Abstract

We overview the benefits that extended depth of focus technology may provide for three-dimensional imaging and profilometry. The approaches for which the extended depth of focus benefits are being examined include stereoscopy, light coherence, pattern projection, scanning line, speckles projection, and projection of axially varied shapes.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Sawatari, “Real-time noncontacting distance measurement using optical triangulation,” Appl. Opt. 15, 2821-2827 (1976).
    [CrossRef] [PubMed]
  2. G. Hausler and D. Ritter, “Parallel three-dimensional sensing by color-coded triangulation,” Appl. Opt. 32, 7164-7170(1993).
    [CrossRef] [PubMed]
  3. R. G. Dorsch, G. Hausler, and J. M. Herrmann, “Laser triangulation: fundamental uncertainty in distance measurement,” Appl. Opt. 33, 1306-1312 (1994).
    [CrossRef] [PubMed]
  4. A. M. Bruckstein, “On shape from shading,” Comput. Vis. Graph. Image Process. 44, 139-154 (1988).
    [CrossRef]
  5. Y. G. Leclerc and A. F. Bobick, “The direct computation of height from shading,” in Proceedings of IEEE Computer Vision and Pattern Recognition (IEEE, 1991), pp. 552-558.
    [CrossRef]
  6. R. Zhang and M. Shah, “Shape from intensity gradient,” IEEE Trans. Syst. Man Cybern. 29, 318-325 (1999).
    [CrossRef]
  7. M. Asada, H. Ichikawa, and S. Tjuji, “Determining of surface properties by projecting a stripe pattern,” in Proceedings of the International Pattern Recognition Conference (IEEE, 1986), pp. 1162-1164.
  8. M. Asada, H. Ichikawa, and S. Tsuji, “Determining surface orientation by projecting a stripe pattern,” IEEE Trans. Pattern Anal. Mach. Intell. 10, 749-754 (1988).
    [CrossRef]
  9. R. Kimmel, N. Kiryati, and A. M. Bruckstein, “Analyzing and synthesizing images by evolving curves with the Osher-Sethian method,” Int. J. Comput. Vis. 24, 37-56 (1997).
    [CrossRef]
  10. L. Zhang, B. Curless, and S. M. Seitz, “Rapid shape acquisition using color structured light and multi pass dynamic programming,” in Proceedings of 1st International Symposium on 3D Data Processing Visualization and Transmission (3DPVT) (IEEE Computer Society, 2002), pp. 24-37.
    [CrossRef] [PubMed]
  11. E. Horn and N. Kiryati, “Toward optimal structured light patterns,” in Proceedings of the International Conference on Recent Advances in 3-D Digital Imaging and Modeling (IEEE Computer Society, 1997), pp. 28-37.
  12. J. Rosen and A. Yariv, “General theorem of spatial coherence: application to three-dimensional imaging,” J. Opt. Soc. Am. A 13, 2091-2095 (1996).
    [CrossRef]
  13. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215(1999).
    [CrossRef]
  14. E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34, 1859-1866 (1995).
    [CrossRef] [PubMed]
  15. J. van der Gracht, E. Dowski, M. Taylor, and D. Deaver, “Broadband behavior of an optical-digital focus-invariant system,” Opt. Lett. 21, 919-921 (1996).
    [CrossRef] [PubMed]
  16. J. O. Castaneda, E. Tepichin, and A. Diaz, “Arbitrary high focal depth with a quasi optimum real and positive transmittance apodizer,” Appl. Opt. 28, 2666-2669 (1989).
    [CrossRef]
  17. J. O. Castaneda and L. R. Berriel-Valdos, “Zone plate for arbitrary high focal depth,” Appl. Opt. 29, 994-997 (1990).
    [CrossRef]
  18. E. Ben Eliezer, Z. Zalevsky, E. Marom, and N. Konforti, “All-optical extended depth of field imaging system,” J. Opt. A, Pure Appl. Opt. 5, S164-S169 (2003).
