Abstract

Methods of generating multiple viewpoint projection holograms of three-dimensional (3-D) realistic objects illuminated by incoherent white light are reviewed in this paper. Using these methods, it is possible to obtain holograms with a simple digital camera, operating in regular light conditions. Thus, most disadvantages characterizing conventional digital holography, namely the need for a powerful, highly coherent laser and extreme stability of the optical system, are avoided. The proposed holographic processes are composed of two stages. In the first stage, regular intensity-based images of the 3-D scene are captured from multiple points of view by a simple digital camera. In the second stage, the acquired projections are digitally processed to yield the complex digital hologram of the 3-D scene, where no interference is involved in the process. For highly reflecting 3-D objects, the resulting hologram is equivalent to an optical hologram of the objects recorded from the central point of view. We first review various methods to acquire the multiple viewpoint projections. These include the use of a microlens array and a macrolens array, as well as digitally generated projections that are not acquired optically. Next, we show how to digitally process the acquired projections to Fourier, Fresnel, and image holograms. Additionally, to obtain certain advantages over the known types of holograms, the proposed hybrid optical-digital process can yield novel types of holograms such as the modified Fresnel hologram and the protected correlation hologram. The prospective goal of these methods is to facilitate the design of a simple and portable digital holographic camera that can be useful for a variety of practical applications, including 3-D video acquisition and various types of biomedical imaging. We review several of these applications to signify the advantages of multiple viewpoint projection holography.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Hariharan, Optical Holography, Principles, Techniques and Applications (Cambridge University Press, 1996).
  2. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).
  3. U. Schnars and W. Juptner, Digital Holography, Digital Hologram Recording, Numerical Reconstruction and Related Techniques (Springer, 2005).
  4. A. W. Lohmann, “Wavefront reconstruction for incoherent objects,” J. Opt. Soc. Am. 55, 1555-1556 (1965).
    [CrossRef]
  5. G. W. Stroke and R. C. Restrick, “Holography with spatially noncoherent light,” Appl. Phys. Lett. 7, 229-231 (1965).
    [CrossRef]
  6. H. R. Worthington, “Production of holograms with incoherent illumination,” J. Opt. Soc. Am. 56, 1397-1398 (1966).
    [CrossRef]
  7. G. Cochran, “New method of making Fresnel transforms with incoherent light,” J. Opt. Soc. Am. 56, 1513-1517 (1966).
    [CrossRef]
  8. P. J. Peters, “Incoherent holograms with a mercury light source,” Appl. Phys. Lett. 8, 209-210 (1966).
    [CrossRef]
  9. G. Sirat and D. Psaltis, “Conoscopic holography,” Opt. Lett. 10, 4-6 (1985).
    [CrossRef]
  10. A. S. Marathay, “Noncoherent-object hologram: its reconstruction and optical processing,” J. Opt. Soc. Am. A 4, 1861-1868(1987).
    [CrossRef]
  11. T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338-1344 (1995).
  12. G. Indebetouw, P. Klysubun, T. Kim, and T.-C. Poon, “Imaging properties of scanning holographic microscopy,” J. Opt. Soc. Am. A 17, 380-390 (2000).
    [CrossRef]
  13. B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, and M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22, 1506-1508 (1997).
    [CrossRef]
  14. L. Mertz and N. O. Young, “Fresnel transformations of images,” Proceedings of Conference on Optical Instruments and Techniques, K.J.Habell, Ed. (Chapman & Hall, 1962).
  15. J. Rosen and G. Brooker “Digital spatially incoherent Fresnel holography,” Opt. Lett. 32, 912-914 (2007).
    [CrossRef]
  16. J. Rosen and G. Brooker “Fluorescence incoherent color holography,” Opt. Express 15, 2244-2250 (2007).
    [CrossRef]
  17. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photon. 2, 190-195 (2008).
    [CrossRef]
  18. J. Rosen, G. Indebetouw, G. Brooker, and N. T. Shaked, “A review of incoherent digital Fresnel holography,” J. Holography Speckle 5, 124-140 (2009).
  19. T.-C. Poon, “Holography: Scan-free three-dimensional imaging,” Nat. Photon. 2, 131-132 (2008).
    [CrossRef]
  20. T. Yatagai, “Stereoscopic approach to 3-D display using computer-generated holograms,” Appl. Opt. 15, 2722-2729(1976).
    [CrossRef]
  21. T. Mishina, M. Okui, and F. Okano, “Calculation of holograms from elemental images captured by integral photography,” Appl. Opt. 45, 4026-4036 (2006).
    [CrossRef]
  22. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), pp. 355-363.
  23. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH, 2005), Chap. 3.
  24. Y. Li, D. Abookasis, and J. Rosen, “Computer-generated holograms of three-dimensional realistic objects recorded without wave interference,” Appl. Opt. 40, 2864-2870 (2001).
    [CrossRef]
  25. D. Abookasis and J. Rosen, “Computer-generated holograms of three-dimensional objects synthesized from their multiple angular viewpoints,” J. Opt. Soc. Am. A 20, 1537-1545(2003).
    [CrossRef]
  26. Y. Sando, M. Itoh, and T. Yatagai, “Holographic three-dimensional display synthesized from three-dimensional Fourier spectra of real-existing objects,” Opt. Lett. 28, 2518-2520 (2003).
    [CrossRef]
  27. Y. Sando, M. Itoh, and T. Yatagai, “Full-color computer-generated holograms using 3-D Fourier spectra,” Opt. Express 12, 6246-6251 (2004).
    [CrossRef]
  28. D. Abookasis and J. Rosen, “Three types of computer-generated hologram synthesized from multiple angular viewpoints of a three-dimensional scene,” Appl. Opt. 45, 6533-6538 (2006).
    [CrossRef]
  29. N. T. Shaked, J. Rosen, and A. Stern, “Integral holography: white-light single-shot hologram acquisition,” Opt. Express 15, 5754-5760 (2007).
    [CrossRef]
  30. B. Lee, S. Jung, and J. H. Park, “Viewing-angle-enhanced integral imaging by lens switching,” Opt. Lett. 27, 818-820(2002).
    [CrossRef]
