Abstract

An effective hologram region (EHR) based approach is presented to speed up the computation of computer generated holograms (CGHs). The object space is predivided into subspaces, and an EHR for each subspace is predefined according to the maximum spatial frequency of interference fringes, light diffraction efficiency, and CGH binarization effect. To compute the hologram of an object, the object points are first categorized according to which subspace they are located in, and then their holograms are calculated using the corresponding EHRs. As each EHR usually takes up only a portion of the hologram plate, the CGH computational load is thus reduced. This new approach is highly suitable for large hologram display systems. In addition, when compared to the reconstructed image using the conventional approach, our experimental results show that more noise can be blocked off and the reconstructed image appears sharper without noticeable brightness reduction.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Xu, S. Solanki, X. Liang, S. Xu, R. Tanjung, Y. Pan, F. Farbiz, B. Xu, and T. C. Chong, “Dynamic display of 3D objects in real and virtual spaces with computer-generated holography,” in Proceedings of VRCAI 2008 (ACM, 2008).
    [CrossRef]
  2. M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2, 28-34 (1993).
    [CrossRef]
  3. M. Lucente, “Diffraction-specific fringe computation for electro-holography,” Doctoral dissertation (Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,1994).
  4. G. B. Esmer, “Computation of holographic platters between tiled planes,” Master's thesis (Department of Electrical and Electronics Engineering, Bilkent University, 2004).
  5. S. C. Kim and E. S. Kim, “Effective generation of digital holograms of three-dimensional objects using a novel look-up table method,” Appl. Opt. 47, D55-D62 (2008).
    [CrossRef] [PubMed]
  6. M. Lucente and T. A. Galyean, “Rendering interactive holographic images,” in Proceedings of SIGGRAPH 95 (ACM, 1995), pp. 387-394.
    [CrossRef]
  7. H. Kang, T. Fujii, T. Yamaguchi, and H. Yoshikawa, “Compensated phase-added stereogram for real-time holographic display,” Opt. Eng. 46, 095802 (2007).
    [CrossRef]
  8. H. Kang, T. Yamaguchi, and H. Yoshikawa, “Accurate phase-added stereogram to improve the coherent stereogram,” Appl. Opt. 47, D44-D54 (2008).
    [CrossRef] [PubMed]
  9. T. Ito, N. Masuda, K. Yoshimura, A. Shiraki, T. Shimobaba, and T. Sugie, “Special purpose computer horn-5 for a real-time electroholography,” Opt. Express 13, 1923-1932 (2005).
    [CrossRef] [PubMed]
  10. J. S. Underkofller, “Toward accurate computation of optically reconstructed holograms,” Master's thesis (Massachusetts Institute of Technology, 1991).
  11. A. Schwerdtner, R. Häussler, and N. Leister, “Large holographic displays for real-time applications,” Proc. SPIE 6912, 69120T (2008).
    [CrossRef]
  12. T. Yamaguchi and H. Yoshikawa, “Real time calculation for holographic video display,” Proc. SPIE 6136, 6136T (2006).
  13. H. Yoshikawa, T. Yamaguchi, and R. Kitayama, “Real-time generation of full color image hologram with compact distance look-up table,” in Digital Holography and Three-Dimensional Imaging 2009 (Optical Society of America, 2009), paper DWC4.
  14. A. S. Benton and V. M. Bove, Jr., Holographic Imaging (Wiley-Interscience, 2008).
    [CrossRef]
  15. http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/fresli.html.
  16. E. Zhang, S. Noehte, C. H. Dietrich, and R. Manner, “Gradual and random binarization of gray-scale holograms,” Appl. Opt. 34, 5987-5995 (1995).
    [CrossRef] [PubMed]
  17. Y. Pan, X. Xu, S. Solanki, X. Liang, R. Tanjung, C. Tan, and T. C. Chong, “Fast CGH computation using S-LUT on GPU,” Opt. Express 17, 18543-18555 (2009).
    [CrossRef]

2009 (1)

2008 (3)

2007 (1)

H. Kang, T. Fujii, T. Yamaguchi, and H. Yoshikawa, “Compensated phase-added stereogram for real-time holographic display,” Opt. Eng. 46, 095802 (2007).
[CrossRef]

2006 (1)

T. Yamaguchi and H. Yoshikawa, “Real time calculation for holographic video display,” Proc. SPIE 6136, 6136T (2006).

2005 (1)

1995 (1)

1993 (1)

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2, 28-34 (1993).
[CrossRef]

Benton, A. S.