    [CrossRef]
  19. A. Sauceda and J. Ojeda-Castaneda, “High focal depth with fractional-power wavefronts,” Opt. Lett. 29, 560-562 (2004).
    [CrossRef] [PubMed]
  20. W. Chi and N. George, “Electronic imaging using a logarithmic asphere,” Opt. Lett. 26, 875-877 (2001).
    [CrossRef]
  21. Z. Zalevsky, A. Shemer, A. Zlotnik, E. Ben-Eliezer, and E. Marom, “All-optical axial super resolving imaging using low-frequency binary-phase mask,” Opt. Express 14, 2631-2643 (2006).
    [CrossRef] [PubMed]
  22. C. Iemmi, A. Moreno, and J. Campos, “Digital holography with a point diffraction interferometer,” Opt. Express 13, 1885-1891 (2005).
    [CrossRef] [PubMed]
  23. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006).
    [CrossRef] [PubMed]
  24. I. Yamaguchi and T. Zhang, “Phase shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997).
    [CrossRef] [PubMed]
  25. Z. Zalevsky and A. Zlotnik, “Axially and transversally super resolved imaging and ranging with random aperture coding,” J. Opt. A, Pure Appl. Opt. 10, 064014 (2008).
    [CrossRef]
  26. A. Stern and B. Javidi, “Random projections imaging with extended space-bandwidth product,” J. Display Technol. 3, 315-320 (2007).
    [CrossRef]
  27. M. Pfennigbauer, B. Möbius, and J. Pereira do Carmo, “Echo digitizing imaging LIDAR for rendezvous and docking,” Proc. SPIE 7323, 732302 (2009).
    [CrossRef]
  28. J. A. Shufelt, “Performance evaluation and analysis of vanishing point detection rechniques,” IEEE Trans. Pattern Anal. Mach. Intell. 21, 282-288 (1999).
    [CrossRef]
  29. Z. Zalevsky, O. Margalit, E. Vexberg, R. Pearl, and J. Garcia, “Suppression of phase ambiguity in digital holography by using partial coherence or specimen rotation,” Appl. Opt. 47, D154-D163 (2008).
    [CrossRef] [PubMed]
  30. T. Dresel, G. Hausler, and H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919-925 (1992).
    [CrossRef] [PubMed]
  31. Z. Zalevsky, D. Mendlovic, and H. M. Ozaktas, “Energetic efficient synthesis of mutual intensity distribution,” J. Opt. A, Pure Appl. Opt. 2, 83-87 (2000).
    [CrossRef]
  32. Z. Zalevsky, J. García, P. García-Martínez, and C. Ferreira, “Spatial information transmission using orthogonal mutual coherence coding,” Opt. Lett. 30, 2837-2839 (2005).
    [CrossRef] [PubMed]
  33. V. Micó, J. García, C. Ferreira, D. Sylman, and Z. Zalevsky, “Spatial information transmission using axial temporal coherence coding,” Opt. Lett. 32, 736-738 (2007).
    [CrossRef] [PubMed]
  34. J. Garcia and Z. Zalevsky, “Range mapping using speckle decorrelation,” U.S. patent 7,433,024 (October 2008); World Intellectual Property Organization publication WO/2007/096893 (27 February 2007).
  35. A. Shpunt and Z. Zalevsky, “Three-dimensional sensing using speckle patterns,” World Intellectual Property Organization publication WO/2007/105205 (8 March 2007).
  36. D. Sazbon, Z. Zalevsky, and E. Rivlin, “Qualitative real-time range extraction for preplanned scene partitioning using laser beam coding,” Pattern Recogn. Lett. 26, 1772-1781(2005).
    [CrossRef]
  37. J. García, Z. Zalevsky, P. García-Martínez, C. Ferreira, M. Teicher, and Y. Beiderman, “Three-dimensional mapping and range measurement by means of projected speckle patterns,” Appl. Opt. 47, 3032-3040 (2008).
    [CrossRef] [PubMed]

