Abstract

Total internal reflection (TIR) holographic microscopy uses a prism in TIR as a near-field imager to perform quantitative phase microscopy of cell–substrate interfaces. The presence of microscopic organisms, cell–substrate interfaces, adhesions, and tissue structures on the prism’s TIR face causes relative index of refraction and frustrated TIR to modulate the object beam’s evanescent wave phase front. We present quantitative phase images of test specimens such as Amoeba proteus and cells such as SKOV-3 and 3T3 fibroblasts.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Bray, Cell Movements: from Molecules to Motility, 2nd ed. (Garland, 2001).
  2. D. B. Murphy, Fundamentals of Light Microscopy and Electronic Imaging (Wiley-Liss, 2001)
  3. F. Zernike, “How I discovered phase contrast,” Science 121, 345-349 (1955).
    [CrossRef] [PubMed]
  4. M. Spencer, Fundamentals of Light Microscopy (Cambridge, 1982).
  5. J. James and H. Tanke, Biomedical Light Microscopy (Kluwer Academic,1991).
    [CrossRef]
  6. S. K. Debnath, M. P. Kothiyal, J. Schmit, and P. Hariharan, “Spectrally resolved white-light phase-shifting interference microscopy for thickness-profile measurements of transparent thin film layers on patterned substrates,” Opt. Express 14, 4662-4667 (2006).
    [CrossRef] [PubMed]
  7. W. M. Ash and M. K. Kim, “Digital holography of total internal reflection,” Opt. Express 16, 9811-9820 (2008).
    [CrossRef] [PubMed]
  8. D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol. 89, 141-145(1981).
    [CrossRef] [PubMed]
  9. D. Axelrod, N. L. Thompson, and T. P. Burghardt, “Total internal reflection fluorescent microscopy,” J. Microsc. 129, 19-28(1983).
    [CrossRef] [PubMed]
  10. A. S. G. Curtis, “The mechanism of adhesion of cells to glass--a study by interference reflection microscopy,” J. Cell Biol. 20, 199-215 (1964).
    [CrossRef] [PubMed]
  11. H. Verschueren, “Interference reflection microscopy in cell biology: methodology and applications,” J. Cell Sci. 75, 279-301 (1985).
    [PubMed]
  12. U. Schnars and W. Jueptner, Digital Holography (Springer-Verlag, 2005).
  13. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2001).
    [CrossRef] [PubMed]
  14. K. J. Chalut, W. J. Brown, and A. Wax, “Quantitative phase microscopy with asynchronous digital holography,” Opt. Express 15, 3047-3052 (2007).
    [CrossRef] [PubMed]
  15. D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43, 6536-6544(2004).
    [CrossRef]
  16. K. Jeong, J. J. Turek, and D. D. Nolte, “Fourier-domain digital holographic optical coherence imaging of living tissue,” Appl. Opt. 46, 4999-5008 (2007).
    [CrossRef] [PubMed]
  17. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with sub wavelength accuracy,” Opt. Lett. 30, 468-470 (2005).
    [CrossRef] [PubMed]
  18. M. K. Kim, “Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography,” Opt. Express 7, 305-310 (2000).
    [CrossRef] [PubMed]
  19. L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic 3D imaging using the angular spectrum method,” Opt. Lett. 30, 2092-2094 (2005).
    [CrossRef] [PubMed]
  20. J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2π ambiguity by multiwavelength digital holography,” Opt. Lett. 28, 1141-1143 (2003).
    [CrossRef] [PubMed]
  21. C. J. Mann, L. Yu, C. M. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693-8698 (2005).
    [CrossRef] [PubMed]
  22. C. Mann, L. Yu, and M. K. Kim, “Movies of cellular and sub-cellular motion by digital holographic microscopy,” Biomed. Eng. Online 5, 21 (2006).
    [CrossRef] [PubMed]
  23. S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, and D. Alfieri, “Angular spectrum method with correction of anamorphism for numerical reconstruction of digital holograms on tilted planes,” Opt Express 13, 9935-9940 (2005).
    [CrossRef] [PubMed]
  24. S. J. Jeong and C. K. Hong, “Pixel-size-maintained image reconstruction of digital holograms on arbitrarily tilted planes by the angular spectrum method,” Appl. Opt. 47, 3064-3071(2008).
    [CrossRef] [PubMed]
  25. A. Grebecki, “Two-directional pattern of movements on the cell surface of Amoeba proteus,” J. Cell Sci. 83, 23-35 (1986).
    [PubMed]
  26. D. C. Lovelady, J. Friedman, S. Patel, D. A. Rabson, and C.-M. Lo, “Detecting effects of low levels of cytochalasin B in 3T3 fibroblast cultures by analysis of electrical noise obtained from cellular micromotion,” Biosens. Bioelectron. 24, 2250-2254 (2009).
    [CrossRef]
  27. D. C. Lovelady, T. C. Richmond, A. N. Maggi, C.-M. Lo, and D. A. Rabson, “Distinguishing cancerous from noncancerous cells through analysis of electrical noise,” Phys. Rev. E 76, 041908 (2007).
    [CrossRef]
  28. K. Matsushima, H. Schimmel, and F. Wyrowski, “Fast calculation method for optical diffraction on tilted planes by use of the angular spectrum of plane waves,” J. Opt. Soc. Am. A 20, 1755-1762 (2003).
    [CrossRef]

