Abstract

We use several holographic and interferographic methods for two- and three-dimensional imaging of fingerprints. Holographic phase microscopy is used to produce images of thin-film patterns left by latent fingerprints. Two or more holographic phase images with different wavelengths are combined for optical phase unwrapping of images of thicker patent prints or a plastic print. Digital interference holography uses scanned wavelengths to synthesize short-coherence interference tomographic images of a plastic print. We also demonstrate light-emitting-diode-based low-coherence interferography for imaging plastic as well as latent prints. These demonstrations point to significant contributions to biometry by the emerging technology of digital holography and interferography.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Faulds, “On the skin-furrows of the hand,” Nature 22, 605 (1880).
  2. F. Galton, “Personal identification and description,” Nature 38, 201-202 (1888).
  3. L. O'Gorman, “Overview of fingerprint verification technologies,” Elsevier Inf. Secur. Tech. Rep. 3, 21-32 (1998).
  4. J. Han, Z. Tan, K. Sato, and M. Shikida, “Thermal characterization of micro heater arrays on a polyimide film substrate for fingerprint sensing applications,” J. Micromech. Microeng. 15, 282-289 (2005).
    [CrossRef]
  5. Z. Gumienny, M. Pluta, W. Bicz, and D. Kosz, “Ultrasonic setup for fingerprint patterns detection and evaluation,” Acoust. Imaging 22, 639-644 (1996).
  6. S. S. Lin, K. M. Yemelyanov, E. N. Pugh, Jr., and N. Engheta, “Polarization- and specular-reflection-based, noncontact latent fingerprint imaging and lifting,” J. Opt. Soc. Am. A 23, 2137-2153 (2006).
    [CrossRef]
  7. R. K. Rowe, S. P. Cocoran, K. A. Nixon, and R. E. Ostrom, “Multispectral imaging for biometrics,” Proc. SPIE 5694, 90-99 (2005).
  8. A. Fatehpuria, D. L. Lau, V. Yalla, and L. G. Hassebrook, “Performance analysis of three-dimensional ridge acquisition from live finger and palm surface scans,” Proc. SPIE 6539, 653904 (2007).
  9. Y. Cheng and K. V. Larin, “In vivo two- and three-dimensional imaging of artificial and real fingerprints with optical coherence tomography,” IEEE Photon. Technol. Lett. 19, 1634-1636 (2007).
  10. S. Chang, Y. Mao, S. Sherif, and C. Flueraru, “Full-field optical coherence tomography used for security and document identity,” Proc. SPIE 6402, 64020Q (2006).
  11. W. Jueptner and U. Schnars, Digital Holography (Springer Verlag, 2004).
  12. M. K. Kim, L. Yu, and C. J. Mann, “Digital holography and multi-wavelength interference techniques,” in Digital Holography and Three-Dimensional Display, T. C. Poon, ed. (Springer, 2006), Chap. 2.
  13. C. Mann, L. Yu, and M. K. Kim, “Movies of cellular and sub-cellular motion by digital holographic microscopy,” BioMed. Eng. Online 5, 21-30 (2006).
  14. J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2π ambiguity by multiwavelength digital holography,” Opt. Lett. 28, 1141-1143 (2003).
    [CrossRef]
  15. M. K. Kim, “Wavelength scanning digital interference holography for optical section imaging,” Opt. Lett. 24, 1693-1695 (1999).
    [CrossRef]
  16. N. Warnasooriya and M. K. Kim, “LED-based multi-wavelength phase imaging interference microscopy,” Opt. Express 15, 9239-9247 (2007).
    [CrossRef]
  17. L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic 3D imaging using the angular spectrum method,” Opt. Lett. 30, 2092-2094 (2005).
    [CrossRef]
  18. A. Dubois, L. Vabre, A-C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41, 805-812 (2002).
    [CrossRef]
  19. G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of a lensless holographic imaging system,” Appl. Opt. 41, 4489-4496 (2002).
    [CrossRef]

2007

A. Fatehpuria, D. L. Lau, V. Yalla, and L. G. Hassebrook, “Performance analysis of three-dimensional ridge acquisition from live finger and palm surface scans,” Proc. SPIE 6539, 653904 (2007).