2009 (1)

M. Pfennigbauer, B. Möbius, and J. Pereira do Carmo, “Echo digitizing imaging LIDAR for rendezvous and docking,” Proc. SPIE 7323, 732302 (2009).
[CrossRef]

2008 (3)

2007 (2)

2006 (2)

2005 (3)

2004 (1)

2003 (1)

E. Ben Eliezer, Z. Zalevsky, E. Marom, and N. Konforti, “All-optical extended depth of field imaging system,” J. Opt. A, Pure Appl. Opt. 5, S164-S169 (2003).
[CrossRef]

2001 (1)

2000 (1)

Z. Zalevsky, D. Mendlovic, and H. M. Ozaktas, “Energetic efficient synthesis of mutual intensity distribution,” J. Opt. A, Pure Appl. Opt. 2, 83-87 (2000).
[CrossRef]

1999 (3)

J. A. Shufelt, “Performance evaluation and analysis of vanishing point detection rechniques,” IEEE Trans. Pattern Anal. Mach. Intell. 21, 282-288 (1999).
[CrossRef]

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215(1999).
[CrossRef]

R. Zhang and M. Shah, “Shape from intensity gradient,” IEEE Trans. Syst. Man Cybern. 29, 318-325 (1999).
[CrossRef]

1997 (2)

R. Kimmel, N. Kiryati, and A. M. Bruckstein, “Analyzing and synthesizing images by evolving curves with the Osher-Sethian method,” Int. J. Comput. Vis. 24, 37-56 (1997).
[CrossRef]

I. Yamaguchi and T. Zhang, “Phase shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997).
[CrossRef] [PubMed]

1996 (2)

1995 (1)

1994 (1)

1993 (1)

1992 (1)

1990 (1)

1989 (1)

1988 (2)

A. M. Bruckstein, “On shape from shading,” Comput. Vis. Graph. Image Process. 44, 139-154 (1988).
[CrossRef]

M. Asada, H. Ichikawa, and S. Tsuji, “Determining surface orientation by projecting a stripe pattern,” IEEE Trans. Pattern Anal. Mach. Intell. 10, 749-754 (1988).
[CrossRef]

1976 (1)

Asada, M.

M. Asada, H. Ichikawa, and S. Tsuji, “Determining surface orientation by projecting a stripe pattern,” IEEE Trans. Pattern Anal. Mach. Intell. 10, 749-754 (1988).
[CrossRef]

M. Asada, H. Ichikawa, and S. Tjuji, “Determining of surface properties by projecting a stripe pattern,” in Proceedings of the International Pattern Recognition Conference (IEEE, 1986), pp. 1162-1164.

Beiderman, Y.

Ben Eliezer, E.

E. Ben Eliezer, Z. Zalevsky, E. Marom, and N. Konforti, “All-optical extended depth of field imaging system,” J. Opt. A, Pure Appl. Opt. 5, S164-S169 (2003).
[CrossRef]

Ben-Eliezer, E.

Berriel-Valdos, L. R.

Bobick, A. F.

Y. G. Leclerc and A. F. Bobick, “The direct computation of height from shading,” in Proceedings of IEEE Computer Vision and Pattern Recognition (IEEE, 1991), pp. 552-558.
[CrossRef]

Bruckstein, A. M.

R. Kimmel, N. Kiryati, and A. M. Bruckstein, “Analyzing and synthesizing images by evolving curves with the Osher-Sethian method,” Int. J. Comput. Vis. 24, 37-56 (1997).
[CrossRef]

A. M. Bruckstein, “On shape from shading,” Comput. Vis. Graph. Image Process. 44, 139-154 (1988).
[CrossRef]

Campos, J.

Castaneda, J. O.

Cathey, W. T.

Chi, W.

Curless, B.