  31. A. Stern and B. Javidi, “Three dimensional sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591-607 (2006).
    [CrossRef]
  32. J.-H. Park, M.-S. Kim, G. Baasantseren, and N. Kim, “Fresnel and Fourier hologram generation using orthographic projection images,” Opt. Express 17, 6320-6334(2009).
    [CrossRef]
  33. B. Katz, N. T. Shaked, and J. Rosen, “Synthesizing computer generated holograms with reduced number of perspective projections,” Opt. Express 15, 13250-13255(2007).
    [CrossRef]
  34. D. Scharstein, View Synthesis Using Stereo Vision, Vol. 1583 of Lecture Notes in Computer Science (Springer-Verlag, 1999), Chap. 2.
  35. J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Enhanced-resolution computational integral imaging reconstruction using an intermediate-view reconstruction technique,” Opt. Eng. 45, 117004:1-7 (2006).
  36. N. T. Shaked, B. Katz, and J. Rosen, “Fluorescence multicolor hologram recorded by using a macrolens array,” Opt. Lett. 33, 1461-1463 (2008).
    [CrossRef]
  37. N. T. Shaked and J. Rosen, “Modified Fresnel computer-generated hologram directly recorded by multiple-viewpoint projections,” Appl. Opt. 47, D21-D27 (2008).
    [CrossRef]
  38. N. T. Shaked and J. Rosen, “Multiple-viewpoint projection holograms synthesized by spatially incoherent correlation with broadband functions,” J. Opt. Soc. Am. A 25, 2129-2138(2008).
    [CrossRef]
  39. D. Abookasis and J. Rosen, “Digital correlation holograms implemented on a joint transform correlator,” Opt. Commun. 225, 31-37 (2003).
    [CrossRef]
  40. B. Javidi and A. Sergent, “Fully phase encoded key and biometrics for security verification,” Opt. Eng. 36, 935-942(1997).
  41. D. Abookasis, A. Batikoff, H. Famini, and J. Rosen, “Performance comparison of iterative algorithms for generating digital correlation holograms used in optical security systems,” Appl. Opt. 45, 4617-4624 (2006).
    [CrossRef]
  42. D. C. Youla and H. Webb, “Image restoration by the method of convex projections: part 1--theory,” IEEE Trans. Med. Imaging 1, 81-94 (1982).
    [CrossRef]
  43. J. R. Fienup, “Phase-retrieval algorithm: a comparison,” Appl. Opt. 21, 2758-2769 (1982).
    [CrossRef]
  44. H. Stark, Image Recovery: Theory and Application (Academic, 1987), pp. 29-78 and 277-320.
  45. J. Rosen and J. Shamir, “Application of the projection-onto-constraint-sets algorithm for optical pattern recognition,” Opt. Lett. 16, 752-754 (1991).
    [CrossRef]
  46. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006), Chap. 1.
  47. T. Vo-Dinh, ed., Biomedical Photonics Handbook (CRC Press, 2003), Chap. 3.5.
  48. N. T. Shaked, Y. Yitzhaky, and J. Rosen “Incoherent holographic imaging through thin turbulent media,” Opt. Commun. 282, 1546-1550 (2009).
    [CrossRef]
  49. T. Vo-Dinh, ed., Biomedical Photonics Handbook (CRC Press, 2003), Chaps. 13 and 16.
  50. J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825-840 (1997).
    [CrossRef]
  51. J. Rosen and D. Abookasis, “Seeing through biological tissues using the fly eye principle,” Opt. Express 11, 3605-3611(2003).
  52. J. Rosen and D. Abookasis, “Noninvasive optical imaging by speckle ensemble,” Opt. Lett. 29, 253-255 (2004).
    [CrossRef]
  53. J. Rosen and D. Abookasis, “NOISE 2 imaging system: Seeing through scattering tissue by correlation with a point,” Opt. Lett. 29, 253 (2004).
    [CrossRef]
  54. D. Abookasis and J. Rosen, “Stereoscopic imaging through scattering media,” Opt. Lett. 31, 724-726 (2006).
    [CrossRef]
  55. I. Moon and B. Javidi, “Three-dimensional visualization of objects in scattering medium by use of computational integral imaging,” Opt. Express 16, 13080-13089 (2008).
    [CrossRef]
  56. O. Shacham, O. Haik, and Y. Yitzhaky, “Blind restoration of atmospherically degraded images by automatic best step edge detection,” Pattern Recogn. Lett. 28, 2094-2103(2007).
  57. N. T. Shaked, G. Segev, and J. Rosen, “Three-dimensional object recognition using a quasi-correlator invariant to imaging distances,” Opt. Express 16, 17148-17153 (2008).
    [CrossRef]
  58. R. Bamler and J. Hofer-Alfeis, “Three- and four dimensional filter operations by coherent optics,” Opt. Acta 29, 747-757(1982).
  59. J. Rosen, “Three-dimensional optical Fourier transform and correlation,” Opt. Lett. 22, 964-966 (1997).
    [CrossRef]
  60. J. Rosen, “Three-dimensional electro-optical correlation,” J. Opt. Soc. Am. A 15, 430-436 (1998).
    [CrossRef]
  61. J. Rosen, “Three-dimensional joint transform correlator,” Appl. Opt. 37, 7538-7544 (1998).
    [CrossRef]
  62. Y. Li and J. Rosen, “Three-dimensional pattern recognition with a single two-dimensional synthetic reference function,” Appl. Opt. 39, 1251-1259 (2000).
    [CrossRef]
  63. Y. Li and J. Rosen, “Three-dimensional correlator with general complex filters,” Appl. Opt. 39, 6561-6572 (2000).
    [CrossRef]
  64. T.-C. Poon and T. Kim, “Optical image recognition of three dimensional objects,” Appl. Opt. 38, 370-381 (1999).
    [CrossRef]
  65. J. J. Esteve-Taboada, D. Mas, and J. Garcia, “Three dimensional object recognition by Fourier transform profilometry,” Appl. Opt. 38, 4760-4765 (1999).
    [CrossRef]
  66. Y. Li and J. Rosen, “Object recognition using three-dimensional optical quasi-correlation,” J. Opt. Soc. Am. A 19, 1755-1762 (2002).
    [CrossRef]
  67. B. Javidi, R. Ponce-Díaz, and S.-H. Hong, “Three-dimensional recognition of occluded objects by using computational integral imaging,” Opt. Lett. 31, 1106-1108 (2006).
    [CrossRef]
  68. J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Resolution-enhanced three-dimensional image correlator using computationally reconstructed integral images,” Opt. Commun. 276, 72-79 (2007).
    [CrossRef]
  69. D.-H. Shin and H. Yoo, “Scale-variant magnification for computational integral imaging and its application to 3D object correlator,” Opt. Express 16, 8855-8867 (2008).
    [CrossRef]
  70. Y. Li and J. Rosen, “Scale-invariant recognition of three-dimensional objects using quasi-correlator,” Appl. Opt. 42, 811-819 (2003).
    [CrossRef]
  71. J.-H. Park, J. Kim, and B. Lee, “Three-dimensional optical correlator using a subimage array,” Opt. Express 13, 5116-5126(2005).
    [CrossRef]