Y. Cheng and K. V. Larin, “In vivo two- and three-dimensional imaging of artificial and real fingerprints with optical coherence tomography,” IEEE Photon. Technol. Lett. 19, 1634-1636 (2007).

N. Warnasooriya and M. K. Kim, “LED-based multi-wavelength phase imaging interference microscopy,” Opt. Express 15, 9239-9247 (2007).
[CrossRef]

2006

S. S. Lin, K. M. Yemelyanov, E. N. Pugh, Jr., and N. Engheta, “Polarization- and specular-reflection-based, noncontact latent fingerprint imaging and lifting,” J. Opt. Soc. Am. A 23, 2137-2153 (2006).
[CrossRef]

S. Chang, Y. Mao, S. Sherif, and C. Flueraru, “Full-field optical coherence tomography used for security and document identity,” Proc. SPIE 6402, 64020Q (2006).

C. Mann, L. Yu, and M. K. Kim, “Movies of cellular and sub-cellular motion by digital holographic microscopy,” BioMed. Eng. Online 5, 21-30 (2006).

2005

J. Han, Z. Tan, K. Sato, and M. Shikida, “Thermal characterization of micro heater arrays on a polyimide film substrate for fingerprint sensing applications,” J. Micromech. Microeng. 15, 282-289 (2005).
[CrossRef]

L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic 3D imaging using the angular spectrum method,” Opt. Lett. 30, 2092-2094 (2005).
[CrossRef]

R. K. Rowe, S. P. Cocoran, K. A. Nixon, and R. E. Ostrom, “Multispectral imaging for biometrics,” Proc. SPIE 5694, 90-99 (2005).

2003

2002

1999

1998

L. O'Gorman, “Overview of fingerprint verification technologies,” Elsevier Inf. Secur. Tech. Rep. 3, 21-32 (1998).

1996

Z. Gumienny, M. Pluta, W. Bicz, and D. Kosz, “Ultrasonic setup for fingerprint patterns detection and evaluation,” Acoust. Imaging 22, 639-644 (1996).

1888

F. Galton, “Personal identification and description,” Nature 38, 201-202 (1888).

1880

H. Faulds, “On the skin-furrows of the hand,” Nature 22, 605 (1880).

Beaurepaire, E.

Bicz, W.

Z. Gumienny, M. Pluta, W. Bicz, and D. Kosz, “Ultrasonic setup for fingerprint patterns detection and evaluation,” Acoust. Imaging 22, 639-644 (1996).

Boccara, A-C.

Chang, S.

S. Chang, Y. Mao, S. Sherif, and C. Flueraru, “Full-field optical coherence tomography used for security and document identity,” Proc. SPIE 6402, 64020Q (2006).

Cheng, Y.

Y. Cheng and K. V. Larin, “In vivo two- and three-dimensional imaging of artificial and real fingerprints with optical coherence tomography,” IEEE Photon. Technol. Lett. 19, 1634-1636 (2007).

Cocoran, S. P.

R. K. Rowe, S. P. Cocoran, K. A. Nixon, and R. E. Ostrom, “Multispectral imaging for biometrics,” Proc. SPIE 5694, 90-99 (2005).

Dakoff, A.

Dubois, A.

Engheta, N.

Fatehpuria, A.

A. Fatehpuria, D. L. Lau, V. Yalla, and L. G. Hassebrook, “Performance analysis of three-dimensional ridge acquisition from live finger and palm surface scans,” Proc. SPIE 6539, 653904 (2007).

Faulds, H.

H. Faulds, “On the skin-furrows of the hand,” Nature 22, 605 (1880).

Flueraru, C.

S. Chang, Y. Mao, S. Sherif, and C. Flueraru, “Full-field optical coherence tomography used for security and document identity,” Proc. SPIE 6402, 64020Q (2006).

Galton, F.

F. Galton, “Personal identification and description,” Nature 38, 201-202 (1888).

Gass, J.

