Abstract

Two-line laser-induced-fluorescence (LIF) thermometry is commonly employed to generate instantaneous planar maps of temperature in unsteady flames. The use of line scanning to extract the ratio of integrated intensities is less common because it precludes instantaneous measurements. Recent advances in the energy output of high-speed, ultraviolet, optical parameter oscillators have made possible the rapid scanning of molecular rovibrational transitions and, hence, the potential to extract information on gas-phase temperatures. In the current study, two-line OH LIF thermometry is performed in a well-calibrated reacting flow for the purpose of comparing the relative accuracy of various line-pair selections from the literature and quantifying the differences between peak-intensity and spectrally integrated line ratios. Investigated are the effects of collisional quenching, laser absorption, and the integration width for partial scanning of closely spaced lines on the measured temperatures. Data from excitation scans are compared with theoretical line shapes, and experimentally derived temperatures are compared with numerical predictions that were previously validated using coherent anti-Stokes–Raman scattering. Ratios of four pairs of transitions in the A2Σ+X2Π (1,0) band of OH are collected in an atmospheric-pressure, near-adiabatic hydrogen-air flame over a wide range of equivalence ratios—from 0.4 to 1.4. It is observed that measured temperatures based on the ratio of Q1(14)/Q1(5) transition lines result in the best accuracy and that line scanning improves the measurement accuracy by as much as threefold at low-equivalence-ratio, low-temperature conditions. These results provide a comprehensive analysis of the procedures required to ensure accurate two-line LIF measurements in reacting flows over a wide range of conditions.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Taylor and Francis, 1996).
  2. G. Sutton, A. Levick, G. Edwards, and D. Greenhalgh, “A combustion temperature and species standard for the calibration of laser diagnostic techniques,” Combust. Flame 147, 39-48(2006).
    [CrossRef]
  3. K. Kohse-Höinghaus and J. B. Jeffries, Applied Combustion Diagnostics (Taylor and Francis, 2002).
  4. N. M. Laurendeau, “Temperature measurements by light-scattering methods,” Prog. Energy Combust. Sci. 14, 147-170(1988).
    [CrossRef]
  5. R. J. Hall and A. C. Eckbreth, “Coherent anti-Stokes Raman spectroscopy (CARS): application to combustion diagnostics,” in Laser Applications, J. F. Ready and R. K. Erf, eds. (Academic, 1984), Vol. 5, pp. 213-309.
  6. S. Roy, W. D. Kulatilaka, R. P. Lucht, N. G. Glumac, and T. Hu, “Temperature profile measurements in the near-substrate region of diamond-forming flames,” Combust. Flame 130, 261-276 (2002).
    [CrossRef]
  7. R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323-331 (1997).
    [CrossRef]
  8. J. D. Miller, M. N. Slipchenko, T. R. Meyer, N. Jiang, W. R. Lempert, and J. R. Gord, “Ultrahigh-frame-rate OH fluorescence imaging in turbulent flames using a burst-mode optical parametric oscillator,” Opt. Lett. 34, 1309-1311 (2009).
    [CrossRef] [PubMed]
  9. J. T. C. Liu, G. B. Rieker, J. B. Jeffries, M. R. Gruber, C. D. Carter, T. Mathur, and R. K. Hanson, “Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor,” Appl. Opt. 44, 6701-6711(2005).
    [CrossRef] [PubMed]
  10. R. Cattolica, “OH rotational temperature from two-line laser-excited fluorescence,” Appl. Opt. 20, 1156-1166 (1981).
    [CrossRef] [PubMed]
  11. R. K. Hanson, J. M. Seitzman, and P. H. Paul, “Planar laser-fluorescence imaging in combustion gases,” Appl. Phys. B 50, 441-454 (1990).
    [CrossRef]
  12. R. P. Lucht, N. M. Laurendeau, and D. W. Sweeney, “Temperature measurement by two-line laser-saturated OH fluorescence in flames,” Appl. Opt. 21, 3729-3735 (1982).
    [CrossRef] [PubMed]
  13. J. M. Seitzman, G. Kychakoff, and R. K. Hanson, “Instantaneous temperature field measurements using planar laser-induced fluorescence,” Opt. Lett. 10, 439-441 (1985).
    [CrossRef] [PubMed]
  14. J. M. Seitzman, R. K. Hanson, P. A. DeBarber, and C. F. Hess, “Application of quantitative two-line OH planar laser-induced fluorescence for temporally resolved planar thermometry in reacting flows,” Appl. Opt. 33, 4000-4012 (1994).
    [CrossRef] [PubMed]
  15. E. J. Welle, W. L. Roberts, C. D. Carter, and J. M. Donbar, “The response of a propane-air counter-flow diffusion flame subjected to a transient flow field,” Combust. Flame 135, 285-297 (2003).
    [CrossRef]
  16. R. Giezendanner-Thoben, U. Meier, W. Meier, J. Heinze, and M. Aigner, “Phase-locked two-line OH planar laser-induced thermometry in a pulsating gas turbine model combustor at atmospheric pressure,” Appl. Opt. 44, 6565-6577 (2005).
    [CrossRef] [PubMed]
  17. M. S. Woolridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, and C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame 131, 98-109 (2002).
    [CrossRef]
  18. W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, “Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic atmospheric pressure hydrogen/air flames,” Combust. Flame 137, 523-537 (2004).
    [CrossRef]
  19. T. R. Meyer, S. R. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, “Measurements of mole fraction and temperature up to 20 kHz by using a diode-laser-based UV absorption sensor,” Appl. Opt. 44, 6729-6740(2005).
    [CrossRef] [PubMed]
  20. B. J. McBride and S. Gordon, Computer Program for the Calculation of Complex Chemical Equilibrium: Compositions and Applications, NASA Reference Publication 1311 (NASA Lewis Research Center, 1996).
  21. D. R. Stull and H. Prophet, JANAF Thermochemical Tables, 2nd ed., National Standard Reference Data System-National Bureau of Standards37 (1971).
  22. J. Luque and D. R. Crosley, “LIFBASE, database and spectral simulation for diatomic molecules (v 1.6),” SRI International Report MP-99-009 (1999).
  23. E. C. Rea Jr., A. Y. Chang, and R. K. Hanson, “Shock-tube study of pressure broadening of the A2Σ+−X2Π (0,0) band of OH by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 37, 117-127 (1987).
    [CrossRef]
  24. R. Devillers, G. Bruneaux, and C. Schulz, “Development of a two-line OH-laser-induced fluorescence thermometry diagnostics strategy for gas-phase temperature measurements in engines,” Appl. Opt. 47, 5871-5885 (2008).
    [CrossRef]
  25. M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502-514 (1998).
    [CrossRef]
  26. J. J. Olivero and R. L. Longbothum, “Empirical fits to the Voigt line width: a brief review,” J. Quant. Spectrosc. Radiat. Transfer 17, 233-236 (1977).
    [CrossRef]