L. Zhang, B. Curless, and S. M. Seitz, “Rapid shape acquisition using color structured light and multi pass dynamic programming,” in Proceedings of 1st International Symposium on 3D Data Processing Visualization and Transmission (3DPVT) (IEEE Computer Society, 2002), pp. 24-37.
[CrossRef] [PubMed]

Deaver, D.

Diaz, A.

Dorsch, R. G.

Dowski, E.

Dowski, E. R.

Dresel, T.

Ferreira, C.

Garcia, J.

Z. Zalevsky, O. Margalit, E. Vexberg, R. Pearl, and J. Garcia, “Suppression of phase ambiguity in digital holography by using partial coherence or specimen rotation,” Appl. Opt. 47, D154-D163 (2008).
[CrossRef] [PubMed]

J. Garcia and Z. Zalevsky, “Range mapping using speckle decorrelation,” U.S. patent 7,433,024 (October 2008); World Intellectual Property Organization publication WO/2007/096893 (27 February 2007).

García, J.

García-Martínez, P.

Garcia-Sucerquia, J.

George, N.

Hausler, G.

Herrmann, J. M.

Horn, E.

E. Horn and N. Kiryati, “Toward optimal structured light patterns,” in Proceedings of the International Conference on Recent Advances in 3-D Digital Imaging and Modeling (IEEE Computer Society, 1997), pp. 28-37.

Ichikawa, H.

M. Asada, H. Ichikawa, and S. Tsuji, “Determining surface orientation by projecting a stripe pattern,” IEEE Trans. Pattern Anal. Mach. Intell. 10, 749-754 (1988).
[CrossRef]

M. Asada, H. Ichikawa, and S. Tjuji, “Determining of surface properties by projecting a stripe pattern,” in Proceedings of the International Pattern Recognition Conference (IEEE, 1986), pp. 1162-1164.

Iemmi, C.

Javidi, B.

Jericho, M. H.

Jericho, S. K.

Kimmel, R.

R. Kimmel, N. Kiryati, and A. M. Bruckstein, “Analyzing and synthesizing images by evolving curves with the Osher-Sethian method,” Int. J. Comput. Vis. 24, 37-56 (1997).
[CrossRef]

Kiryati, N.

R. Kimmel, N. Kiryati, and A. M. Bruckstein, “Analyzing and synthesizing images by evolving curves with the Osher-Sethian method,” Int. J. Comput. Vis. 24, 37-56 (1997).
[CrossRef]

E. Horn and N. Kiryati, “Toward optimal structured light patterns,” in Proceedings of the International Conference on Recent Advances in 3-D Digital Imaging and Modeling (IEEE Computer Society, 1997), pp. 28-37.

Klages, P.

Konforti, N.

E. Ben Eliezer, Z. Zalevsky, E. Marom, and N. Konforti, “All-optical extended depth of field imaging system,” J. Opt. A, Pure Appl. Opt. 5, S164-S169 (2003).
[CrossRef]

Kreuzer, H. J.

Leclerc, Y. G.

Y. G. Leclerc and A. F. Bobick, “The direct computation of height from shading,” in Proceedings of IEEE Computer Vision and Pattern Recognition (IEEE, 1991), pp. 552-558.
[CrossRef]

Margalit, O.

Marom, E.

Z. Zalevsky, A. Shemer, A. Zlotnik, E. Ben-Eliezer, and E. Marom, “All-optical axial super resolving imaging using low-frequency binary-phase mask,” Opt. Express 14, 2631-2643 (2006).
[CrossRef] [PubMed]

E. Ben Eliezer, Z. Zalevsky, E. Marom, and N. Konforti, “All-optical extended depth of field imaging system,” J. Opt. A, Pure Appl. Opt. 5, S164-S169 (2003).
[CrossRef]

Mendlovic, D.

Z. Zalevsky, D. Mendlovic, and H. M. Ozaktas, “Energetic efficient synthesis of mutual intensity distribution,” J. Opt. A, Pure Appl. Opt. 2, 83-87 (2000).
[CrossRef]

Micó, V.