Gumienny, Z.

Z. Gumienny, M. Pluta, W. Bicz, and D. Kosz, “Ultrasonic setup for fingerprint patterns detection and evaluation,” Acoust. Imaging 22, 639-644 (1996).

Han, J.

J. Han, Z. Tan, K. Sato, and M. Shikida, “Thermal characterization of micro heater arrays on a polyimide film substrate for fingerprint sensing applications,” J. Micromech. Microeng. 15, 282-289 (2005).
[CrossRef]

Hassebrook, L. G.

A. Fatehpuria, D. L. Lau, V. Yalla, and L. G. Hassebrook, “Performance analysis of three-dimensional ridge acquisition from live finger and palm surface scans,” Proc. SPIE 6539, 653904 (2007).

Jueptner, W.

W. Jueptner and U. Schnars, Digital Holography (Springer Verlag, 2004).

Kim, M. K.

Kosz, D.

Z. Gumienny, M. Pluta, W. Bicz, and D. Kosz, “Ultrasonic setup for fingerprint patterns detection and evaluation,” Acoust. Imaging 22, 639-644 (1996).

Larin, K. V.

Y. Cheng and K. V. Larin, “In vivo two- and three-dimensional imaging of artificial and real fingerprints with optical coherence tomography,” IEEE Photon. Technol. Lett. 19, 1634-1636 (2007).

Lau, D. L.

A. Fatehpuria, D. L. Lau, V. Yalla, and L. G. Hassebrook, “Performance analysis of three-dimensional ridge acquisition from live finger and palm surface scans,” Proc. SPIE 6539, 653904 (2007).

Lin, S. S.

Mann, C.

C. Mann, L. Yu, and M. K. Kim, “Movies of cellular and sub-cellular motion by digital holographic microscopy,” BioMed. Eng. Online 5, 21-30 (2006).

Mann, C. J.

M. K. Kim, L. Yu, and C. J. Mann, “Digital holography and multi-wavelength interference techniques,” in Digital Holography and Three-Dimensional Display, T. C. Poon, ed. (Springer, 2006), Chap. 2.

Mao, Y.

S. Chang, Y. Mao, S. Sherif, and C. Flueraru, “Full-field optical coherence tomography used for security and document identity,” Proc. SPIE 6402, 64020Q (2006).

Nixon, K. A.

R. K. Rowe, S. P. Cocoran, K. A. Nixon, and R. E. Ostrom, “Multispectral imaging for biometrics,” Proc. SPIE 5694, 90-99 (2005).

O'Gorman, L.

L. O'Gorman, “Overview of fingerprint verification technologies,” Elsevier Inf. Secur. Tech. Rep. 3, 21-32 (1998).

Ostrom, R. E.

R. K. Rowe, S. P. Cocoran, K. A. Nixon, and R. E. Ostrom, “Multispectral imaging for biometrics,” Proc. SPIE 5694, 90-99 (2005).

Pedrini, G.

Pluta, M.

Z. Gumienny, M. Pluta, W. Bicz, and D. Kosz, “Ultrasonic setup for fingerprint patterns detection and evaluation,” Acoust. Imaging 22, 639-644 (1996).

Pugh, E. N.

Rowe, R. K.

R. K. Rowe, S. P. Cocoran, K. A. Nixon, and R. E. Ostrom, “Multispectral imaging for biometrics,” Proc. SPIE 5694, 90-99 (2005).

Sato, K.

J. Han, Z. Tan, K. Sato, and M. Shikida, “Thermal characterization of micro heater arrays on a polyimide film substrate for fingerprint sensing applications,” J. Micromech. Microeng. 15, 282-289 (2005).
[CrossRef]

Schnars, U.

W. Jueptner and U. Schnars, Digital Holography (Springer Verlag, 2004).

Sherif, S.

S. Chang, Y. Mao, S. Sherif, and C. Flueraru, “Full-field optical coherence tomography used for security and document identity,” Proc. SPIE 6402, 64020Q (2006).

Shikida, M.