2009 (1)

2008 (1)

2006 (1)

G. Sutton, A. Levick, G. Edwards, and D. Greenhalgh, “A combustion temperature and species standard for the calibration of laser diagnostic techniques,” Combust. Flame 147, 39-48(2006).
[CrossRef]

2005 (3)

2004 (1)

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, “Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic atmospheric pressure hydrogen/air flames,” Combust. Flame 137, 523-537 (2004).
[CrossRef]

2003 (1)

E. J. Welle, W. L. Roberts, C. D. Carter, and J. M. Donbar, “The response of a propane-air counter-flow diffusion flame subjected to a transient flow field,” Combust. Flame 135, 285-297 (2003).
[CrossRef]

2002 (2)

M. S. Woolridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, and C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame 131, 98-109 (2002).
[CrossRef]

S. Roy, W. D. Kulatilaka, R. P. Lucht, N. G. Glumac, and T. Hu, “Temperature profile measurements in the near-substrate region of diamond-forming flames,” Combust. Flame 130, 261-276 (2002).
[CrossRef]

1998 (1)

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502-514 (1998).
[CrossRef]

1997 (1)

R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323-331 (1997).
[CrossRef]

1994 (1)

1990 (1)

R. K. Hanson, J. M. Seitzman, and P. H. Paul, “Planar laser-fluorescence imaging in combustion gases,” Appl. Phys. B 50, 441-454 (1990).
[CrossRef]

1988 (1)

N. M. Laurendeau, “Temperature measurements by light-scattering methods,” Prog. Energy Combust. Sci. 14, 147-170(1988).
[CrossRef]

1987 (1)

E. C. Rea Jr., A. Y. Chang, and R. K. Hanson, “Shock-tube study of pressure broadening of the A2Σ+−X2Π (0,0) band of OH by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 37, 117-127 (1987).
[CrossRef]

1985 (1)

1982 (1)

1981 (1)

1977 (1)

J. J. Olivero and R. L. Longbothum, “Empirical fits to the Voigt line width: a brief review,” J. Quant. Spectrosc. Radiat. Transfer 17, 233-236 (1977).
[CrossRef]

Aigner, M.