Möbius, B.

M. Pfennigbauer, B. Möbius, and J. Pereira do Carmo, “Echo digitizing imaging LIDAR for rendezvous and docking,” Proc. SPIE 7323, 732302 (2009).
[CrossRef]

Moreno, A.

Ojeda-Castaneda, J.

Ozaktas, H. M.

Z. Zalevsky, D. Mendlovic, and H. M. Ozaktas, “Energetic efficient synthesis of mutual intensity distribution,” J. Opt. A, Pure Appl. Opt. 2, 83-87 (2000).
[CrossRef]

Pearl, R.

Pereira do Carmo, J.

M. Pfennigbauer, B. Möbius, and J. Pereira do Carmo, “Echo digitizing imaging LIDAR for rendezvous and docking,” Proc. SPIE 7323, 732302 (2009).
[CrossRef]

Pfennigbauer, M.

M. Pfennigbauer, B. Möbius, and J. Pereira do Carmo, “Echo digitizing imaging LIDAR for rendezvous and docking,” Proc. SPIE 7323, 732302 (2009).
[CrossRef]

Ritter, D.

Rivlin, E.

D. Sazbon, Z. Zalevsky, and E. Rivlin, “Qualitative real-time range extraction for preplanned scene partitioning using laser beam coding,” Pattern Recogn. Lett. 26, 1772-1781(2005).
[CrossRef]

Rosen, J.

Sauceda, A.

Sawatari, T.

Sazbon, D.

D. Sazbon, Z. Zalevsky, and E. Rivlin, “Qualitative real-time range extraction for preplanned scene partitioning using laser beam coding,” Pattern Recogn. Lett. 26, 1772-1781(2005).
[CrossRef]

Schmitt, J. M.

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215(1999).
[CrossRef]

Seitz, S. M.

L. Zhang, B. Curless, and S. M. Seitz, “Rapid shape acquisition using color structured light and multi pass dynamic programming,” in Proceedings of 1st International Symposium on 3D Data Processing Visualization and Transmission (3DPVT) (IEEE Computer Society, 2002), pp. 24-37.
[CrossRef] [PubMed]

Shah, M.

R. Zhang and M. Shah, “Shape from intensity gradient,” IEEE Trans. Syst. Man Cybern. 29, 318-325 (1999).
[CrossRef]

Shemer, A.

Shpunt, A.

A. Shpunt and Z. Zalevsky, “Three-dimensional sensing using speckle patterns,” World Intellectual Property Organization publication WO/2007/105205 (8 March 2007).

Shufelt, J. A.

J. A. Shufelt, “Performance evaluation and analysis of vanishing point detection rechniques,” IEEE Trans. Pattern Anal. Mach. Intell. 21, 282-288 (1999).
[CrossRef]

Stern, A.

Sylman, D.

Taylor, M.

Teicher, M.

Tepichin, E.

Tjuji, S.

M. Asada, H. Ichikawa, and S. Tjuji, “Determining of surface properties by projecting a stripe pattern,” in Proceedings of the International Pattern Recognition Conference (IEEE, 1986), pp. 1162-1164.

Tsuji, S.

M. Asada, H. Ichikawa, and S. Tsuji, “Determining surface orientation by projecting a stripe pattern,” IEEE Trans. Pattern Anal. Mach. Intell. 10, 749-754 (1988).
[CrossRef]

van der Gracht, J.

Venzke, H.

Vexberg, E.

Xu, W.

Yamaguchi, I.

Yariv, A.

Zalevsky, Z.