2009

J. Rosen, G. Indebetouw, G. Brooker, and N. T. Shaked, “A review of incoherent digital Fresnel holography,” J. Holography Speckle 5, 124-140 (2009).

J.-H. Park, M.-S. Kim, G. Baasantseren, and N. Kim, “Fresnel and Fourier hologram generation using orthographic projection images,” Opt. Express 17, 6320-6334(2009).
[CrossRef]

N. T. Shaked, Y. Yitzhaky, and J. Rosen “Incoherent holographic imaging through thin turbulent media,” Opt. Commun. 282, 1546-1550 (2009).
[CrossRef]

2008

2007

2006

2005

2004

2003

2002

2001

2000

1999

1998

1997

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825-840 (1997).
[CrossRef]

J. Rosen, “Three-dimensional optical Fourier transform and correlation,” Opt. Lett. 22, 964-966 (1997).
[CrossRef]

B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, and M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22, 1506-1508 (1997).
[CrossRef]

B. Javidi and A. Sergent, “Fully phase encoded key and biometrics for security verification,” Opt. Eng. 36, 935-942(1997).

1995

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338-1344 (1995).

1991

1987

1985

1982

D. C. Youla and H. Webb, “Image restoration by the method of convex projections: part 1--theory,” IEEE Trans. Med. Imaging 1, 81-94 (1982).
[CrossRef]

J. R. Fienup, “Phase-retrieval algorithm: a comparison,” Appl. Opt. 21, 2758-2769 (1982).
[CrossRef]

R. Bamler and J. Hofer-Alfeis, “Three- and four dimensional filter operations by coherent optics,” Opt. Acta 29, 747-757(1982).

1976

1966

1965

A. W. Lohmann, “Wavefront reconstruction for incoherent objects,” J. Opt. Soc. Am. 55, 1555-1556 (1965).
[CrossRef]

G. W. Stroke and R. C. Restrick, “Holography with spatially noncoherent light,” Appl. Phys. Lett. 7, 229-231 (1965).
[CrossRef]

Abookasis, D.

Arridge, S. R.

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825-840 (1997).
[CrossRef]

Baasantseren, G.

Bamler, R.

R. Bamler and J. Hofer-Alfeis, “Three- and four dimensional filter operations by coherent optics,” Opt. Acta 29, 747-757(1982).

Batikoff, A.

Brooker, G.

J. Rosen, G. Indebetouw, G. Brooker, and N. T. Shaked, “A review of incoherent digital Fresnel holography,” J. Holography Speckle 5, 124-140 (2009).

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photon. 2, 190-195 (2008).
[CrossRef]

J. Rosen and G. Brooker “Digital spatially incoherent Fresnel holography,” Opt. Lett. 32, 912-914 (2007).
[CrossRef]

J. Rosen and G. Brooker “Fluorescence incoherent color holography,” Opt. Express 15, 2244-2250 (2007).
[CrossRef]

Burckhardt, C. B.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

Cochran, G.

Collier, R. J.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

Delpy, D. T.

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825-840 (1997).
[CrossRef]

Doh, K. B.

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338-1344 (1995).

Esteve-Taboada, J. J.

Famini, H.

Fienup, J. R.

Garcia, J.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), pp. 355-363.

Haik, O.

O. Shacham, O. Haik, and Y. Yitzhaky, “Blind restoration of atmospherically degraded images by automatic best step edge detection,” Pattern Recogn. Lett. 28, 2094-2103(2007).

Hariharan, P.

P. Hariharan, Optical Holography, Principles, Techniques and Applications (Cambridge University Press, 1996).

Hebden, J. C.

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825-840 (1997).
[CrossRef]

Hofer-Alfeis, J.

R. Bamler and J. Hofer-Alfeis, “Three- and four dimensional filter operations by coherent optics,” Opt. Acta 29, 747-757(1982).

Hong, S.-H.

Hwang, D.-C.

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Resolution-enhanced three-dimensional image correlator using computationally reconstructed integral images,” Opt. Commun. 276, 72-79 (2007).
[CrossRef]

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Enhanced-resolution computational integral imaging reconstruction using an intermediate-view reconstruction technique,” Opt. Eng. 45, 117004:1-7 (2006).

Indebetouw, G.

Itoh, M.

Javidi, B.

I. Moon and B. Javidi, “Three-dimensional visualization of objects in scattering medium by use of computational integral imaging,” Opt. Express 16, 13080-13089 (2008).
[CrossRef]

A. Stern and B. Javidi, “Three dimensional sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591-607 (2006).
[CrossRef]

B. Javidi, R. Ponce-Díaz, and S.-H. Hong, “Three-dimensional recognition of occluded objects by using computational integral imaging,” Opt. Lett. 31, 1106-1108 (2006).
[CrossRef]

B. Javidi and A. Sergent, “Fully phase encoded key and biometrics for security verification,” Opt. Eng. 36, 935-942(1997).