J. Han, Z. Tan, K. Sato, and M. Shikida, “Thermal characterization of micro heater arrays on a polyimide film substrate for fingerprint sensing applications,” J. Micromech. Microeng. 15, 282-289 (2005).
[CrossRef]

Tan, Z.

J. Han, Z. Tan, K. Sato, and M. Shikida, “Thermal characterization of micro heater arrays on a polyimide film substrate for fingerprint sensing applications,” J. Micromech. Microeng. 15, 282-289 (2005).
[CrossRef]

Tiziani, H. J.

Vabre, L.

Warnasooriya, N.

Yalla, V.

A. Fatehpuria, D. L. Lau, V. Yalla, and L. G. Hassebrook, “Performance analysis of three-dimensional ridge acquisition from live finger and palm surface scans,” Proc. SPIE 6539, 653904 (2007).

Yemelyanov, K. M.

Yu, L.

C. Mann, L. Yu, and M. K. Kim, “Movies of cellular and sub-cellular motion by digital holographic microscopy,” BioMed. Eng. Online 5, 21-30 (2006).

L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic 3D imaging using the angular spectrum method,” Opt. Lett. 30, 2092-2094 (2005).
[CrossRef]

M. K. Kim, L. Yu, and C. J. Mann, “Digital holography and multi-wavelength interference techniques,” in Digital Holography and Three-Dimensional Display, T. C. Poon, ed. (Springer, 2006), Chap. 2.

Acoust. Imaging

Z. Gumienny, M. Pluta, W. Bicz, and D. Kosz, “Ultrasonic setup for fingerprint patterns detection and evaluation,” Acoust. Imaging 22, 639-644 (1996).

Appl. Opt.

BioMed. Eng. Online

C. Mann, L. Yu, and M. K. Kim, “Movies of cellular and sub-cellular motion by digital holographic microscopy,” BioMed. Eng. Online 5, 21-30 (2006).

Elsevier Inf. Secur. Tech. Rep.

L. O'Gorman, “Overview of fingerprint verification technologies,” Elsevier Inf. Secur. Tech. Rep. 3, 21-32 (1998).

IEEE Photon. Technol. Lett.

Y. Cheng and K. V. Larin, “In vivo two- and three-dimensional imaging of artificial and real fingerprints with optical coherence tomography,” IEEE Photon. Technol. Lett. 19, 1634-1636 (2007).

J. Micromech. Microeng.

J. Han, Z. Tan, K. Sato, and M. Shikida, “Thermal characterization of micro heater arrays on a polyimide film substrate for fingerprint sensing applications,” J. Micromech. Microeng. 15, 282-289 (2005).
[CrossRef]

J. Opt. Soc. Am. A

Nature

H. Faulds, “On the skin-furrows of the hand,” Nature 22, 605 (1880).

F. Galton, “Personal identification and description,” Nature 38, 201-202 (1888).

Opt. Express

Opt. Lett.

Proc. SPIE

R. K. Rowe, S. P. Cocoran, K. A. Nixon, and R. E. Ostrom, “Multispectral imaging for biometrics,” Proc. SPIE 5694, 90-99 (2005).

A. Fatehpuria, D. L. Lau, V. Yalla, and L. G. Hassebrook, “Performance analysis of three-dimensional ridge acquisition from live finger and palm surface scans,” Proc. SPIE 6539, 653904 (2007).

S. Chang, Y. Mao, S. Sherif, and C. Flueraru, “Full-field optical coherence tomography used for security and document identity,” Proc. SPIE 6402, 64020Q (2006).

Other

W. Jueptner and U. Schnars, Digital Holography (Springer Verlag, 2004).

M. K. Kim, L. Yu, and C. J. Mann, “Digital holography and multi-wavelength interference techniques,” in Digital Holography and Three-Dimensional Display, T. C. Poon, ed. (Springer, 2006), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Michelson interferometer apparatus for fingerprint scanning. Plane H, the reference mirror, and the CCD camera plane are optically conjugate to each other; see text for details.

