizer incorporating an ultrathin discontinuous silver film,” Appl. Phys. Lett. 61, 1619-1621 (1992).
    [CrossRef]
  5. A. Podlipensky, J. Lange, G. Seiffert, H. Graener, and I. Cravetchi, “Second-harmonic generation from ellipsoidal silver nanoparticles embedded in silica glass,” Opt. Lett. 28, 716-718 (2003).
    [CrossRef] [PubMed]
  6. C. G. Granqvist and O. Hunderi, “Optical properties of Ag-SiO2 Cermet films: a comparison of effective-medium theories,” Phys. Rev. B 18, 2897-2906 (1978).
    [CrossRef]
  7. J. Toudert, D. Babonneau, L. Simonot, S. Camelio, and T. Girardeau, “Quantitative modelling of the surface plasmon resonances of metal nanoclusters sandwiched between dielectric layers: the influence of nanocluster size, shape and organization,” Nanotechnology 19, 125709(2008).
    [CrossRef] [PubMed]
  8. U. Kriebig and M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 of the Springer Series in Materials Science (Springer, 1996).
  9. M. L. Protopapa, “Surface plasmon resonance of metal nanoparticles sandwiched between dielectric layers: theoretical modeling,” Appl. Opt. 48, 778-785 (2009).
    [CrossRef] [PubMed]
  10. M. A. García, J. Llopis, and S. E. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol-gel films,” Chem. Phys. Lett. 315, 313-320(1999).
    [CrossRef]
  11. J. C. Pivin, M. A. García, H. Hofmeister, A. Martucci, M. Sendova Massileva, M. Nikolaeva, O. Kaitasov, and J. Llopis, “Optical properties of silver clusters formed by ion irradiation,” Eur. Phys. J. D 20, 251-260 (2002).
    [CrossRef]
  12. Z. Q. Sun, D. M. Sun, and T. N. Ruan, “Microstructural and optical absorption properties of Cu-MgF2 nanoparticle cermet film,” Chin. Phys. Lett. 19, 1365-1368 (2002).
    [CrossRef]
  13. H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178-18188 (1993).
    [CrossRef]
  14. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B. 6, 4370-4379 (1972).
    [CrossRef]
  15. E. D. Palik, ed., Handbook of Optical Constants (Academic, 1985), ISBN 0-12-544420-6.

2009 (1)

2008 (1)

J. Toudert, D. Babonneau, L. Simonot, S. Camelio, and T. Girardeau, “Quantitative modelling of the surface plasmon resonances of metal nanoclusters sandwiched between dielectric layers: the influence of nanocluster size, shape and organization,” Nanotechnology 19, 125709(2008).
[CrossRef] [PubMed]

2003 (1)

2002 (2)

J. C. Pivin, M. A. García, H. Hofmeister, A. Martucci, M. Sendova Massileva, M. Nikolaeva, O. Kaitasov, and J. Llopis, “Optical properties of silver clusters formed by ion irradiation,” Eur. Phys. J. D 20, 251-260 (2002).
[CrossRef]

Z. Q. Sun, D. M. Sun, and T. N. Ruan, “Microstructural and optical absorption properties of Cu-MgF2 nanoparticle cermet film,” Chin. Phys. Lett. 19, 1365-1368 (2002).
[CrossRef]

1999 (2)

M. A. García, J. Llopis, and S. E. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol-gel films,” Chem. Phys. Lett. 315, 313-320(1999).
[CrossRef]

C. N. Afonso, J. Solis, R. Serna, J. Gonzalo, J. M. Ballesteros, and J. C. G. de Sande, “Pulsed laser deposition of nanocomposite thin films for photonic applications,” Proc. SPIE 3618, 453-464 (1999).
[CrossRef]

1998 (1)

R. Joerger, R. Gampp, A. Heinzel, W. Graf, M. Kohl, P. Gantenbein, and P. Oelhafen, “Optical properties of inhomogeneous media,” Sol. Energy Mater. Sol. Cells 54, 351-361(1998).
[CrossRef]

1995 (1)