Jung, S.

Juptner, W.

U. Schnars and W. Juptner, Digital Holography, Digital Hologram Recording, Numerical Reconstruction and Related Techniques (Springer, 2005).

Katz, B.

Kim, E.-S.

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Resolution-enhanced three-dimensional image correlator using computationally reconstructed integral images,” Opt. Commun. 276, 72-79 (2007).
[CrossRef]

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Enhanced-resolution computational integral imaging reconstruction using an intermediate-view reconstruction technique,” Opt. Eng. 45, 117004:1-7 (2006).

Kim, J.

Kim, M.-S.

Kim, N.

Kim, T.

Klysubun, P.

Kreis, T.

T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH, 2005), Chap. 3.

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006), Chap. 1.

Lee, B.

Li, Y.

Lin, L. H.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

Lohmann, A. W.

Marathay, A. S.

Mas, D.

Mertz, L.

L. Mertz and N. O. Young, “Fresnel transformations of images,” Proceedings of Conference on Optical Instruments and Techniques, K.J.Habell, Ed. (Chapman & Hall, 1962).

Mishina, T.

Moon, I.

Okano, F.

Okui, M.

Park, J. H.

Park, J.-H.

Park, J.-S.

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Resolution-enhanced three-dimensional image correlator using computationally reconstructed integral images,” Opt. Commun. 276, 72-79 (2007).
[CrossRef]

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Enhanced-resolution computational integral imaging reconstruction using an intermediate-view reconstruction technique,” Opt. Eng. 45, 117004:1-7 (2006).

Peters, P. J.

P. J. Peters, “Incoherent holograms with a mercury light source,” Appl. Phys. Lett. 8, 209-210 (1966).
[CrossRef]

Ponce-Díaz, R.

Poon, T.-C.

Psaltis, D.

Restrick, R. C.

G. W. Stroke and R. C. Restrick, “Holography with spatially noncoherent light,” Appl. Phys. Lett. 7, 229-231 (1965).
[CrossRef]

Rosen, J.

J. Rosen, G. Indebetouw, G. Brooker, and N. T. Shaked, “A review of incoherent digital Fresnel holography,” J. Holography Speckle 5, 124-140 (2009).

N. T. Shaked, Y. Yitzhaky, and J. Rosen “Incoherent holographic imaging through thin turbulent media,” Opt. Commun. 282, 1546-1550 (2009).
[CrossRef]

N. T. Shaked, G. Segev, and J. Rosen, “Three-dimensional object recognition using a quasi-correlator invariant to imaging distances,” Opt. Express 16, 17148-17153 (2008).
[CrossRef]

N. T. Shaked and J. Rosen, “Multiple-viewpoint projection holograms synthesized by spatially incoherent correlation with broadband functions,” J. Opt. Soc. Am. A 25, 2129-2138(2008).
[CrossRef]

N. T. Shaked and J. Rosen, “Modified Fresnel computer-generated hologram directly recorded by multiple-viewpoint projections,” Appl. Opt. 47, D21-D27 (2008).
[CrossRef]

N. T. Shaked, B. Katz, and J. Rosen, “Fluorescence multicolor hologram recorded by using a macrolens array,” Opt. Lett. 33, 1461-1463 (2008).
[CrossRef]

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photon. 2, 190-195 (2008).
[CrossRef]

J. Rosen and G. Brooker “Fluorescence incoherent color holography,” Opt. Express 15, 2244-2250 (2007).
[CrossRef]

J. Rosen and G. Brooker “Digital spatially incoherent Fresnel holography,” Opt. Lett. 32, 912-914 (2007).
[CrossRef]

N. T. Shaked, J. Rosen, and A. Stern, “Integral holography: white-light single-shot hologram acquisition,” Opt. Express 15, 5754-5760 (2007).
[CrossRef]

B. Katz, N. T. Shaked, and J. Rosen, “Synthesizing computer generated holograms with reduced number of perspective projections,” Opt. Express 15, 13250-13255(2007).
[CrossRef]

D. Abookasis, A. Batikoff, H. Famini, and J. Rosen, “Performance comparison of iterative algorithms for generating digital correlation holograms used in optical security systems,” Appl. Opt. 45, 4617-4624 (2006).
[CrossRef]

D. Abookasis and J. Rosen, “Stereoscopic imaging through scattering media,” Opt. Lett. 31, 724-726 (2006).
[CrossRef]

D. Abookasis and J. Rosen, “Three types of computer-generated hologram synthesized from multiple angular viewpoints of a three-dimensional scene,” Appl. Opt. 45, 6533-6538 (2006).
[CrossRef]

J. Rosen and D. Abookasis, “NOISE 2 imaging system: Seeing through scattering tissue by correlation with a point,” Opt. Lett. 29, 253 (2004).
[CrossRef]

J. Rosen and D. Abookasis, “Noninvasive optical imaging by speckle ensemble,” Opt. Lett. 29, 253-255 (2004).
[CrossRef]

J. Rosen and D. Abookasis, “Seeing through biological tissues using the fly eye principle,” Opt. Express 11, 3605-3611(2003).