Anderson, T. N.

Berg, P. A.

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502-514 (1998).
[CrossRef]

Bertagnolli, K. E.

R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323-331 (1997).
[CrossRef]

Bruneaux, G.

Carter, C. D.

J. T. C. Liu, G. B. Rieker, J. B. Jeffries, M. R. Gruber, C. D. Carter, T. Mathur, and R. K. Hanson, “Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor,” Appl. Opt. 44, 6701-6711(2005).
[CrossRef] [PubMed]

E. J. Welle, W. L. Roberts, C. D. Carter, and J. M. Donbar, “The response of a propane-air counter-flow diffusion flame subjected to a transient flow field,” Combust. Flame 135, 285-297 (2003).
[CrossRef]

Cattolica, R.

Chang, A. Y.

E. C. Rea Jr., A. Y. Chang, and R. K. Hanson, “Shock-tube study of pressure broadening of the A2Σ+−X2Π (0,0) band of OH by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 37, 117-127 (1987).
[CrossRef]

Crosley, D. R.

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502-514 (1998).
[CrossRef]

J. Luque and D. R. Crosley, “LIFBASE, database and spectral simulation for diatomic molecules (v 1.6),” SRI International Report MP-99-009 (1999).

DeBarber, P. A.

Devillers, R.

Donbar, J. M.

E. J. Welle, W. L. Roberts, C. D. Carter, and J. M. Donbar, “The response of a propane-air counter-flow diffusion flame subjected to a transient flow field,” Combust. Flame 135, 285-297 (2003).
[CrossRef]

Donovan, M. T.

M. S. Woolridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, and C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame 131, 98-109 (2002).
[CrossRef]

Eckbreth, A. C.

R. J. Hall and A. C. Eckbreth, “Coherent anti-Stokes Raman spectroscopy (CARS): application to combustion diagnostics,” in Laser Applications, J. F. Ready and R. K. Erf, eds. (Academic, 1984), Vol. 5, pp. 213-309.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Taylor and Francis, 1996).

Edwards, G.

G. Sutton, A. Levick, G. Edwards, and D. Greenhalgh, “A combustion temperature and species standard for the calibration of laser diagnostic techniques,” Combust. Flame 147, 39-48(2006).
[CrossRef]

Giezendanner-Thoben, R.

Glumac, N. G.

S. Roy, W. D. Kulatilaka, R. P. Lucht, N. G. Glumac, and T. Hu, “Temperature profile measurements in the near-substrate region of diamond-forming flames,” Combust. Flame 130, 261-276 (2002).
[CrossRef]

Gord, J. R.

Gordon, S.

B. J. McBride and S. Gordon, Computer Program for the Calculation of Complex Chemical Equilibrium: Compositions and Applications, NASA Reference Publication 1311 (NASA Lewis Research Center, 1996).

Greenhalgh, D.

G. Sutton, A. Levick, G. Edwards, and D. Greenhalgh, “A combustion temperature and species standard for the calibration of laser diagnostic techniques,” Combust. Flame 147, 39-48(2006).
[CrossRef]

Gruber, M. R.

Hall, D. L.

M. S. Woolridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, and C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame 131, 98-109 (2002).
[CrossRef]

Hall, R. J.

R. J. Hall and A. C. Eckbreth, “Coherent anti-Stokes Raman spectroscopy (CARS): application to combustion diagnostics,” in Laser Applications, J. F. Ready and R. K. Erf, eds. (Academic, 1984), Vol. 5, pp. 213-309.

Hancock, R. D.

R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323-331 (1997).
[CrossRef]

Hanna, S. F.

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, “Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic atmospheric pressure hydrogen/air flames,” Combust. Flame 137, 523-537 (2004).
[CrossRef]

Hanson, R. K.

Harrington, J. E.

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502-514 (1998).
[CrossRef]

Heinze, J.

Hess, C. F.

Hu, T.

S. Roy, W. D. Kulatilaka, R. P. Lucht, N. G. Glumac, and T. Hu, “Temperature profile measurements in the near-substrate region of diamond-forming flames,” Combust. Flame 130, 261-276 (2002).
[CrossRef]

Jeffries, J. B.