A. Polman, E. Snoeks, G. N. van den Hoven, M. L. Brongersma, R. Serna, J. H. Shin, P. Kik, and E. Radius, “Ion beam synthesis of planar opto-electronic devices,” Nucl. Instrum. Methods Phys. Res. B 106, 393-399 (1995).
[CrossRef]

1993 (1)

H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178-18188 (1993).
[CrossRef]

1992 (1)

M. J. Bloemer and J. W. Haus, “Versatile waveguide polarizer incorporating an ultrathin discontinuous silver film,” Appl. Phys. Lett. 61, 1619-1621 (1992).
[CrossRef]

1978 (1)

C. G. Granqvist and O. Hunderi, “Optical properties of Ag-SiO2 Cermet films: a comparison of effective-medium theories,” Phys. Rev. B 18, 2897-2906 (1978).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B. 6, 4370-4379 (1972).
[CrossRef]

Afonso, C. N.

C. N. Afonso, J. Solis, R. Serna, J. Gonzalo, J. M. Ballesteros, and J. C. G. de Sande, “Pulsed laser deposition of nanocomposite thin films for photonic applications,” Proc. SPIE 3618, 453-464 (1999).
[CrossRef]

Babonneau, D.

J. Toudert, D. Babonneau, L. Simonot, S. Camelio, and T. Girardeau, “Quantitative modelling of the surface plasmon resonances of metal nanoclusters sandwiched between dielectric layers: the influence of nanocluster size, shape and organization,” Nanotechnology 19, 125709(2008).
[CrossRef] [PubMed]

Ballesteros, J. M.

C. N. Afonso, J. Solis, R. Serna, J. Gonzalo, J. M. Ballesteros, and J. C. G. de Sande, “Pulsed laser deposition of nanocomposite thin films for photonic applications,” Proc. SPIE 3618, 453-464 (1999).
[CrossRef]

Bloemer, M. J.

M. J. Bloemer and J. W. Haus, “Versatile waveguide polarizer incorporating an ultrathin discontinuous silver film,” Appl. Phys. Lett. 61, 1619-1621 (1992).
[CrossRef]

Brongersma, M. L.

A. Polman, E. Snoeks, G. N. van den Hoven, M. L. Brongersma, R. Serna, J. H. Shin, P. Kik, and E. Radius, “Ion beam synthesis of planar opto-electronic devices,” Nucl. Instrum. Methods Phys. Res. B 106, 393-399 (1995).
[CrossRef]

Camelio, S.

J. Toudert, D. Babonneau, L. Simonot, S. Camelio, and T. Girardeau, “Quantitative modelling of the surface plasmon resonances of metal nanoclusters sandwiched between dielectric layers: the influence of nanocluster size, shape and organization,” Nanotechnology 19, 125709(2008).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B. 6, 4370-4379 (1972).
[CrossRef]

Cravetchi, I.

de Sande, J. C. G.

C. N. Afonso, J. Solis, R. Serna, J. Gonzalo, J. M. Ballesteros, and J. C. G. de Sande, “Pulsed laser deposition of nanocomposite thin films for photonic applications,” Proc. SPIE 3618, 453-464 (1999).
[CrossRef]

Fritz, S.

H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178-18188 (1993).
[CrossRef]

Gampp, R.

R. Joerger, R. Gampp, A. Heinzel, W. Graf, M. Kohl, P. Gantenbein, and P. Oelhafen, “Optical properties of inhomogeneous media,” Sol. Energy Mater. Sol. Cells 54, 351-361(1998).
[CrossRef]

Gantenbein, P.

R. Joerger, R. Gampp, A. Heinzel, W. Graf, M. Kohl, P. Gantenbein, and P. Oelhafen, “Optical properties of inhomogeneous media,” Sol. Energy Mater. Sol. Cells 54, 351-361(1998).
[CrossRef]

García, M. A.

J. C. Pivin, M. A. García, H. Hofmeister, A. Martucci, M. Sendova Massileva, M. Nikolaeva, O. Kaitasov, and J. Llopis, “Optical properties of silver clusters formed by ion irradiation,” Eur. Phys. J. D 20, 251-260 (2002).
[CrossRef]

M. A. García, J. Llopis, and S. E. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol-gel films,” Chem. Phys. Lett. 315, 313-320(1999).
[CrossRef]

Girardeau, T.

