Abstract

A metal–insulator–metal (MIM) waveguide with a periodic change of dielectric materials in its insulator layer is proposed to create a voltage-controlled one-dimensional plasmonic Bragg reflector. KNbO3 is used as one portion of the dielectric material so that the refractive index of the insulator layer can be varied by an external applied voltage. In our analysis, the transfer matrix method is employed to design and optimize the transmission spectra of the MIM waveguide Bragg reflector. The reflectivity at the on (bias voltage of 65V) and off (bias voltage of 65V) states is shown to be >74% and <7%, respectively, for the operating wavelength of 1.5μm. The results are also verified by the finite-difference time-domain method. Furthermore, the modulation response of the MIM waveguide is studied. For the device area and average insulator layer thickness to be 10μm×40μm and 615nm, respectively, it is found that the turn-on reflectivity of the waveguide is only slightly reduced to 69% at the 3dB point in comparison with 75% for its steady-state performance.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. I. Baida, A. Belkhir, D. Van, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419(2006).
    [CrossRef]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  3. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833-5835(2004).
    [CrossRef]
  4. W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano. Lett. 8, 281-286 (2008).
    [CrossRef]
  5. Z. H. Han, E. Forsberg, and S. L. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91-93 (2007).
    [CrossRef]
  6. A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” J. Lightwave Technol. 24, 912-918 (2006).
    [CrossRef]
  7. A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic Bragg reflector,” Opt. Express 14, 11318-11323(2006).
    [CrossRef]
  8. J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Y. Wang, B. S. Zou, and S. G. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express 16, 4888-4894 (2008).
    [CrossRef] [PubMed]
  9. P. U. Sastry, “Linear electro-optical properties of orthorhombic KNbO3,” Solid State Commun. 122, 41-44 (2002).
    [CrossRef]
  10. D. N. Nikogosyan, Nonlinear Optical Crystals: a Complete Survey (Springer, 2005).
  11. B. Zysset, I. Biaggio, and P. Gunter, “Refractive indices of orthorhombic KNbO3. I. Dispersion and temperature dependence,” J. Opt. Soc. Am. B 9, 380-386 (1992).
    [CrossRef]
  12. A. Hosseini, H. Nejati, and Y. Massoud, “Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors,” Opt. Express 16, 1475-1480 (2008).
    [CrossRef] [PubMed]
  13. M. V. Romanov, I. E. Korsakov, A. R. Kaul, S. Yu. Stefanovich, I. A. Bolshakov, and G. Wahl, “MOCVD of KNbO3 ferroelectric films and their charancterization,” Chem. Vap. Deposition 10, 318-324 (2004).
    [CrossRef]

2008 (3)

2007 (1)

Z. H. Han, E. Forsberg, and S. L. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91-93 (2007).
[CrossRef]

2006 (3)

2004 (2)

M. V. Romanov, I. E. Korsakov, A. R. Kaul, S. Yu. Stefanovich, I. A. Bolshakov, and G. Wahl, “MOCVD of KNbO3 ferroelectric films and their charancterization,” Chem. Vap. Deposition 10, 318-324 (2004).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833-5835(2004).
[CrossRef]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

2002 (1)

P. U. Sastry, “Linear electro-optical properties of orthorhombic KNbO3,” Solid State Commun. 122, 41-44 (2002).
[CrossRef]

1992 (1)

Baida, F. I.

F. I. Baida, A. Belkhir, D. Van, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419(2006).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Belkhir, A.

F. I. Baida, A. Belkhir, D. Van, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419(2006).
[CrossRef]

Biaggio, I.

Bolshakov, I. A.

M. V. Romanov, I. E. Korsakov, A. R. Kaul, S. Yu. Stefanovich, I. A. Bolshakov, and G. Wahl, “MOCVD of KNbO3 ferroelectric films and their charancterization,” Chem. Vap. Deposition 10, 318-324 (2004).
[CrossRef]

Boltasseva, A.