2009 (1)

D. C. Lovelady, J. Friedman, S. Patel, D. A. Rabson, and C.-M. Lo, “Detecting effects of low levels of cytochalasin B in 3T3 fibroblast cultures by analysis of electrical noise obtained from cellular micromotion,” Biosens. Bioelectron. 24, 2250-2254 (2009).
[CrossRef]

2008 (2)

2007 (3)

2006 (2)

2005 (4)

2004 (1)

2003 (2)

2001 (1)

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2001).
[CrossRef] [PubMed]

2000 (1)

1986 (1)

A. Grebecki, “Two-directional pattern of movements on the cell surface of Amoeba proteus,” J. Cell Sci. 83, 23-35 (1986).
[PubMed]

1985 (1)

H. Verschueren, “Interference reflection microscopy in cell biology: methodology and applications,” J. Cell Sci. 75, 279-301 (1985).
[PubMed]

1983 (1)

D. Axelrod, N. L. Thompson, and T. P. Burghardt, “Total internal reflection fluorescent microscopy,” J. Microsc. 129, 19-28(1983).
[CrossRef] [PubMed]

1981 (1)

D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol. 89, 141-145(1981).
[CrossRef] [PubMed]

1964 (1)

A. S. G. Curtis, “The mechanism of adhesion of cells to glass--a study by interference reflection microscopy,” J. Cell Biol. 20, 199-215 (1964).
[CrossRef] [PubMed]

1955 (1)

F. Zernike, “How I discovered phase contrast,” Science 121, 345-349 (1955).
[CrossRef] [PubMed]

Alfieri, D.

S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, and D. Alfieri, “Angular spectrum method with correction of anamorphism for numerical reconstruction of digital holograms on tilted planes,” Opt Express 13, 9935-9940 (2005).
[CrossRef] [PubMed]

Ash, W. M.

Axelrod, D.

D. Axelrod, N. L. Thompson, and T. P. Burghardt, “Total internal reflection fluorescent microscopy,” J. Microsc. 129, 19-28(1983).
[CrossRef] [PubMed]

D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol. 89, 141-145(1981).
[CrossRef] [PubMed]

Bray, D.

D. Bray, Cell Movements: from Molecules to Motility, 2nd ed. (Garland, 2001).

Brown, W. J.

Burghardt, T. P.

D. Axelrod, N. L. Thompson, and T. P. Burghardt, “Total internal reflection fluorescent microscopy,” J. Microsc. 129, 19-28(1983).
[CrossRef] [PubMed]

Carl, D.

Chalut, K. J.

Colomb, T.

Cuche, E.

Curtis, A. S. G.

A. S. G. Curtis, “The mechanism of adhesion of cells to glass--a study by interference reflection microscopy,” J. Cell Biol. 20, 199-215 (1964).
[CrossRef] [PubMed]

Dakoff, A.

De Nicola, S.

S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, and D. Alfieri, “Angular spectrum method with correction of anamorphism for numerical reconstruction of digital holograms on tilted planes,” Opt Express 13, 9935-9940 (2005).
[CrossRef] [PubMed]

Debnath, S. K.

Depeursinge, C.

Emery, Y.

Ferraro, P.

S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, and D. Alfieri, “Angular spectrum method with correction of anamorphism for numerical reconstruction of digital holograms on tilted planes,” Opt Express 13, 9935-9940 (2005).
[CrossRef] [PubMed]

Finizio, A.

S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, and D. Alfieri, “Angular spectrum method with correction of anamorphism for numerical reconstruction of digital holograms on tilted planes,” Opt Express 13, 9935-9940 (2005).
[CrossRef] [PubMed]

Friedman, J.