A. S. Benton and V. M. Bove, Jr., Holographic Imaging (Wiley-Interscience, 2008).
[CrossRef]

Bove, V. M.

A. S. Benton and V. M. Bove, Jr., Holographic Imaging (Wiley-Interscience, 2008).
[CrossRef]

Chong, T. C.

Y. Pan, X. Xu, S. Solanki, X. Liang, R. Tanjung, C. Tan, and T. C. Chong, “Fast CGH computation using S-LUT on GPU,” Opt. Express 17, 18543-18555 (2009).
[CrossRef]

X. Xu, S. Solanki, X. Liang, S. Xu, R. Tanjung, Y. Pan, F. Farbiz, B. Xu, and T. C. Chong, “Dynamic display of 3D objects in real and virtual spaces with computer-generated holography,” in Proceedings of VRCAI 2008 (ACM, 2008).
[CrossRef]

Dietrich, C. H.

Esmer, G. B.

G. B. Esmer, “Computation of holographic platters between tiled planes,” Master's thesis (Department of Electrical and Electronics Engineering, Bilkent University, 2004).

Farbiz, F.

X. Xu, S. Solanki, X. Liang, S. Xu, R. Tanjung, Y. Pan, F. Farbiz, B. Xu, and T. C. Chong, “Dynamic display of 3D objects in real and virtual spaces with computer-generated holography,” in Proceedings of VRCAI 2008 (ACM, 2008).
[CrossRef]

Fujii, T.

H. Kang, T. Fujii, T. Yamaguchi, and H. Yoshikawa, “Compensated phase-added stereogram for real-time holographic display,” Opt. Eng. 46, 095802 (2007).
[CrossRef]

Galyean, T. A.

M. Lucente and T. A. Galyean, “Rendering interactive holographic images,” in Proceedings of SIGGRAPH 95 (ACM, 1995), pp. 387-394.
[CrossRef]

Häussler, R.

A. Schwerdtner, R. Häussler, and N. Leister, “Large holographic displays for real-time applications,” Proc. SPIE 6912, 69120T (2008).
[CrossRef]

Ito, T.

Kang, H.

H. Kang, T. Yamaguchi, and H. Yoshikawa, “Accurate phase-added stereogram to improve the coherent stereogram,” Appl. Opt. 47, D44-D54 (2008).
[CrossRef] [PubMed]

H. Kang, T. Fujii, T. Yamaguchi, and H. Yoshikawa, “Compensated phase-added stereogram for real-time holographic display,” Opt. Eng. 46, 095802 (2007).
[CrossRef]

Kim, E. S.

Kim, S. C.

Kitayama, R.

H. Yoshikawa, T. Yamaguchi, and R. Kitayama, “Real-time generation of full color image hologram with compact distance look-up table,” in Digital Holography and Three-Dimensional Imaging 2009 (Optical Society of America, 2009), paper DWC4.

Leister, N.

A. Schwerdtner, R. Häussler, and N. Leister, “Large holographic displays for real-time applications,” Proc. SPIE 6912, 69120T (2008).
[CrossRef]

Liang, X.

Y. Pan, X. Xu, S. Solanki, X. Liang, R. Tanjung, C. Tan, and T. C. Chong, “Fast CGH computation using S-LUT on GPU,” Opt. Express 17, 18543-18555 (2009).
[CrossRef]

X. Xu, S. Solanki, X. Liang, S. Xu, R. Tanjung, Y. Pan, F. Farbiz, B. Xu, and T. C. Chong, “Dynamic display of 3D objects in real and virtual spaces with computer-generated holography,” in Proceedings of VRCAI 2008 (ACM, 2008).
[CrossRef]

Lucente, M.

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2, 28-34 (1993).
[CrossRef]

M. Lucente, “Diffraction-specific fringe computation for electro-holography,” Doctoral dissertation (Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,1994).

M. Lucente and T. A. Galyean, “Rendering interactive holographic images,” in Proceedings of SIGGRAPH 95 (ACM, 1995), pp. 387-394.
[CrossRef]

Manner, R.

Masuda, N.

Noehte, S.

Pan, Y.