Z. Zalevsky, O. Margalit, E. Vexberg, R. Pearl, and J. Garcia, “Suppression of phase ambiguity in digital holography by using partial coherence or specimen rotation,” Appl. Opt. 47, D154-D163 (2008).
[CrossRef] [PubMed]

Z. Zalevsky and A. Zlotnik, “Axially and transversally super resolved imaging and ranging with random aperture coding,” J. Opt. A, Pure Appl. Opt. 10, 064014 (2008).
[CrossRef]

J. García, Z. Zalevsky, P. García-Martínez, C. Ferreira, M. Teicher, and Y. Beiderman, “Three-dimensional mapping and range measurement by means of projected speckle patterns,” Appl. Opt. 47, 3032-3040 (2008).
[CrossRef] [PubMed]

V. Micó, J. García, C. Ferreira, D. Sylman, and Z. Zalevsky, “Spatial information transmission using axial temporal coherence coding,” Opt. Lett. 32, 736-738 (2007).
[CrossRef] [PubMed]

Z. Zalevsky, A. Shemer, A. Zlotnik, E. Ben-Eliezer, and E. Marom, “All-optical axial super resolving imaging using low-frequency binary-phase mask,” Opt. Express 14, 2631-2643 (2006).
[CrossRef] [PubMed]

D. Sazbon, Z. Zalevsky, and E. Rivlin, “Qualitative real-time range extraction for preplanned scene partitioning using laser beam coding,” Pattern Recogn. Lett. 26, 1772-1781(2005).
[CrossRef]

Z. Zalevsky, J. García, P. García-Martínez, and C. Ferreira, “Spatial information transmission using orthogonal mutual coherence coding,” Opt. Lett. 30, 2837-2839 (2005).
[CrossRef] [PubMed]

E. Ben Eliezer, Z. Zalevsky, E. Marom, and N. Konforti, “All-optical extended depth of field imaging system,” J. Opt. A, Pure Appl. Opt. 5, S164-S169 (2003).
[CrossRef]

Z. Zalevsky, D. Mendlovic, and H. M. Ozaktas, “Energetic efficient synthesis of mutual intensity distribution,” J. Opt. A, Pure Appl. Opt. 2, 83-87 (2000).
[CrossRef]

A. Shpunt and Z. Zalevsky, “Three-dimensional sensing using speckle patterns,” World Intellectual Property Organization publication WO/2007/105205 (8 March 2007).

J. Garcia and Z. Zalevsky, “Range mapping using speckle decorrelation,” U.S. patent 7,433,024 (October 2008); World Intellectual Property Organization publication WO/2007/096893 (27 February 2007).

Zhang, L.

L. Zhang, B. Curless, and S. M. Seitz, “Rapid shape acquisition using color structured light and multi pass dynamic programming,” in Proceedings of 1st International Symposium on 3D Data Processing Visualization and Transmission (3DPVT) (IEEE Computer Society, 2002), pp. 24-37.
[CrossRef] [PubMed]

Zhang, R.

R. Zhang and M. Shah, “Shape from intensity gradient,” IEEE Trans. Syst. Man Cybern. 29, 318-325 (1999).
[CrossRef]

Zhang, T.

Zlotnik, A.

Z. Zalevsky and A. Zlotnik, “Axially and transversally super resolved imaging and ranging with random aperture coding,” J. Opt. A, Pure Appl. Opt. 10, 064014 (2008).
[CrossRef]

Z. Zalevsky, A. Shemer, A. Zlotnik, E. Ben-Eliezer, and E. Marom, “All-optical axial super resolving imaging using low-frequency binary-phase mask,” Opt. Express 14, 2631-2643 (2006).
[CrossRef] [PubMed]

IEEE Trans. Syst. Man Cybern. (1)

R. Zhang and M. Shah, “Shape from intensity gradient,” IEEE Trans. Syst. Man Cybern. 29, 318-325 (1999).
[CrossRef]

Appl. Opt. (10)

J. O. Castaneda, E. Tepichin, and A. Diaz, “Arbitrary high focal depth with a quasi optimum real and positive transmittance apodizer,” Appl. Opt. 28, 2666-2669 (1989).
[CrossRef]