D. C. Lovelady, J. Friedman, S. Patel, D. A. Rabson, and C.-M. Lo, “Detecting effects of low levels of cytochalasin B in 3T3 fibroblast cultures by analysis of electrical noise obtained from cellular micromotion,” Biosens. Bioelectron. 24, 2250-2254 (2009).
[CrossRef]

Gass, J.

Grebecki, A.

A. Grebecki, “Two-directional pattern of movements on the cell surface of Amoeba proteus,” J. Cell Sci. 83, 23-35 (1986).
[PubMed]

Hariharan, P.

Hong, C. K.

James, J.

J. James and H. Tanke, Biomedical Light Microscopy (Kluwer Academic,1991).
[CrossRef]

Jeong, K.

Jeong, S. J.

Jericho, M. H.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2001).
[CrossRef] [PubMed]

Jueptner, W.

U. Schnars and W. Jueptner, Digital Holography (Springer-Verlag, 2005).

Kemper, B.

Kim, M. K.

Kothiyal, M. P.

Kreuzer, H. J.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2001).
[CrossRef] [PubMed]

Lo, C. M.

Lo, C.-M.

D. C. Lovelady, J. Friedman, S. Patel, D. A. Rabson, and C.-M. Lo, “Detecting effects of low levels of cytochalasin B in 3T3 fibroblast cultures by analysis of electrical noise obtained from cellular micromotion,” Biosens. Bioelectron. 24, 2250-2254 (2009).
[CrossRef]

D. C. Lovelady, T. C. Richmond, A. N. Maggi, C.-M. Lo, and D. A. Rabson, “Distinguishing cancerous from noncancerous cells through analysis of electrical noise,” Phys. Rev. E 76, 041908 (2007).
[CrossRef]

Lovelady, D. C.

D. C. Lovelady, J. Friedman, S. Patel, D. A. Rabson, and C.-M. Lo, “Detecting effects of low levels of cytochalasin B in 3T3 fibroblast cultures by analysis of electrical noise obtained from cellular micromotion,” Biosens. Bioelectron. 24, 2250-2254 (2009).
[CrossRef]

D. C. Lovelady, T. C. Richmond, A. N. Maggi, C.-M. Lo, and D. A. Rabson, “Distinguishing cancerous from noncancerous cells through analysis of electrical noise,” Phys. Rev. E 76, 041908 (2007).
[CrossRef]

Maggi, A. N.

D. C. Lovelady, T. C. Richmond, A. N. Maggi, C.-M. Lo, and D. A. Rabson, “Distinguishing cancerous from noncancerous cells through analysis of electrical noise,” Phys. Rev. E 76, 041908 (2007).
[CrossRef]

Magistretti, P. J.

Mann, C.

C. Mann, L. Yu, and M. K. Kim, “Movies of cellular and sub-cellular motion by digital holographic microscopy,” Biomed. Eng. Online 5, 21 (2006).
[CrossRef] [PubMed]

Mann, C. J.

Marquet, P.

Matsushima, K.

Meinertzhagen, I. A.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2001).
[CrossRef] [PubMed]

Murphy, D. B.

D. B. Murphy, Fundamentals of Light Microscopy and Electronic Imaging (Wiley-Liss, 2001)

Nolte, D. D.

Patel, S.

D. C. Lovelady, J. Friedman, S. Patel, D. A. Rabson, and C.-M. Lo, “Detecting effects of low levels of cytochalasin B in 3T3 fibroblast cultures by analysis of electrical noise obtained from cellular micromotion,” Biosens. Bioelectron. 24, 2250-2254 (2009).
[CrossRef]

Pierattini, G.

S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, and D. Alfieri, “Angular spectrum method with correction of anamorphism for numerical reconstruction of digital holograms on tilted planes,” Opt Express 13, 9935-9940 (2005).
[CrossRef] [PubMed]

Rabson, D. A.

D. C. Lovelady, J. Friedman, S. Patel, D. A. Rabson, and C.-M. Lo, “Detecting effects of low levels of cytochalasin B in 3T3 fibroblast cultures by analysis of electrical noise obtained from cellular micromotion,” Biosens. Bioelectron. 24, 2250-2254 (2009).
[CrossRef]

D. C. Lovelady, T. C. Richmond, A. N. Maggi, C.-M. Lo, and D. A. Rabson, “Distinguishing cancerous from noncancerous cells through analysis of electrical noise,” Phys. Rev. E 76, 041908 (2007).
[CrossRef]

Rappaz, B.

Richmond, T. C.

D. C. Lovelady, T. C. Richmond, A. N. Maggi, C.-M. Lo, and D. A. Rabson, “Distinguishing cancerous from noncancerous cells through analysis of electrical noise,” Phys. Rev. E 76, 041908 (2007).
[CrossRef]

Schimmel, H.