Y. Pan, X. Xu, S. Solanki, X. Liang, R. Tanjung, C. Tan, and T. C. Chong, “Fast CGH computation using S-LUT on GPU,” Opt. Express 17, 18543-18555 (2009).
[CrossRef]

X. Xu, S. Solanki, X. Liang, S. Xu, R. Tanjung, Y. Pan, F. Farbiz, B. Xu, and T. C. Chong, “Dynamic display of 3D objects in real and virtual spaces with computer-generated holography,” in Proceedings of VRCAI 2008 (ACM, 2008).
[CrossRef]

Schwerdtner, A.

A. Schwerdtner, R. Häussler, and N. Leister, “Large holographic displays for real-time applications,” Proc. SPIE 6912, 69120T (2008).
[CrossRef]

Shimobaba, T.

Shiraki, A.

Solanki, S.

Y. Pan, X. Xu, S. Solanki, X. Liang, R. Tanjung, C. Tan, and T. C. Chong, “Fast CGH computation using S-LUT on GPU,” Opt. Express 17, 18543-18555 (2009).
[CrossRef]

X. Xu, S. Solanki, X. Liang, S. Xu, R. Tanjung, Y. Pan, F. Farbiz, B. Xu, and T. C. Chong, “Dynamic display of 3D objects in real and virtual spaces with computer-generated holography,” in Proceedings of VRCAI 2008 (ACM, 2008).
[CrossRef]

Sugie, T.

Tan, C.

Tanjung, R.

Y. Pan, X. Xu, S. Solanki, X. Liang, R. Tanjung, C. Tan, and T. C. Chong, “Fast CGH computation using S-LUT on GPU,” Opt. Express 17, 18543-18555 (2009).
[CrossRef]

X. Xu, S. Solanki, X. Liang, S. Xu, R. Tanjung, Y. Pan, F. Farbiz, B. Xu, and T. C. Chong, “Dynamic display of 3D objects in real and virtual spaces with computer-generated holography,” in Proceedings of VRCAI 2008 (ACM, 2008).
[CrossRef]

Underkofller, J. S.

J. S. Underkofller, “Toward accurate computation of optically reconstructed holograms,” Master's thesis (Massachusetts Institute of Technology, 1991).

Xu, B.

X. Xu, S. Solanki, X. Liang, S. Xu, R. Tanjung, Y. Pan, F. Farbiz, B. Xu, and T. C. Chong, “Dynamic display of 3D objects in real and virtual spaces with computer-generated holography,” in Proceedings of VRCAI 2008 (ACM, 2008).
[CrossRef]

Xu, S.

X. Xu, S. Solanki, X. Liang, S. Xu, R. Tanjung, Y. Pan, F. Farbiz, B. Xu, and T. C. Chong, “Dynamic display of 3D objects in real and virtual spaces with computer-generated holography,” in Proceedings of VRCAI 2008 (ACM, 2008).
[CrossRef]

Xu, X.

Y. Pan, X. Xu, S. Solanki, X. Liang, R. Tanjung, C. Tan, and T. C. Chong, “Fast CGH computation using S-LUT on GPU,” Opt. Express 17, 18543-18555 (2009).
[CrossRef]

X. Xu, S. Solanki, X. Liang, S. Xu, R. Tanjung, Y. Pan, F. Farbiz, B. Xu, and T. C. Chong, “Dynamic display of 3D objects in real and virtual spaces with computer-generated holography,” in Proceedings of VRCAI 2008 (ACM, 2008).
[CrossRef]

Yamaguchi, T.

H. Kang, T. Yamaguchi, and H. Yoshikawa, “Accurate phase-added stereogram to improve the coherent stereogram,” Appl. Opt. 47, D44-D54 (2008).
[CrossRef] [PubMed]

H. Kang, T. Fujii, T. Yamaguchi, and H. Yoshikawa, “Compensated phase-added stereogram for real-time holographic display,” Opt. Eng. 46, 095802 (2007).
[CrossRef]

T. Yamaguchi and H. Yoshikawa, “Real time calculation for holographic video display,” Proc. SPIE 6136, 6136T (2006).

H. Yoshikawa, T. Yamaguchi, and R. Kitayama, “Real-time generation of full color image hologram with compact distance look-up table,” in Digital Holography and Three-Dimensional Imaging 2009 (Optical Society of America, 2009), paper DWC4.

Yoshikawa, H.