J. T. C. Liu, G. B. Rieker, J. B. Jeffries, M. R. Gruber, C. D. Carter, T. Mathur, and R. K. Hanson, “Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor,” Appl. Opt. 44, 6701-6711(2005).
[CrossRef] [PubMed]

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502-514 (1998).
[CrossRef]

K. Kohse-Höinghaus and J. B. Jeffries, Applied Combustion Diagnostics (Taylor and Francis, 2002).

Jiang, N.

Katta, V. R.

T. R. Meyer, S. R. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, “Measurements of mole fraction and temperature up to 20 kHz by using a diode-laser-based UV absorption sensor,” Appl. Opt. 44, 6729-6740(2005).
[CrossRef] [PubMed]

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, “Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic atmospheric pressure hydrogen/air flames,” Combust. Flame 137, 523-537 (2004).
[CrossRef]

Kohse-Höinghaus, K.

K. Kohse-Höinghaus and J. B. Jeffries, Applied Combustion Diagnostics (Taylor and Francis, 2002).

Kulatilaka, W. D.

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, “Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic atmospheric pressure hydrogen/air flames,” Combust. Flame 137, 523-537 (2004).
[CrossRef]

S. Roy, W. D. Kulatilaka, R. P. Lucht, N. G. Glumac, and T. Hu, “Temperature profile measurements in the near-substrate region of diamond-forming flames,” Combust. Flame 130, 261-276 (2002).
[CrossRef]

Kychakoff, G.

Laurendeau, N. M.

Lempert, W. R.

Levick, A.

G. Sutton, A. Levick, G. Edwards, and D. Greenhalgh, “A combustion temperature and species standard for the calibration of laser diagnostic techniques,” Combust. Flame 147, 39-48(2006).
[CrossRef]

Liu, J. T. C.

Longbothum, R. L.

J. J. Olivero and R. L. Longbothum, “Empirical fits to the Voigt line width: a brief review,” J. Quant. Spectrosc. Radiat. Transfer 17, 233-236 (1977).
[CrossRef]

Lucht, R. P.

T. R. Meyer, S. R. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, “Measurements of mole fraction and temperature up to 20 kHz by using a diode-laser-based UV absorption sensor,” Appl. Opt. 44, 6729-6740(2005).
[CrossRef] [PubMed]

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, “Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic atmospheric pressure hydrogen/air flames,” Combust. Flame 137, 523-537 (2004).
[CrossRef]

S. Roy, W. D. Kulatilaka, R. P. Lucht, N. G. Glumac, and T. Hu, “Temperature profile measurements in the near-substrate region of diamond-forming flames,” Combust. Flame 130, 261-276 (2002).
[CrossRef]

R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323-331 (1997).
[CrossRef]

R. P. Lucht, N. M. Laurendeau, and D. W. Sweeney, “Temperature measurement by two-line laser-saturated OH fluorescence in flames,” Appl. Opt. 21, 3729-3735 (1982).
[CrossRef] [PubMed]

Luque, J.

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502-514 (1998).
[CrossRef]

J. Luque and D. R. Crosley, “LIFBASE, database and spectral simulation for diatomic molecules (v 1.6),” SRI International Report MP-99-009 (1999).

Mathur, T.

McBride, B. J.

B. J. McBride and S. Gordon, Computer Program for the Calculation of Complex Chemical Equilibrium: Compositions and Applications, NASA Reference Publication 1311 (NASA Lewis Research Center, 1996).

Meier, U.

Meier, W.

Meyer, T. R.

Miller, J. D.

Miller, T. A.

M. S. Woolridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, and C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame 131, 98-109 (2002).
[CrossRef]

Olivero, J. J.

J. J. Olivero and R. L. Longbothum, “Empirical fits to the Voigt line width: a brief review,” J. Quant. Spectrosc. Radiat. Transfer 17, 233-236 (1977).
[CrossRef]

Palmer, T. R.

M. S. Woolridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, and C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame 131, 98-109 (2002).
[CrossRef]

Paul, P. H.

R. K. Hanson, J. M. Seitzman, and P. H. Paul, “Planar laser-fluorescence imaging in combustion gases,” Appl. Phys. B 50, 441-454 (1990).
[CrossRef]

Prophet, H.

D. R. Stull and H. Prophet, JANAF Thermochemical Tables, 2nd ed., National Standard Reference Data System-National Bureau of Standards37 (1971).

Rea, E. C.

E. C. Rea Jr., A. Y. Chang, and R. K. Hanson, “Shock-tube study of pressure broadening of the A2Σ+−X2Π (0,0) band of OH by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 37, 117-127 (1987).
[CrossRef]

Rieker, G. B.