Schmit, J.

Schnars, U.

U. Schnars and W. Jueptner, Digital Holography (Springer-Verlag, 2005).

Spencer, M.

M. Spencer, Fundamentals of Light Microscopy (Cambridge, 1982).

Tanke, H.

J. James and H. Tanke, Biomedical Light Microscopy (Kluwer Academic,1991).
[CrossRef]

Thompson, N. L.

D. Axelrod, N. L. Thompson, and T. P. Burghardt, “Total internal reflection fluorescent microscopy,” J. Microsc. 129, 19-28(1983).
[CrossRef] [PubMed]

Turek, J. J.

Verschueren, H.

H. Verschueren, “Interference reflection microscopy in cell biology: methodology and applications,” J. Cell Sci. 75, 279-301 (1985).
[PubMed]

von Bally, G.

Wax, A.

Wernicke, G.

Wyrowski, F.

Xu, W.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2001).
[CrossRef] [PubMed]

Yu, L.

Zernike, F.

F. Zernike, “How I discovered phase contrast,” Science 121, 345-349 (1955).
[CrossRef] [PubMed]

Appl. Opt. (3)

Biomed. Eng. Online (1)

C. Mann, L. Yu, and M. K. Kim, “Movies of cellular and sub-cellular motion by digital holographic microscopy,” Biomed. Eng. Online 5, 21 (2006).
[CrossRef] [PubMed]

Biosens. Bioelectron. (1)

D. C. Lovelady, J. Friedman, S. Patel, D. A. Rabson, and C.-M. Lo, “Detecting effects of low levels of cytochalasin B in 3T3 fibroblast cultures by analysis of electrical noise obtained from cellular micromotion,” Biosens. Bioelectron. 24, 2250-2254 (2009).
[CrossRef]

J. Cell Biol. (2)

A. S. G. Curtis, “The mechanism of adhesion of cells to glass--a study by interference reflection microscopy,” J. Cell Biol. 20, 199-215 (1964).
[CrossRef] [PubMed]

D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol. 89, 141-145(1981).
[CrossRef] [PubMed]

J. Cell Sci. (2)

H. Verschueren, “Interference reflection microscopy in cell biology: methodology and applications,” J. Cell Sci. 75, 279-301 (1985).
[PubMed]

A. Grebecki, “Two-directional pattern of movements on the cell surface of Amoeba proteus,” J. Cell Sci. 83, 23-35 (1986).
[PubMed]

J. Microsc. (1)

D. Axelrod, N. L. Thompson, and T. P. Burghardt, “Total internal reflection fluorescent microscopy,” J. Microsc. 129, 19-28(1983).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Opt Express (1)

S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, and D. Alfieri, “Angular spectrum method with correction of anamorphism for numerical reconstruction of digital holograms on tilted planes,” Opt Express 13, 9935-9940 (2005).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rev. E (1)

D. C. Lovelady, T. C. Richmond, A. N. Maggi, C.-M. Lo, and D. A. Rabson, “Distinguishing cancerous from noncancerous cells through analysis of electrical noise,” Phys. Rev. E 76, 041908 (2007).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2001).
[CrossRef] [PubMed]

Science (1)

F. Zernike, “How I discovered phase contrast,” Science 121, 345-349 (1955).
[CrossRef] [PubMed]

Other (5)

M. Spencer, Fundamentals of Light Microscopy (Cambridge, 1982).

J. James and H. Tanke, Biomedical Light Microscopy (Kluwer Academic,1991).
[CrossRef]

D. Bray, Cell Movements: from Molecules to Motility, 2nd ed. (Garland, 2001).

D. B. Murphy, Fundamentals of Light Microscopy and Electronic Imaging (Wiley-Liss, 2001)

U. Schnars and W. Jueptner, Digital Holography (Springer-Verlag, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

TIRHM imaging modes: phase shift, φ, due to Fresnel reflection for an angle of incidence, θ 1 = 72 ° . (a) relative index profile, (b) fTIR thickness profile, (c) geometry of fTIR. d / λ 0 is the ratio of distance of the n 1 n 3 gap in the fTIR case to the operating wavelength of the laser source. In (c) E and θ are for reflections and transmission between materials of refractive indices n 1 , n 2 , and n 3 separated by distance d.

Fig. 2
Fig. 2

(a) TIR prism with object beam and aqueous cellular sample. (b) Optical path geometry. A, prism interface plane; H, hologram plane; θ 1 , angle of incidence; β, tilt plane angle with respect to the optical axis, z; CCD, camera.