J. O. Castaneda and L. R. Berriel-Valdos, “Zone plate for arbitrary high focal depth,” Appl. Opt. 29, 994-997 (1990).
[CrossRef]

T. Sawatari, “Real-time noncontacting distance measurement using optical triangulation,” Appl. Opt. 15, 2821-2827 (1976).
[CrossRef] [PubMed]

G. Hausler and D. Ritter, “Parallel three-dimensional sensing by color-coded triangulation,” Appl. Opt. 32, 7164-7170(1993).
[CrossRef] [PubMed]

R. G. Dorsch, G. Hausler, and J. M. Herrmann, “Laser triangulation: fundamental uncertainty in distance measurement,” Appl. Opt. 33, 1306-1312 (1994).
[CrossRef] [PubMed]

E. R. Dowski and W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34, 1859-1866 (1995).
[CrossRef] [PubMed]

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006).
[CrossRef] [PubMed]

Z. Zalevsky, O. Margalit, E. Vexberg, R. Pearl, and J. Garcia, “Suppression of phase ambiguity in digital holography by using partial coherence or specimen rotation,” Appl. Opt. 47, D154-D163 (2008).
[CrossRef] [PubMed]

T. Dresel, G. Hausler, and H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31, 919-925 (1992).
[CrossRef] [PubMed]

J. García, Z. Zalevsky, P. García-Martínez, C. Ferreira, M. Teicher, and Y. Beiderman, “Three-dimensional mapping and range measurement by means of projected speckle patterns,” Appl. Opt. 47, 3032-3040 (2008).
[CrossRef] [PubMed]

Comput. Vis. Graph. Image Process. (1)

A. M. Bruckstein, “On shape from shading,” Comput. Vis. Graph. Image Process. 44, 139-154 (1988).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215(1999).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell. (2)

M. Asada, H. Ichikawa, and S. Tsuji, “Determining surface orientation by projecting a stripe pattern,” IEEE Trans. Pattern Anal. Mach. Intell. 10, 749-754 (1988).
[CrossRef]

J. A. Shufelt, “Performance evaluation and analysis of vanishing point detection rechniques,” IEEE Trans. Pattern Anal. Mach. Intell. 21, 282-288 (1999).
[CrossRef]

Int. J. Comput. Vis. (1)

R. Kimmel, N. Kiryati, and A. M. Bruckstein, “Analyzing and synthesizing images by evolving curves with the Osher-Sethian method,” Int. J. Comput. Vis. 24, 37-56 (1997).
[CrossRef]

J. Display Technol. (1)

J. Opt. A, Pure Appl. Opt. (3)

Z. Zalevsky and A. Zlotnik, “Axially and transversally super resolved imaging and ranging with random aperture coding,” J. Opt. A, Pure Appl. Opt. 10, 064014 (2008).
[CrossRef]

Z. Zalevsky, D. Mendlovic, and H. M. Ozaktas, “Energetic efficient synthesis of mutual intensity distribution,” J. Opt. A, Pure Appl. Opt. 2, 83-87 (2000).
[CrossRef]

E. Ben Eliezer, Z. Zalevsky, E. Marom, and N. Konforti, “All-optical extended depth of field imaging system,” J. Opt. A, Pure Appl. Opt. 5, S164-S169 (2003).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Express (2)

Opt. Lett. (6)

Pattern Recogn. Lett. (1)

D. Sazbon, Z. Zalevsky, and E. Rivlin, “Qualitative real-time range extraction for preplanned scene partitioning using laser beam coding,” Pattern Recogn. Lett. 26, 1772-1781(2005).
[CrossRef]

Proc. SPIE (1)

M. Pfennigbauer, B. Möbius, and J. Pereira do Carmo, “Echo digitizing imaging LIDAR for rendezvous and docking,” Proc. SPIE 7323, 732302 (2009).
[CrossRef]

Other (6)

J. Garcia and Z. Zalevsky, “Range mapping using speckle decorrelation,” U.S. patent 7,433,024 (October 2008); World Intellectual Property Organization publication WO/2007/096893 (27 February 2007).