J. Toudert, D. Babonneau, L. Simonot, S. Camelio, and T. Girardeau, “Quantitative modelling of the surface plasmon resonances of metal nanoclusters sandwiched between dielectric layers: the influence of nanocluster size, shape and organization,” Nanotechnology 19, 125709(2008).
[CrossRef] [PubMed]

Gonzalo, J.

C. N. Afonso, J. Solis, R. Serna, J. Gonzalo, J. M. Ballesteros, and J. C. G. de Sande, “Pulsed laser deposition of nanocomposite thin films for photonic applications,” Proc. SPIE 3618, 453-464 (1999).
[CrossRef]

Graener, H.

Graf, W.

R. Joerger, R. Gampp, A. Heinzel, W. Graf, M. Kohl, P. Gantenbein, and P. Oelhafen, “Optical properties of inhomogeneous media,” Sol. Energy Mater. Sol. Cells 54, 351-361(1998).
[CrossRef]

Granqvist, C. G.

C. G. Granqvist and O. Hunderi, “Optical properties of Ag-SiO2 Cermet films: a comparison of effective-medium theories,” Phys. Rev. B 18, 2897-2906 (1978).
[CrossRef]

Haus, J. W.

M. J. Bloemer and J. W. Haus, “Versatile waveguide polarizer incorporating an ultrathin discontinuous silver film,” Appl. Phys. Lett. 61, 1619-1621 (1992).
[CrossRef]

Heinzel, A.

R. Joerger, R. Gampp, A. Heinzel, W. Graf, M. Kohl, P. Gantenbein, and P. Oelhafen, “Optical properties of inhomogeneous media,” Sol. Energy Mater. Sol. Cells 54, 351-361(1998).
[CrossRef]

Hilger, A.

H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178-18188 (1993).
[CrossRef]

Hofmeister, H.

J. C. Pivin, M. A. García, H. Hofmeister, A. Martucci, M. Sendova Massileva, M. Nikolaeva, O. Kaitasov, and J. Llopis, “Optical properties of silver clusters formed by ion irradiation,” Eur. Phys. J. D 20, 251-260 (2002).
[CrossRef]

Hovel, H.

H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178-18188 (1993).
[CrossRef]

Hunderi, O.

C. G. Granqvist and O. Hunderi, “Optical properties of Ag-SiO2 Cermet films: a comparison of effective-medium theories,” Phys. Rev. B 18, 2897-2906 (1978).
[CrossRef]

Joerger, R.

R. Joerger, R. Gampp, A. Heinzel, W. Graf, M. Kohl, P. Gantenbein, and P. Oelhafen, “Optical properties of inhomogeneous media,” Sol. Energy Mater. Sol. Cells 54, 351-361(1998).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B. 6, 4370-4379 (1972).
[CrossRef]

Kaitasov, O.

J. C. Pivin, M. A. García, H. Hofmeister, A. Martucci, M. Sendova Massileva, M. Nikolaeva, O. Kaitasov, and J. Llopis, “Optical properties of silver clusters formed by ion irradiation,” Eur. Phys. J. D 20, 251-260 (2002).
[CrossRef]

Kik, P.

A. Polman, E. Snoeks, G. N. van den Hoven, M. L. Brongersma, R. Serna, J. H. Shin, P. Kik, and E. Radius, “Ion beam synthesis of planar opto-electronic devices,” Nucl. Instrum. Methods Phys. Res. B 106, 393-399 (1995).
[CrossRef]

Kohl, M.

R. Joerger, R. Gampp, A. Heinzel, W. Graf, M. Kohl, P. Gantenbein, and P. Oelhafen, “Optical properties of inhomogeneous media,” Sol. Energy Mater. Sol. Cells 54, 351-361(1998).
[CrossRef]

Kreibig, U.

H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178-18188 (1993).
[CrossRef]

Kriebig, U.

U. Kriebig and M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 of the Springer Series in Materials Science (Springer, 1996).

Lange, J.

Llopis, J.