D. Abookasis and J. Rosen, “Digital correlation holograms implemented on a joint transform correlator,” Opt. Commun. 225, 31-37 (2003).
[CrossRef]

D. Abookasis and J. Rosen, “Computer-generated holograms of three-dimensional objects synthesized from their multiple angular viewpoints,” J. Opt. Soc. Am. A 20, 1537-1545(2003).
[CrossRef]

Y. Li and J. Rosen, “Scale-invariant recognition of three-dimensional objects using quasi-correlator,” Appl. Opt. 42, 811-819 (2003).
[CrossRef]

Y. Li and J. Rosen, “Object recognition using three-dimensional optical quasi-correlation,” J. Opt. Soc. Am. A 19, 1755-1762 (2002).
[CrossRef]

Y. Li, D. Abookasis, and J. Rosen, “Computer-generated holograms of three-dimensional realistic objects recorded without wave interference,” Appl. Opt. 40, 2864-2870 (2001).
[CrossRef]

Y. Li and J. Rosen, “Three-dimensional correlator with general complex filters,” Appl. Opt. 39, 6561-6572 (2000).
[CrossRef]

Y. Li and J. Rosen, “Three-dimensional pattern recognition with a single two-dimensional synthetic reference function,” Appl. Opt. 39, 1251-1259 (2000).
[CrossRef]

J. Rosen, “Three-dimensional electro-optical correlation,” J. Opt. Soc. Am. A 15, 430-436 (1998).
[CrossRef]

J. Rosen, “Three-dimensional joint transform correlator,” Appl. Opt. 37, 7538-7544 (1998).
[CrossRef]

J. Rosen, “Three-dimensional optical Fourier transform and correlation,” Opt. Lett. 22, 964-966 (1997).
[CrossRef]

J. Rosen and J. Shamir, “Application of the projection-onto-constraint-sets algorithm for optical pattern recognition,” Opt. Lett. 16, 752-754 (1991).
[CrossRef]

Sando, Y.

Scharstein, D.

D. Scharstein, View Synthesis Using Stereo Vision, Vol. 1583 of Lecture Notes in Computer Science (Springer-Verlag, 1999), Chap. 2.

Schilling, B. W.

B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, and M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22, 1506-1508 (1997).
[CrossRef]

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338-1344 (1995).

Schnars, U.

U. Schnars and W. Juptner, Digital Holography, Digital Hologram Recording, Numerical Reconstruction and Related Techniques (Springer, 2005).

Segev, G.

Sergent, A.

B. Javidi and A. Sergent, “Fully phase encoded key and biometrics for security verification,” Opt. Eng. 36, 935-942(1997).

Shacham, O.

O. Shacham, O. Haik, and Y. Yitzhaky, “Blind restoration of atmospherically degraded images by automatic best step edge detection,” Pattern Recogn. Lett. 28, 2094-2103(2007).

Shaked, N. T.

Shamir, J.

Shin, D.-H.

D.-H. Shin and H. Yoo, “Scale-variant magnification for computational integral imaging and its application to 3D object correlator,” Opt. Express 16, 8855-8867 (2008).
[CrossRef]

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Resolution-enhanced three-dimensional image correlator using computationally reconstructed integral images,” Opt. Commun. 276, 72-79 (2007).
[CrossRef]

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Enhanced-resolution computational integral imaging reconstruction using an intermediate-view reconstruction technique,” Opt. Eng. 45, 117004:1-7 (2006).

Shinoda, K.

B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, and M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22, 1506-1508 (1997).
[CrossRef]

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338-1344 (1995).

Sirat, G.

Stark, H.

H. Stark, Image Recovery: Theory and Application (Academic, 1987), pp. 29-78 and 277-320.

Stern, A.

N. T. Shaked, J. Rosen, and A. Stern, “Integral holography: white-light single-shot hologram acquisition,” Opt. Express 15, 5754-5760 (2007).
[CrossRef]

A. Stern and B. Javidi, “Three dimensional sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591-607 (2006).
[CrossRef]

Storrie, B.

Stroke, G. W.

G. W. Stroke and R. C. Restrick, “Holography with spatially noncoherent light,” Appl. Phys. Lett. 7, 229-231 (1965).
[CrossRef]

Suzuki, Y.

B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, and M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22, 1506-1508 (1997).
[CrossRef]

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338-1344 (1995).

Vo-Dinh, T.

T. Vo-Dinh, ed., Biomedical Photonics Handbook (CRC Press, 2003), Chap. 3.5.

Vo-Dinh,, T.

T. Vo-Dinh, ed., Biomedical Photonics Handbook (CRC Press, 2003), Chaps. 13 and 16.

Webb, H.

D. C. Youla and H. Webb, “Image restoration by the method of convex projections: part 1--theory,” IEEE Trans. Med. Imaging 1, 81-94 (1982).
[CrossRef]

Worthington, H. R.

Wu, M. H.

B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, and M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22, 1506-1508 (1997).
[CrossRef]

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338-1344 (1995).

Yatagai, T.

Yitzhaky, Y.

N. T. Shaked, Y. Yitzhaky, and J. Rosen “Incoherent holographic imaging through thin turbulent media,” Opt. Commun. 282, 1546-1550 (2009).
[CrossRef]

O. Shacham, O. Haik, and Y. Yitzhaky, “Blind restoration of atmospherically degraded images by automatic best step edge detection,” Pattern Recogn. Lett. 28, 2094-2103(2007).

Yoo, H.

Youla, D. C.

D. C. Youla and H. Webb, “Image restoration by the method of convex projections: part 1--theory,” IEEE Trans. Med. Imaging 1, 81-94 (1982).
[CrossRef]

Young, N. O.

L. Mertz and N. O. Young, “Fresnel transformations of images,” Proceedings of Conference on Optical Instruments and Techniques, K.J.Habell, Ed. (Chapman & Hall, 1962).

Appl. Opt.

T. Yatagai, “Stereoscopic approach to 3-D display using computer-generated holograms,” Appl. Opt. 15, 2722-2729(1976).
[CrossRef]

T. Mishina, M. Okui, and F. Okano, “Calculation of holograms from elemental images captured by integral photography,” Appl. Opt. 45, 4026-4036 (2006).
[CrossRef]

D. Abookasis and J. Rosen, “Three types of computer-generated hologram synthesized from multiple angular viewpoints of a three-dimensional scene,” Appl. Opt. 45, 6533-6538 (2006).
[CrossRef]

Y. Li, D. Abookasis, and J. Rosen, “Computer-generated holograms of three-dimensional realistic objects recorded without wave interference,” Appl. Opt. 40, 2864-2870 (2001).
[CrossRef]

N. T. Shaked and J. Rosen, “Modified Fresnel computer-generated hologram directly recorded by multiple-viewpoint projections,” Appl. Opt. 47, D21-D27 (2008).
[CrossRef]