Fig. 3
Fig. 3

Geometry of holography over an inclined plane. (a) General coordinate system with input plane Σ 0 and output planes Σ (unrotated) and Σ (rotated). (b) Coordinate system for general rotation around y axis only: α = γ = 0 , β 0 .

Fig. 4
Fig. 4

(a) Mach–Zehnder TIR digital holographic microscope topology: 50 50 , fiber optic coupler; BE OBJ , REF , beam expander–collimator (object beam, reference beam); B/C, beam combiner (cube); MO OBJ , MO REF , microscope objective (object beam, reference beam); CCD, camera. (b) TIRHM system on vertical plate; TIR prism at apex. Inset, TIR prism close-up showing sample reservoir gasket on prism hypotenuse face.

Fig. 5
Fig. 5

Process of digital holographic microscopy with untilt via the angular spectrum method: engineering run with onion tissue (A. cepa); 10 × Edmund μ Plan with BK7 prism. (a) Direct image with tilt [FOV ( x , y ) , 256 μm × 684 μm (tilt-compressed)]; (b) hologram; (c) angular spectrum filtering first-order peak; (d) amplitude image reconstruction with inherent tilt [FOV 256 μm × 684 μm (tilt-compressed)]; (e) phase image with inherent tilt [FOV 256 μm × 684 μm (tilt-compressed)]; (f), typical en face direct image of A. cepa (FOV 400 μm × 400 μm ); (g) untilted (and transposed) amplitude; (h) phase image.

Fig. 6
Fig. 6

A. proteus, 10 × Edmund Plan with SFL11 prism. (a) Phase image. (b) Amplitude image, FOV 250 μm (tilt-compressed) × 125 μm . (c) Direct image (for reference). d) Hologram.

Fig. 7
Fig. 7

A. proteus pseudopod activity at 7 min. intervals; multiple phase images of feature from Fig. 6.

Fig. 8
Fig. 8

SKOV-3 ovarian cancer cell; 25 × LWD UNICO μPlan with BK7 prism. (a) Phase image. (b) Amplitude image. (c) Hologram, FOV 130 μm (tilt-compressed) × 57 μm . (d) Untilted (and transposed) phase image. Note lamellipodia phase signature (arrows).

Fig. 9
Fig. 9

3T3 fibroblast cell; 25 × LWD UNICO μPlan with SFL11 prism. (a) Phase image. (b) Amplitude image. (c) Hologram, FOV 180 μm (tilt-compressed) × 90.5 μm .

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

r = exp ( 2 i φ ) , φ = tan 1 η 2 n 1 cos θ 1 = tan 1 n 1 2 sin 2 θ 1 n 2 2 n 1 cos θ 1 ,
r = exp ( 2 i φ ) , φ = tan 1 n 1 η 2 n 2 2 cos θ 1 = tan 1 n 1 n 1 2 sin 2 θ 1 n 2 2 n 2 2 cos θ 1 .
| r | exp ( i φ ) = E 1 E 1 = ( h 1 h 2 ) ( h 2 + h 3 ) ( h 1 + h 2 ) ( h 2 h 3 ) exp ( 2 i φ 0 h 2 ) ( h 1 + h 2 ) ( h 2 + h 3 ) + ( h 1 h 2 ) ( h 2 h 3 ) exp ( 2 i φ 0 h 2 ) ,
h 1 = n 1 cos θ 1 , h 2 = n 2 cos θ 2 = n 2 2 n 1 2 sin 2 θ 1 , φ 0 = k 0 d = 2 π d / λ 0 , h 3 = n 3 cos θ 3 = n 3 2 n 1 2 sin 2 θ 1 .
[ x y z Z ] = [ cos β 0 sin β 0 1 0 sin β 0 cos β ] [ x y z ] = [ x cos β + z sin β y x sin β + z cos β ] .
ψ Σ = exp i [ k x x + k y y + k z z ] | Σ = exp i [ k x ( x cos β ) + k y y + k z ( Z x sin β ) ] = exp i [ ( k x cos β k z sin β ) x + k y y ] exp i [ k z Z ] ,
E Σ ( x , y ) = d k x d k y F Σ 0 ( k x , k y ) ψ Σ = d k x d k y F Σ 0 ( k x , k y ) exp i [ ( k x cos β k z sin β ) x + k y y ] exp i [ k z Z ] = d k y exp i [ k y y ] d k x F Σ 0 ( k x , k y ) exp i [ ( k x cos β k z sin β ) x ] exp i [ k z Z ] ,
F Σ 0 ( k x , k y ) = d x d y E Σ 0 ( x , y ) exp [ i ( k x x + k y y ) ] .

Metrics