J. C. Pivin, M. A. García, H. Hofmeister, A. Martucci, M. Sendova Massileva, M. Nikolaeva, O. Kaitasov, and J. Llopis, “Optical properties of silver clusters formed by ion irradiation,” Eur. Phys. J. D 20, 251-260 (2002).
[CrossRef]

M. A. García, J. Llopis, and S. E. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol-gel films,” Chem. Phys. Lett. 315, 313-320(1999).
[CrossRef]

Martucci, A.

J. C. Pivin, M. A. García, H. Hofmeister, A. Martucci, M. Sendova Massileva, M. Nikolaeva, O. Kaitasov, and J. Llopis, “Optical properties of silver clusters formed by ion irradiation,” Eur. Phys. J. D 20, 251-260 (2002).
[CrossRef]

Massileva, M. Sendova

J. C. Pivin, M. A. García, H. Hofmeister, A. Martucci, M. Sendova Massileva, M. Nikolaeva, O. Kaitasov, and J. Llopis, “Optical properties of silver clusters formed by ion irradiation,” Eur. Phys. J. D 20, 251-260 (2002).
[CrossRef]

Nikolaeva, M.

J. C. Pivin, M. A. García, H. Hofmeister, A. Martucci, M. Sendova Massileva, M. Nikolaeva, O. Kaitasov, and J. Llopis, “Optical properties of silver clusters formed by ion irradiation,” Eur. Phys. J. D 20, 251-260 (2002).
[CrossRef]

Oelhafen, P.

R. Joerger, R. Gampp, A. Heinzel, W. Graf, M. Kohl, P. Gantenbein, and P. Oelhafen, “Optical properties of inhomogeneous media,” Sol. Energy Mater. Sol. Cells 54, 351-361(1998).
[CrossRef]

Paje, S. E.

M. A. García, J. Llopis, and S. E. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol-gel films,” Chem. Phys. Lett. 315, 313-320(1999).
[CrossRef]

Palik, E. D.

E. D. Palik, ed., Handbook of Optical Constants (Academic, 1985), ISBN 0-12-544420-6.

Pivin, J. C.

J. C. Pivin, M. A. García, H. Hofmeister, A. Martucci, M. Sendova Massileva, M. Nikolaeva, O. Kaitasov, and J. Llopis, “Optical properties of silver clusters formed by ion irradiation,” Eur. Phys. J. D 20, 251-260 (2002).
[CrossRef]

Podlipensky, A.

Polman, A.

A. Polman, E. Snoeks, G. N. van den Hoven, M. L. Brongersma, R. Serna, J. H. Shin, P. Kik, and E. Radius, “Ion beam synthesis of planar opto-electronic devices,” Nucl. Instrum. Methods Phys. Res. B 106, 393-399 (1995).
[CrossRef]

Protopapa, M. L.

Radius, E.

A. Polman, E. Snoeks, G. N. van den Hoven, M. L. Brongersma, R. Serna, J. H. Shin, P. Kik, and E. Radius, “Ion beam synthesis of planar opto-electronic devices,” Nucl. Instrum. Methods Phys. Res. B 106, 393-399 (1995).
[CrossRef]

Ruan, T. N.

Z. Q. Sun, D. M. Sun, and T. N. Ruan, “Microstructural and optical absorption properties of Cu-MgF2 nanoparticle cermet film,” Chin. Phys. Lett. 19, 1365-1368 (2002).
[CrossRef]

Seiffert, G.

Serna, R.

C. N. Afonso, J. Solis, R. Serna, J. Gonzalo, J. M. Ballesteros, and J. C. G. de Sande, “Pulsed laser deposition of nanocomposite thin films for photonic applications,” Proc. SPIE 3618, 453-464 (1999).
[CrossRef]

A. Polman, E. Snoeks, G. N. van den Hoven, M. L. Brongersma, R. Serna, J. H. Shin, P. Kik, and E. Radius, “Ion beam synthesis of planar opto-electronic devices,” Nucl. Instrum. Methods Phys. Res. B 106, 393-399 (1995).
[CrossRef]

Shin, J. H.

A. Polman, E. Snoeks, G. N. van den Hoven, M. L. Brongersma, R. Serna, J. H. Shin, P. Kik, and E. Radius, “Ion beam synthesis of planar opto-electronic devices,” Nucl. Instrum. Methods Phys. Res. B 106, 393-399 (1995).
[CrossRef]

Simonot, L.