Fig. 2
Fig. 2

Latent fingerprint imaging by holographic phase microscopy: (a) hologram; (b) angular spectrum; (c) amplitude image; (d) phase image with detail of a small area in inset. FOV for (a), (c), and (d) is 7.94 mm × 5.96 mm. (e) Phase image of a days-old sample; FOV is 6.42 mm × 6.42 mm.

Fig. 3
Fig. 3

Optical phase unwrapping of fingerprint images by two-wavelength holographic phase microscopy: (a) direct image of a patent fingerprint made with a lightly enamel-coated finger; (b) holographic amplitude image; (c), (d) phase images from two holograms made with wavelengths of 577.71 and 580.17 nm ; (e) optically phase-unwrapped image by combination of (c) and (d). FOV is 10.4 mm × 10.4 mm, and the gray (color) scale of (e) corresponds to 136 μm of the optical thickness range; see color online version for better clarity.

Fig. 4
Fig. 4

Optical phase unwrapping applied to a plastic fingerprint: (a), (b) phase images from two holograms made with wavelengths of 599.98 and 600.69 nm ; (c) optically phase- unwrapped image. FOV is 4.86 mm × 4.86 mm, and the gray (color) scale of (c) corresponds to 510 μm of the optical thickness range; see color online version for better clarity.

Fig. 5
Fig. 5

Tomographic images of a plastic fingerprint by DIH: (a) a z section of the three-dimensional volume image; (b) x sections along three vertical lines indicated by ticks in (a); (c) y sections along three horizontal lines indicated by ticks in (a). The image volume for (a)–(c) is 5.02 mm × 5.02 mm × 0.211 mm. Another example of the three-dimensional volume image is shown in (d) en face flat view, (e) x sections, and (f) y sections. The image volume for (d)–(f) is 10.4 mm × 10.4 mm × 0.213 mm.

Fig. 6
Fig. 6

Perspective rendering of a three- dimensional volume image data by DIH from a few different viewing angles. The image volume is 4.86 mm × 4.86 mm × 0.210 mm; see the color online version for better clarity.

Fig. 7
Fig. 7

Topographic imaging of a plastic fingerprint by low-coherence interferography: (a) an interferogram as captured by camera, (b) a coherent interference envelope extracted by the phase-shifting method, (c) a two-dimensional map of the fingerprint surface topography with the gray scale representing the height of the surface at each pixel, (d) a three-dimensional perspective rendering of (c). The image volume is 15 mm × 12 mm × 0.70 mm.

Fig. 8
Fig. 8

Topographic images of latent fingerprints on the surface of (a) a piece of blister-pack plastic packaging and (b) a piece of crinkled aluminum foil. The image volume in both cases is 15 mm × 12 mm × 0.70 mm.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

F ( k x , k y ; 0 ) = { E 0 } = E 0 ( x 0 , y 0 ) exp [ i ( k x x 0 + k y y 0 ) ] d x 0 d y 0 ,
E ( x , y ; z ) = F ( k x , k y ; 0 ) exp [ i ( k x x + k y y + k z z ) ] d k x d k y = 1 { { E 0 } · exp ( i k z z ) } ,
Λ 12 = λ 1 λ 2 | λ 1 λ 2 | .
H ( r ; k ) d r o 3 A ( r o ) exp ( i k | r r o | ) .
S ( r ) = k H ( r ; k ) k d r o 3 A ( r o ) exp ( i k | r r o | ) = d r o 3 A ( r o ) k exp ( i k | r r o | ) d r o 3 A ( r o ) δ ( | r r o | ) = A ( r ) .
I φ = I B + I O + I R + 2 I O I R cos ( Ψ + φ ) ,
I O ( x , y ) [ ( I 0 I π ) 2 + ( I π / 2 I 3 π / 2 ) 2 ] ,
Ψ ( x , y ) = tan 1 [ I 3 π / 2 I π / 2 I 0 I π ] ,
I O [ ( I 0 I π / 2 ) + ( I π I 3 π / 2 ) ] 2 + [ ( I 0 I π / 2 ) ( I π I 3 π / 2 ) ] 2 .
1 μm

Metrics