D. Abookasis, A. Batikoff, H. Famini, and J. Rosen, “Performance comparison of iterative algorithms for generating digital correlation holograms used in optical security systems,” Appl. Opt. 45, 4617-4624 (2006).
[CrossRef]

J. R. Fienup, “Phase-retrieval algorithm: a comparison,” Appl. Opt. 21, 2758-2769 (1982).
[CrossRef]

J. Rosen, “Three-dimensional joint transform correlator,” Appl. Opt. 37, 7538-7544 (1998).
[CrossRef]

Y. Li and J. Rosen, “Three-dimensional pattern recognition with a single two-dimensional synthetic reference function,” Appl. Opt. 39, 1251-1259 (2000).
[CrossRef]

Y. Li and J. Rosen, “Three-dimensional correlator with general complex filters,” Appl. Opt. 39, 6561-6572 (2000).
[CrossRef]

T.-C. Poon and T. Kim, “Optical image recognition of three dimensional objects,” Appl. Opt. 38, 370-381 (1999).
[CrossRef]

J. J. Esteve-Taboada, D. Mas, and J. Garcia, “Three dimensional object recognition by Fourier transform profilometry,” Appl. Opt. 38, 4760-4765 (1999).
[CrossRef]

Y. Li and J. Rosen, “Scale-invariant recognition of three-dimensional objects using quasi-correlator,” Appl. Opt. 42, 811-819 (2003).
[CrossRef]

Appl. Phys. Lett.

G. W. Stroke and R. C. Restrick, “Holography with spatially noncoherent light,” Appl. Phys. Lett. 7, 229-231 (1965).
[CrossRef]

P. J. Peters, “Incoherent holograms with a mercury light source,” Appl. Phys. Lett. 8, 209-210 (1966).
[CrossRef]

IEEE Trans. Med. Imaging

D. C. Youla and H. Webb, “Image restoration by the method of convex projections: part 1--theory,” IEEE Trans. Med. Imaging 1, 81-94 (1982).
[CrossRef]

J. Holography Speckle

J. Rosen, G. Indebetouw, G. Brooker, and N. T. Shaked, “A review of incoherent digital Fresnel holography,” J. Holography Speckle 5, 124-140 (2009).

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Nat. Photon.

T.-C. Poon, “Holography: Scan-free three-dimensional imaging,” Nat. Photon. 2, 131-132 (2008).
[CrossRef]

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photon. 2, 190-195 (2008).
[CrossRef]

Opt. Acta

R. Bamler and J. Hofer-Alfeis, “Three- and four dimensional filter operations by coherent optics,” Opt. Acta 29, 747-757(1982).

Opt. Commun.

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Resolution-enhanced three-dimensional image correlator using computationally reconstructed integral images,” Opt. Commun. 276, 72-79 (2007).
[CrossRef]

N. T. Shaked, Y. Yitzhaky, and J. Rosen “Incoherent holographic imaging through thin turbulent media,” Opt. Commun. 282, 1546-1550 (2009).
[CrossRef]

D. Abookasis and J. Rosen, “Digital correlation holograms implemented on a joint transform correlator,” Opt. Commun. 225, 31-37 (2003).
[CrossRef]

Opt. Eng.

B. Javidi and A. Sergent, “Fully phase encoded key and biometrics for security verification,” Opt. Eng. 36, 935-942(1997).

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338-1344 (1995).

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Enhanced-resolution computational integral imaging reconstruction using an intermediate-view reconstruction technique,” Opt. Eng. 45, 117004:1-7 (2006).

Opt. Express

Y. Sando, M. Itoh, and T. Yatagai, “Full-color computer-generated holograms using 3-D Fourier spectra,” Opt. Express 12, 6246-6251 (2004).
[CrossRef]

J. Rosen and D. Abookasis, “Seeing through biological tissues using the fly eye principle,” Opt. Express 11, 3605-3611(2003).

D.-H. Shin and H. Yoo, “Scale-variant magnification for computational integral imaging and its application to 3D object correlator,” Opt. Express 16, 8855-8867 (2008).
[CrossRef]

N. T. Shaked, G. Segev, and J. Rosen, “Three-dimensional object recognition using a quasi-correlator invariant to imaging distances,” Opt. Express 16, 17148-17153 (2008).
[CrossRef]

J.-H. Park, J. Kim, and B. Lee, “Three-dimensional optical correlator using a subimage array,” Opt. Express 13, 5116-5126(2005).
[CrossRef]

I. Moon and B. Javidi, “Three-dimensional visualization of objects in scattering medium by use of computational integral imaging,” Opt. Express 16, 13080-13089 (2008).
[CrossRef]

J. Rosen and G. Brooker “Fluorescence incoherent color holography,” Opt. Express 15, 2244-2250 (2007).
[CrossRef]

J.-H. Park, M.-S. Kim, G. Baasantseren, and N. Kim, “Fresnel and Fourier hologram generation using orthographic projection images,” Opt. Express 17, 6320-6334(2009).
[CrossRef]

B. Katz, N. T. Shaked, and J. Rosen, “Synthesizing computer generated holograms with reduced number of perspective projections,” Opt. Express 15, 13250-13255(2007).
[CrossRef]

N. T. Shaked, J. Rosen, and A. Stern, “Integral holography: white-light single-shot hologram acquisition,” Opt. Express 15, 5754-5760 (2007).
[CrossRef]

Opt. Lett.