J. Toudert, D. Babonneau, L. Simonot, S. Camelio, and T. Girardeau, “Quantitative modelling of the surface plasmon resonances of metal nanoclusters sandwiched between dielectric layers: the influence of nanocluster size, shape and organization,” Nanotechnology 19, 125709(2008).
[CrossRef] [PubMed]

Snoeks, E.

A. Polman, E. Snoeks, G. N. van den Hoven, M. L. Brongersma, R. Serna, J. H. Shin, P. Kik, and E. Radius, “Ion beam synthesis of planar opto-electronic devices,” Nucl. Instrum. Methods Phys. Res. B 106, 393-399 (1995).
[CrossRef]

Solis, J.

C. N. Afonso, J. Solis, R. Serna, J. Gonzalo, J. M. Ballesteros, and J. C. G. de Sande, “Pulsed laser deposition of nanocomposite thin films for photonic applications,” Proc. SPIE 3618, 453-464 (1999).
[CrossRef]

Sun, D. M.

Z. Q. Sun, D. M. Sun, and T. N. Ruan, “Microstructural and optical absorption properties of Cu-MgF2 nanoparticle cermet film,” Chin. Phys. Lett. 19, 1365-1368 (2002).
[CrossRef]

Sun, Z. Q.

Z. Q. Sun, D. M. Sun, and T. N. Ruan, “Microstructural and optical absorption properties of Cu-MgF2 nanoparticle cermet film,” Chin. Phys. Lett. 19, 1365-1368 (2002).
[CrossRef]

Toudert, J.

J. Toudert, D. Babonneau, L. Simonot, S. Camelio, and T. Girardeau, “Quantitative modelling of the surface plasmon resonances of metal nanoclusters sandwiched between dielectric layers: the influence of nanocluster size, shape and organization,” Nanotechnology 19, 125709(2008).
[CrossRef] [PubMed]

van den Hoven, G. N.

A. Polman, E. Snoeks, G. N. van den Hoven, M. L. Brongersma, R. Serna, J. H. Shin, P. Kik, and E. Radius, “Ion beam synthesis of planar opto-electronic devices,” Nucl. Instrum. Methods Phys. Res. B 106, 393-399 (1995).
[CrossRef]

Vollmer, M.

H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178-18188 (1993).
[CrossRef]

U. Kriebig and M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 of the Springer Series in Materials Science (Springer, 1996).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. J. Bloemer and J. W. Haus, “Versatile waveguide polarizer incorporating an ultrathin discontinuous silver film,” Appl. Phys. Lett. 61, 1619-1621 (1992).
[CrossRef]

Chem. Phys. Lett. (1)

M. A. García, J. Llopis, and S. E. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol-gel films,” Chem. Phys. Lett. 315, 313-320(1999).
[CrossRef]

Chin. Phys. Lett. (1)

Z. Q. Sun, D. M. Sun, and T. N. Ruan, “Microstructural and optical absorption properties of Cu-MgF2 nanoparticle cermet film,” Chin. Phys. Lett. 19, 1365-1368 (2002).
[CrossRef]

Eur. Phys. J. D (1)

J. C. Pivin, M. A. García, H. Hofmeister, A. Martucci, M. Sendova Massileva, M. Nikolaeva, O. Kaitasov, and J. Llopis, “Optical properties of silver clusters formed by ion irradiation,” Eur. Phys. J. D 20, 251-260 (2002).
[CrossRef]

Nanotechnology (1)

J. Toudert, D. Babonneau, L. Simonot, S. Camelio, and T. Girardeau, “Quantitative modelling of the surface plasmon resonances of metal nanoclusters sandwiched between dielectric layers: the influence of nanocluster size, shape and organization,” Nanotechnology 19, 125709(2008).
[CrossRef] [PubMed]

Nucl. Instrum. Methods Phys. Res. B (1)

A. Polman, E. Snoeks, G. N. van den Hoven, M. L. Brongersma, R. Serna, J. H. Shin, P. Kik, and E. Radius, “Ion beam synthesis of planar opto-electronic devices,” Nucl. Instrum. Methods Phys. Res. B 106, 393-399 (1995).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (2)