H. Kang, T. Yamaguchi, and H. Yoshikawa, “Accurate phase-added stereogram to improve the coherent stereogram,” Appl. Opt. 47, D44-D54 (2008).
[CrossRef] [PubMed]

H. Kang, T. Fujii, T. Yamaguchi, and H. Yoshikawa, “Compensated phase-added stereogram for real-time holographic display,” Opt. Eng. 46, 095802 (2007).
[CrossRef]

T. Yamaguchi and H. Yoshikawa, “Real time calculation for holographic video display,” Proc. SPIE 6136, 6136T (2006).

H. Yoshikawa, T. Yamaguchi, and R. Kitayama, “Real-time generation of full color image hologram with compact distance look-up table,” in Digital Holography and Three-Dimensional Imaging 2009 (Optical Society of America, 2009), paper DWC4.

Yoshimura, K.

Zhang, E.

Appl. Opt. (3)

J. Electron. Imaging (1)

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2, 28-34 (1993).
[CrossRef]

Opt. Eng. (1)

H. Kang, T. Fujii, T. Yamaguchi, and H. Yoshikawa, “Compensated phase-added stereogram for real-time holographic display,” Opt. Eng. 46, 095802 (2007).
[CrossRef]

Opt. Express (2)

Proc. SPIE (2)

A. Schwerdtner, R. Häussler, and N. Leister, “Large holographic displays for real-time applications,” Proc. SPIE 6912, 69120T (2008).
[CrossRef]

T. Yamaguchi and H. Yoshikawa, “Real time calculation for holographic video display,” Proc. SPIE 6136, 6136T (2006).

Other (8)

H. Yoshikawa, T. Yamaguchi, and R. Kitayama, “Real-time generation of full color image hologram with compact distance look-up table,” in Digital Holography and Three-Dimensional Imaging 2009 (Optical Society of America, 2009), paper DWC4.

A. S. Benton and V. M. Bove, Jr., Holographic Imaging (Wiley-Interscience, 2008).
[CrossRef]

http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/fresli.html.

J. S. Underkofller, “Toward accurate computation of optically reconstructed holograms,” Master's thesis (Massachusetts Institute of Technology, 1991).

X. Xu, S. Solanki, X. Liang, S. Xu, R. Tanjung, Y. Pan, F. Farbiz, B. Xu, and T. C. Chong, “Dynamic display of 3D objects in real and virtual spaces with computer-generated holography,” in Proceedings of VRCAI 2008 (ACM, 2008).
[CrossRef]

M. Lucente, “Diffraction-specific fringe computation for electro-holography,” Doctoral dissertation (Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,1994).

G. B. Esmer, “Computation of holographic platters between tiled planes,” Master's thesis (Department of Electrical and Electronics Engineering, Bilkent University, 2004).

M. Lucente and T. A. Galyean, “Rendering interactive holographic images,” in Proceedings of SIGGRAPH 95 (ACM, 1995), pp. 387-394.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

EHR-based CGH computation. (a) Precalculating stage (offline). (b) CGH calculating stage (online).

Fig. 2
Fig. 2

CGHs of a rectangle (a) and a pyramid (b).

Fig. 3
Fig. 3

Binarized hologram of a point. (a) Hologram. (b) Zoomed-in view of the low spatial frequency areas.

Fig. 4
Fig. 4

Primal direction for EHR calculation. P is a point in object space and P is its projection point on the hologram plane. The shaded regions are the EHR. (a) ISO view. (b)  P in one of the neighbor areas. (c)  P inside the hologram plate. (d)  P in one of the corner areas.

Fig. 5
Fig. 5

Calculation of the further boundary.

Fig. 6
Fig. 6

Holographic image reconstruction of a point. (a), (b), (c) points reconstructed using the traditional method, EHR-based method, and the truncated-off hologram, respectively; (d), (e) holograms generated using the traditional method and EHR-based method, respectively; (f) truncated-off CGH part.

Fig. 7
Fig. 7

Intensity plots of the reconstructed point. (a), (b), (c) points reconstructed using the traditional method, EHR-based method, and the truncated-off hologram, respectively; (d), (e), (f) 3D intensity plots of (a), (b), and (c), respectively; (g), (h), (i) contour plots of (d), (e), and (f), respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

f = sin θ obj sin θ ref λ ,
f max = 1 / ( 2 d ) ,
I = I 0 sin 2 u u 2 ,
θ = sin 1 2 λ α ,
l max = | z p | ( λ 2 d + sin θ ref ) ,
w low = | z p | tan θ low ,

Metrics