A. Shpunt and Z. Zalevsky, “Three-dimensional sensing using speckle patterns,” World Intellectual Property Organization publication WO/2007/105205 (8 March 2007).

M. Asada, H. Ichikawa, and S. Tjuji, “Determining of surface properties by projecting a stripe pattern,” in Proceedings of the International Pattern Recognition Conference (IEEE, 1986), pp. 1162-1164.

L. Zhang, B. Curless, and S. M. Seitz, “Rapid shape acquisition using color structured light and multi pass dynamic programming,” in Proceedings of 1st International Symposium on 3D Data Processing Visualization and Transmission (3DPVT) (IEEE Computer Society, 2002), pp. 24-37.
[CrossRef] [PubMed]

E. Horn and N. Kiryati, “Toward optimal structured light patterns,” in Proceedings of the International Conference on Recent Advances in 3-D Digital Imaging and Modeling (IEEE Computer Society, 1997), pp. 28-37.

Y. G. Leclerc and A. F. Bobick, “The direct computation of height from shading,” in Proceedings of IEEE Computer Vision and Pattern Recognition (IEEE, 1991), pp. 552-558.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic sketch of stereoscopic system.

Fig. 2
Fig. 2

Through focus MTF for frequency of 40   cycles / mm : (a)  F # = 12.5 , no EDOF; (b)  F # = 7.2 , no EDOF; (c)  F # = 7.2 , with EDOF.

Fig. 3
Fig. 3

Experimental results for letters positioned on a tilted plane (x and y axis units are pixels, where each pixel is 3 μm): (a)–(c) without EDOF (View 1), (d)–(f) with EDOF (View 2), (a)–(d) image captured from the right camera, (b)–(e) image captured from the left camera, and (c)–(f) the resulting depth map.

Fig. 4
Fig. 4

(a) Schematic description of the operation principle of 3D estimation by illuminating the object with a periodic structure; (b) experimental demonstration of the operation principle.

Fig. 5
Fig. 5

Projection of speckles for 3D estimation.

Fig. 6
Fig. 6

Schematic sketch of Z-varied patterns projection.

Fig. 7
Fig. 7

(a) Experimental setup (x and y axis units are pixels, where each pixel is 3 μm); (b) imaged grating without EDOF and without the inspected object; (c) imaged grating without EDOF and with the inspected object; (d) 3D reconstruction for the case of without EDOF (View 3) (color bar values are relative); (e) imaged grating with EDOF and without the inspected object; (f) imaged grating with EDOF and with the inspected object; (g) 3D reconstruction with EDOF (View 4) (color bar values are relative).

Datasets

Datasets associated with ISP articles are stored in an online database called MIDAS. Clicking a "View" link in an OSA ISP article will launch the ISP software (if installed) and pull the relevant data from MIDAS. Visit MIDAS to browse and download the datasets directly. A package containing the PDF article and full datasets is available in MIDAS for offline viewing.

Questions or Problems? See the ISP FAQ. Already used the ISP software? Take a quick survey to tell us what you think.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Z = b f ( x l x r ) .
Δ z = 2 F # COC = κ 1 λ F # 2 = κ 1 λ f 2 D 2 ,
δ = κ 2 λ F # ,
Γ 11 ( τ ( P ) ) = u ( P 1 , t + τ ( P ) ) * u ( P 1 , t ) .
W m = Ψ λ 2 π ,
Ψ = π D 2 4 λ ( 1 Z i + 1 Z o 1 f ) ,
1 Z i + 1 Z o = 1 f ,
H ( μ ) = ( 1 | μ | 2 μ c . o . ) sin c { 8 W m π λ ( μ 2 μ c . o . ) ( 1 μ 2 μ c . o . ) } ,
Δ h = Δ x tan α x , Δ h = Δ y tan α y ,

Metrics