C. G. Granqvist and O. Hunderi, “Optical properties of Ag-SiO2 Cermet films: a comparison of effective-medium theories,” Phys. Rev. B 18, 2897-2906 (1978).
[CrossRef]

H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178-18188 (1993).
[CrossRef]

Phys. Rev. B. (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B. 6, 4370-4379 (1972).
[CrossRef]

Proc. SPIE (1)

C. N. Afonso, J. Solis, R. Serna, J. Gonzalo, J. M. Ballesteros, and J. C. G. de Sande, “Pulsed laser deposition of nanocomposite thin films for photonic applications,” Proc. SPIE 3618, 453-464 (1999).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

R. Joerger, R. Gampp, A. Heinzel, W. Graf, M. Kohl, P. Gantenbein, and P. Oelhafen, “Optical properties of inhomogeneous media,” Sol. Energy Mater. Sol. Cells 54, 351-361(1998).
[CrossRef]

Other (2)

U. Kriebig and M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 of the Springer Series in Materials Science (Springer, 1996).

E. D. Palik, ed., Handbook of Optical Constants (Academic, 1985), ISBN 0-12-544420-6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Multilayer structure of the realized sample. The Ag layer thickness is 1.2 nm ; the Ba F 2 layer thickness is 25 nm .

Fig. 2
Fig. 2

Scheme of the spatial arrangement of the Ag NCs. In particular, the NCs lie on planes perpendicular to the direction of propagation of the spectrophotometer beam. For this particular configuration the σ value is positive.

Fig. 3
Fig. 3

Schemes representing the possible shapes of the NCs. In particular, the nanoclusters in (a) are flattened spheroids with the minor axis parallel to the incident spectrophotometer beam (z direction). In this case the NC depolarization factor is L i < 1 / 3 . (b) Spheroids with the minor axis perpendicular to the direction of propagation of the spectrophotometer beam characterized by L i > 1 / 3 .

Fig. 4
Fig. 4

Optical absorption spectra of the as-deposited sample (solid curve) and the annealed sample (dashed curve).

Fig. 5
Fig. 5

Typical TEM bright field plan-view image of a three-layer structure ( Ba F 2 / Ag / Ba F 2 ) deposited using the same deposition conditions as for the multilayer structure object of this study.

Fig. 6
Fig. 6

Cross-sectional SEM-FEG image of the as-deposited multilayer stack.

Fig. 7
Fig. 7

Plan-view SEM-FEG image of the annealed multilayer stack.

Fig. 8
Fig. 8

(a) Experimental optical absorption spectra of the as- deposited sample (solid curve) and fitting curve (dashed curve). (b) Distribution obtained for the L i parameter. n ( L i ) is the number of silver NCs having L i as the depolarization factor, normalized to the total number of NCs inside the sample volume.

Fig. 9
Fig. 9

(a) Experimental optical absorption spectra of the annealed sample (solid curve) and fitting curve (dashed curve). (b) Distribution obtained for the L i parameter.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ε f = ε m [ 1 + i n i α i 1 1 3 i n i α i 1 4 π i n i α i K i ] ,
α i = V i ( ε i ε m ) ε m + L i ( ε i ε m ) ,
ε i ( ω , R ) = ε bulk ( ω ) + ω p 2 ω 2 + i ω γ 0 ω p 2 ω 2 + i ω ( γ 0 + A v f / R i ) ,
K i = j [ 3 x i j 2 r i j 5 1 r i j 3 ] p j x P ,
k = ( | ε f | Re ( ε f ) 2 ) 1 / 2 .
α ( λ ) = 4 π k λ ,
α ( λ ) = 1 D [ ln ( I 0 R ) ln ( T ) ] ,
χ 2 = i = 1 N ( α i exp ( λ i ) α i theo ( λ i ) ) 2 / α theo ( λ i ) ,
f = 4 π R 3 3 a 2 R = 4 π R 2 3 a 2 ,
σ i = j [ 3 x i j 2 r i j 5 1 r i j 3 ]
K i = K = σ p x P = σ p x n p x ,
K = σ a 2 b .

Metrics