B. Lee, S. Jung, and J. H. Park, “Viewing-angle-enhanced integral imaging by lens switching,” Opt. Lett. 27, 818-820(2002).
[CrossRef]

Y. Sando, M. Itoh, and T. Yatagai, “Holographic three-dimensional display synthesized from three-dimensional Fourier spectra of real-existing objects,” Opt. Lett. 28, 2518-2520 (2003).
[CrossRef]

B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, and M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22, 1506-1508 (1997).
[CrossRef]

J. Rosen and G. Brooker “Digital spatially incoherent Fresnel holography,” Opt. Lett. 32, 912-914 (2007).
[CrossRef]

G. Sirat and D. Psaltis, “Conoscopic holography,” Opt. Lett. 10, 4-6 (1985).
[CrossRef]

J. Rosen, “Three-dimensional optical Fourier transform and correlation,” Opt. Lett. 22, 964-966 (1997).
[CrossRef]

B. Javidi, R. Ponce-Díaz, and S.-H. Hong, “Three-dimensional recognition of occluded objects by using computational integral imaging,” Opt. Lett. 31, 1106-1108 (2006).
[CrossRef]

J. Rosen and D. Abookasis, “Noninvasive optical imaging by speckle ensemble,” Opt. Lett. 29, 253-255 (2004).
[CrossRef]

J. Rosen and D. Abookasis, “NOISE 2 imaging system: Seeing through scattering tissue by correlation with a point,” Opt. Lett. 29, 253 (2004).
[CrossRef]

D. Abookasis and J. Rosen, “Stereoscopic imaging through scattering media,” Opt. Lett. 31, 724-726 (2006).
[CrossRef]

N. T. Shaked, B. Katz, and J. Rosen, “Fluorescence multicolor hologram recorded by using a macrolens array,” Opt. Lett. 33, 1461-1463 (2008).
[CrossRef]

J. Rosen and J. Shamir, “Application of the projection-onto-constraint-sets algorithm for optical pattern recognition,” Opt. Lett. 16, 752-754 (1991).
[CrossRef]

Pattern Recogn. Lett.

O. Shacham, O. Haik, and Y. Yitzhaky, “Blind restoration of atmospherically degraded images by automatic best step edge detection,” Pattern Recogn. Lett. 28, 2094-2103(2007).

Phys. Med. Biol.

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825-840 (1997).
[CrossRef]

Proc. IEEE

A. Stern and B. Javidi, “Three dimensional sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591-607 (2006).
[CrossRef]

Other

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), pp. 355-363.

T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH, 2005), Chap. 3.

D. Scharstein, View Synthesis Using Stereo Vision, Vol. 1583 of Lecture Notes in Computer Science (Springer-Verlag, 1999), Chap. 2.

P. Hariharan, Optical Holography, Principles, Techniques and Applications (Cambridge University Press, 1996).

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

U. Schnars and W. Juptner, Digital Holography, Digital Hologram Recording, Numerical Reconstruction and Related Techniques (Springer, 2005).

L. Mertz and N. O. Young, “Fresnel transformations of images,” Proceedings of Conference on Optical Instruments and Techniques, K.J.Habell, Ed. (Chapman & Hall, 1962).

T. Vo-Dinh, ed., Biomedical Photonics Handbook (CRC Press, 2003), Chaps. 13 and 16.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006), Chap. 1.

T. Vo-Dinh, ed., Biomedical Photonics Handbook (CRC Press, 2003), Chap. 3.5.

H. Stark, Image Recovery: Theory and Application (Academic, 1987), pp. 29-78 and 277-320.

Supplementary Material (19)

» Media 1: AVI (14676 KB)     
» Media 2: AVI (8772 KB)     
» Media 3: AVI (8862 KB)     
» Media 4: AVI (7639 KB)     
» Media 5: AVI (14701 KB)     
» Media 6: AVI (12129 KB)     
» Media 7: AVI (14147 KB)     
» Media 8: AVI (11746 KB)     
» Media 9: AVI (14399 KB)     
» Media 10: AVI (13470 KB)     
» Media 11: AVI (7637 KB)     
» Media 12: AVI (9136 KB)     
» Media 13: AVI (10348 KB)     
» Media 14: AVI (9971 KB)     
» Media 15: AVI (7394 KB)     
» Media 16: AVI (8309 KB)     
» Media 17: AVI (9281 KB)     
» Media 18: AVI (8594 KB)     
» Media 19: AVI (4009 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Integral holography—MVP holography using a microlens array [29]. (a) Optical system for capturing the MVPs. (b) Several projections taken from different parts of the microlens array image plane captured by the camera. Larger part of this image plane is shown in View 1 and Media 1. (c) Magnitude (left) and phase (right) of the 2-D Fourier hologram obtained after performing the processing stage on the captured projections; (d) Best-in-focus reconstructed planes obtained by digital Fresnel propagation. Note that (b)–(d) are contrast-inverted. The continuous Fresnel propagation as 2-D slices and the entire reconstructed volume are shown in View 2, as well as in Media 2 and Media 3 (best-in-focus axial points are amplified).

Fig. 2
Fig. 2

Synthetic projection holography (SPH)—optically acquiring only a small number of projections and synthesizing the middle MVPs by the view synthesis algorithm [33]: (a) Schematics of the experimental setup. Only two projections are optically acquired. The entire MVP set (including the synthesized projections) is shown in View 3 and Media 4. (b) Magnitude (left) and phase (right) of the 1-D Fourier hologram obtained from the final set of MVPs. (c) Best-in-focus reconstructed planes. The continuous Fresnel propagation as 2-D slices and the entire reconstructed volume are shown in View 4, as well as in Media 5 and Media 6 (best-in-focus axial points are amplified).

Fig. 3
Fig. 3

Acquiring a small number of high-resolution projections in a single digital camera exposure using a macrolens array [36]: (a) Photo of the 3 × 3 macrolens array. (b) Image plane of the macrolens array captured by the camera in a single exposure.

Fig. 4
Fig. 4

1-D MVP holography [38]: (a) Optical system for acquiring MVPs of a 3-D scene along the horizontal axis. (b) Several projections taken from the entire set of 1200 projections, which are shown in View 5 and Media 7.

Fig. 5
Fig. 5

One-dimensional DIMFH results obtained from the MVP set, partially shown in Fig. 4b [38]: (a) Magnitude (left) and phase (right) of the hologram. (b) Phase distributions of the reconstructing PSFs used for obtaining the three best-in-focus reconstructed planes. (c) Corresponding three best-in-focus reconstructed planes along the optical axis. (d) Same as (c) but after the resampling along the horizontal axis. (e) Zoomed-in images of the corresponding best-in-focus reconstructed objects.