Bozhevolnyi, S. I.

A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” J. Lightwave Technol. 24, 912-918 (2006).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833-5835(2004).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Dickson, W.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano. Lett. 8, 281-286 (2008).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Evans, P. R.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano. Lett. 8, 281-286 (2008).
[CrossRef]

Forsberg, E.

Z. H. Han, E. Forsberg, and S. L. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91-93 (2007).
[CrossRef]

Gunter, P.

Han, Z. H.

Z. H. Han, E. Forsberg, and S. L. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91-93 (2007).
[CrossRef]

He, M. D.

He, S. L.

Z. H. Han, E. Forsberg, and S. L. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91-93 (2007).
[CrossRef]

Hosseini, A.

Huang, W. Q.

Kaul, A. R.

M. V. Romanov, I. E. Korsakov, A. R. Kaul, S. Yu. Stefanovich, I. A. Bolshakov, and G. Wahl, “MOCVD of KNbO3 ferroelectric films and their charancterization,” Chem. Vap. Deposition 10, 318-324 (2004).
[CrossRef]

Korsakov, I. E.

M. V. Romanov, I. E. Korsakov, A. R. Kaul, S. Yu. Stefanovich, I. A. Bolshakov, and G. Wahl, “MOCVD of KNbO3 ferroelectric films and their charancterization,” Chem. Vap. Deposition 10, 318-324 (2004).
[CrossRef]

Lamrous, O.

F. I. Baida, A. Belkhir, D. Van, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419(2006).
[CrossRef]

Leosson, K.

A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” J. Lightwave Technol. 24, 912-918 (2006).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833-5835(2004).
[CrossRef]

Liu, J. Q.

Massoud, Y.

Nejati, H.

Nikogosyan, D. N.

D. N. Nikogosyan, Nonlinear Optical Crystals: a Complete Survey (Springer, 2005).

Nikolajsen, T.

A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” J. Lightwave Technol. 24, 912-918 (2006).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833-5835(2004).
[CrossRef]

Pollard, R. J.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano. Lett. 8, 281-286 (2008).
[CrossRef]

Romanov, M. V.

M. V. Romanov, I. E. Korsakov, A. R. Kaul, S. Yu. Stefanovich, I. A. Bolshakov, and G. Wahl, “MOCVD of KNbO3 ferroelectric films and their charancterization,” Chem. Vap. Deposition 10, 318-324 (2004).
[CrossRef]

Sastry, P. U.

P. U. Sastry, “Linear electro-optical properties of orthorhombic KNbO3,” Solid State Commun. 122, 41-44 (2002).
[CrossRef]

Stefanovich, S. Yu.

M. V. Romanov, I. E. Korsakov, A. R. Kaul, S. Yu. Stefanovich, I. A. Bolshakov, and G. Wahl, “MOCVD of KNbO3 ferroelectric films and their charancterization,” Chem. Vap. Deposition 10, 318-324 (2004).
[CrossRef]

Van, D.

F. I. Baida, A. Belkhir, D. Van, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419(2006).
[CrossRef]

Wahl, G.

M. V. Romanov, I. E. Korsakov, A. R. Kaul, S. Yu. Stefanovich, I. A. Bolshakov, and G. Wahl, “MOCVD of KNbO3 ferroelectric films and their charancterization,” Chem. Vap. Deposition 10, 318-324 (2004).
[CrossRef]

Wang, D. Y.

Wang, L. L.

Wen, S. G.

Wurtz, G. A.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano. Lett. 8, 281-286 (2008).
[CrossRef]

Zayats, A. V.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano. Lett. 8, 281-286 (2008).
[CrossRef]

Zou, B. S.

Zysset, B.