Fig. 6
Fig. 6

Finding the PSF of the DIPCH [38]: (a) Schematics of the POCS algorithm used. (b), (c) Phase distribution of the random- constrained PSF of the: (b) 1-D DIPCH, and (c) 2-D DIPCH.

Fig. 7
Fig. 7

One-dimensional DIPCH results obtained from the MVP set, partially shown in Fig. 4b [38]: (a) Magnitude (left) and phase (right) of the hologram. (b) Phase distribution of the reconstructing PSFs used for obtaining the three best-in-focus reconstructed planes. (c) Corresponding three best-in-focus reconstructed planes along the optical axis. (d) Same as (c) but after the resampling along the horizontal axis. (e) Zoomed-in images of the corresponding best-in-focus reconstructed objects.

Fig. 8
Fig. 8

Fluorescence 3-D imaging by MVP holography [36]: (a) Optical system for acquiring 3 × 3 perspective projections simultaneously using the macrolens array shown in Fig. 3. Part of the objects in the scene are fluorescently labeled. (b) Composite image plane of the macrolens array acquired by the camera. (c) Magnitude (left) and phase (right) of the nonflorescence 2-D DIMFH. Two additional fluorescence 2-D DIMFHs are generated as well. (d) Three best-in-focus multicolor reconstructed planes. Viewing this figure in color online is highly recommended.

Fig. 9
Fig. 9

MVP holography of a 3-D scene hidden behind a turbulent medium under incoherent illumination [48]: (a) Schematics of the experimental setup; (b)–(d) The middle perspective projection of the 3-D scene directly acquired by the digital camera (views and media references show the entire sets of 1100 projections each): (b) without a diffuser (View 6 and Media 8), (c) through a stationary diffuser (View 7 and Media 9), and (d) through a rotated/vibrated diffuser (View 8 and Media 10); (e) Magnitude (left) and phase (right) of the 1-D DIMFH generated without a diffuser. Similar DIMFHs were generated for the two other cases as well. (f)–(i) Best-in-focus reconstructed planes obtained from the DIMFHs that where generated (views and media references show the continuous Fresnel propagation as 2-D slices and the entire reconstructed volume. Axial best-in-focus points are amplified): (f) without a diffuser (View 9 and Media 11 and Media 12), (g) through a stationary diffuser (View 10 and Media 13 and Media 14), (h) through a rotated/vibrated diffuser (View 11 and Media 15 and Media 16), and (i) after applying the blind deconvolution algorithm (View 12 and Media 17 and Media 18).

Fig. 10
Fig. 10

Three-dimensional object recognition under white light using incoherent correlation holography (taking into advantage the constant magnification feature of the DIMFH) [57]: (a) Schematics of the entire process. Part of the 200 × 200 projection set is shown in View 13 and Media 19. (b)–(g) Final correlation planes at the axial reconstruction distances of the: (b), (e) close tiger, (c), (f) goat, and (d), (g) distant tiger. Height axis: correlation intensity (A.U.). Ground axes: transverse coordinates. Higher correlation peaks indicate on better object recognition. (b)–(d) DIMFH-based results: a single filter is used to recognize both tigers simultaneously and reject the goat. (e)–(g) MVP-Fourier-hologram-based results (comparison to the old method, which does not have a constant magnification feature): by using a single filter, only the close tiger can be recognized, and both the distant tiger and the goat are rejected. (h), (i) Correlation values along the optical axis of the 3-D correlation space for each of the three objects. The axial distance points for each of the objects are circled: (h) DIMFH-based results (both tigers are recognized), (i) MVP-Fourier-hologram-based results (old method, only the close tiger is recognized).

Datasets

Datasets associated with ISP articles are stored in an online database called MIDAS. Clicking a "View" link in an OSA ISP article will launch the ISP software (if installed) and pull the relevant data from MIDAS. Visit MIDAS to browse and download the datasets directly. A package containing the PDF article and full datasets is available in MIDAS for offline viewing.

Questions or Problems? See the ISP FAQ. Already used the ISP software? Take a quick survey to tell us what you think.

Tables (2)

Tables Icon

Table 1 Generating and Reconstructing PSFs of Various 1-D MVP Holograms

Tables Icon

Table 2 Generating and Reconstructing PSFs of Various 2-D MVP Holograms

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

H 1 ( m , n ) = P m ( x p , y p ) E 1 ( x p , y p n Δ p ) d x p d y p ,
E 1 ( x p , y p ) = A 1 ( b x x p ) exp [ i g 1 ( b x x p ) ] δ ( y p ) ,
s 1 ( m , n ; z r ) = | H 1 ( m , n ) * R 1 ( m , n ; z r ) | ,
R 1 ( m , n ; z r ) = A 1 ( m Δ p z r ) exp [ i g 1 ( m Δ p z r ) ] δ ( n Δ p ) ,
H 2 ( m , n ) = P m , n ( x p , y p ) E 2 ( x p , y p ) d x p d y p ,
E 2 ( x p , y p ) = A 2 ( b x x p , b y y p ) exp [ i g 2 ( b x x p , b y y p ) ] ,
s 2 ( m , n ; z r ) = | H 2 ( m , n ) * R 2 ( m , n ; z r ) | ,
R 2 ( m , n ; z r ) = A 2 ( m Δ p z r , n Δ p z r ) exp [ i g 2 ( m Δ p z r , n Δ p z r ) ] ,
R 2 ( m , n ; z r ) = exp [ i ( m Δ p ) 2 + ( n Δ p ) 2 z r ] .
E 1 ( x p , y p ) = exp ( i b m x p ) δ ( y p ) ,
E 2 ( x p , y p ) = exp [ i b ( m x p + n y p ) ] .
E 1 ( x p , y p ) = exp ( i 2 π b 2 x p 2 ) δ ( y p ) ,
E 2 ( x p , y p ) = exp [ i 2 π b 2 ( x p 2 + y p 2 ) ] ,
M 1 , x = Δ p α , M 1 , y = f z s = M , M 1 , z = Δ p b f α ,
M 2 , x = M 2 , y = Δ p α , M 2 , z = Δ p b f α .

Metrics