Appl. Phys. Lett. (1)

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 5833-5835(2004).
[CrossRef]

Chem. Vap. Deposition (1)

M. V. Romanov, I. E. Korsakov, A. R. Kaul, S. Yu. Stefanovich, I. A. Bolshakov, and G. Wahl, “MOCVD of KNbO3 ferroelectric films and their charancterization,” Chem. Vap. Deposition 10, 318-324 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Z. H. Han, E. Forsberg, and S. L. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91-93 (2007).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nano. Lett. (1)

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano. Lett. 8, 281-286 (2008).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Phys. Rev. B (1)

F. I. Baida, A. Belkhir, D. Van, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419(2006).
[CrossRef]

Solid State Commun. (1)

P. U. Sastry, “Linear electro-optical properties of orthorhombic KNbO3,” Solid State Commun. 122, 41-44 (2002).
[CrossRef]

Other (1)

D. N. Nikogosyan, Nonlinear Optical Crystals: a Complete Survey (Springer, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the plasmonic Bragg reflector with alternating dielectric layers between two metal layers.

Fig. 2
Fig. 2

Plot of n eff versus wavelength of the MIM waveguide with different thicknesses of KN b O 3 as the insulator and Ag as the two metal layers. (a) Difference of Re ( n eff ) between the on and the off states of the MIM waveguide, (b)  Im ( n eff ) of the off state, (c)  Im ( n eff ) of the on state.

Fig. 3
Fig. 3

(a) Reflection, (b) transmission, and (c) absorption spectra of the Bragg reflector for the on (solid curve) and off states (dashed curve). (d)  Re ( n eff ) of the on (solid curve) and off (dashed curve) states and of n 2 (dotted curve).

Fig. 4
Fig. 4

Difference variations in the (a)  peak reflection values of the on and off states and (b)  Re ( n eff ) of the off state and n 2 . Absorption loss for (c)  the off state and (d)  the on state.

Fig. 5
Fig. 5

(a) Reflection, (b) transmission, and (c) absorption spectra of the Bragg reflector for the on (solid curve) and off (dashed curve) states. (d)  Re ( n eff ) of the on (solid curve) and off (dashed curve) states and of n 2 (dotted curve).

Fig. 6
Fig. 6

Intensity distribution (| | H y | 2 ) with positions at different wavelengths: left-hand side, on state; right-hand side, off state, (a), (c) at λ = 1.45 μm , (b), (d) at λ = 1.5 μm .

Fig. 7
Fig. 7

(a) Sinusoidal bias voltage, (b) variation of Re ( n eff ) of KN b O 3 (solid curve) and of ZnS (dotted curve), (c) variation of the resultant Bragg reflection, (d) variation of peak reflectivity with a normalized modulation frequency.

Tables (1)

Tables Icon

Table 1 Effective Propagation Constants for Selected Parameters of the MIM Waveguide at 1.5 μm

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

x 2 n 11 2 + y 2 n 22 2 + z 2 n 33 2 + 2 n 23 2 y z + 2 n 13 2 x z + 2 n 12 2 x y = 1 ,
n 11 2 = n x 2 + γ 11 E x + γ 12 E y + γ 13 E z , n 23 2 = γ 41 E x + γ 42 E y + γ 43 E z , n 22 2 = n y 2 + γ 21 E x + γ 22 E y + γ 23 E z , n 13 2 = γ 51 E x + γ 52 E y + γ 53 E z , n 33 2 = n z 2 + γ 31 E x + γ 32 E y + γ 33 E z , n 12 2 = γ 61 E x + γ 62 E y + γ 63 E z ,
( n x 2 + γ 13 E z ) x 2 + ( n y 2 + γ 23 E z ) y 2 + ( n z 2 + γ 33 E z ) z 2 = 1.
n x = ( n x 2 + γ 13 E z ) 1 / 2 , n y = ( n y 2 + γ 23 E z ) 1 / 2 , n z = ( n z 2 + γ 33 E z ) 1 / 2 ,
2 H y z 2 + ( k 0 2 ε x β 2 ε x ε z ) H y = 0 ,
k = k 0 2 ε x β 2 ε x / ε z ,

Metrics