Roberts, W. L.

E. J. Welle, W. L. Roberts, C. D. Carter, and J. M. Donbar, “The response of a propane-air counter-flow diffusion flame subjected to a transient flow field,” Combust. Flame 135, 285-297 (2003).
[CrossRef]

Roy, S.

S. Roy, W. D. Kulatilaka, R. P. Lucht, N. G. Glumac, and T. Hu, “Temperature profile measurements in the near-substrate region of diamond-forming flames,” Combust. Flame 130, 261-276 (2002).
[CrossRef]

Roy, S. R.

Schrock, C. R.

M. S. Woolridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, and C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame 131, 98-109 (2002).
[CrossRef]

Schulz, C.

Seitzman, J. M.

Slipchenko, M. N.

Smith, G. P.

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502-514 (1998).
[CrossRef]

Stull, D. R.

D. R. Stull and H. Prophet, JANAF Thermochemical Tables, 2nd ed., National Standard Reference Data System-National Bureau of Standards37 (1971).

Sutton, G.

G. Sutton, A. Levick, G. Edwards, and D. Greenhalgh, “A combustion temperature and species standard for the calibration of laser diagnostic techniques,” Combust. Flame 147, 39-48(2006).
[CrossRef]

Sweeney, D. W.

Tamura, M.

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502-514 (1998).
[CrossRef]

Torek, P. V.

M. S. Woolridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, and C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame 131, 98-109 (2002).
[CrossRef]

Welle, E. J.

E. J. Welle, W. L. Roberts, C. D. Carter, and J. M. Donbar, “The response of a propane-air counter-flow diffusion flame subjected to a transient flow field,” Combust. Flame 135, 285-297 (2003).
[CrossRef]

Woolridge, M. S.

M. S. Woolridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, and C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame 131, 98-109 (2002).
[CrossRef]

Appl. Opt. (7)

J. T. C. Liu, G. B. Rieker, J. B. Jeffries, M. R. Gruber, C. D. Carter, T. Mathur, and R. K. Hanson, “Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor,” Appl. Opt. 44, 6701-6711(2005).
[CrossRef] [PubMed]

R. Cattolica, “OH rotational temperature from two-line laser-excited fluorescence,” Appl. Opt. 20, 1156-1166 (1981).
[CrossRef] [PubMed]

R. P. Lucht, N. M. Laurendeau, and D. W. Sweeney, “Temperature measurement by two-line laser-saturated OH fluorescence in flames,” Appl. Opt. 21, 3729-3735 (1982).
[CrossRef] [PubMed]

J. M. Seitzman, R. K. Hanson, P. A. DeBarber, and C. F. Hess, “Application of quantitative two-line OH planar laser-induced fluorescence for temporally resolved planar thermometry in reacting flows,” Appl. Opt. 33, 4000-4012 (1994).
[CrossRef] [PubMed]

T. R. Meyer, S. R. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, “Measurements of mole fraction and temperature up to 20 kHz by using a diode-laser-based UV absorption sensor,” Appl. Opt. 44, 6729-6740(2005).
[CrossRef] [PubMed]

R. Giezendanner-Thoben, U. Meier, W. Meier, J. Heinze, and M. Aigner, “Phase-locked two-line OH planar laser-induced thermometry in a pulsating gas turbine model combustor at atmospheric pressure,” Appl. Opt. 44, 6565-6577 (2005).
[CrossRef] [PubMed]

R. Devillers, G. Bruneaux, and C. Schulz, “Development of a two-line OH-laser-induced fluorescence thermometry diagnostics strategy for gas-phase temperature measurements in engines,” Appl. Opt. 47, 5871-5885 (2008).
[CrossRef]

Appl. Phys. B (1)

R. K. Hanson, J. M. Seitzman, and P. H. Paul, “Planar laser-fluorescence imaging in combustion gases,” Appl. Phys. B 50, 441-454 (1990).
[CrossRef]

Combust. Flame (7)

S. Roy, W. D. Kulatilaka, R. P. Lucht, N. G. Glumac, and T. Hu, “Temperature profile measurements in the near-substrate region of diamond-forming flames,” Combust. Flame 130, 261-276 (2002).
[CrossRef]

R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323-331 (1997).
[CrossRef]

G. Sutton, A. Levick, G. Edwards, and D. Greenhalgh, “A combustion temperature and species standard for the calibration of laser diagnostic techniques,” Combust. Flame 147, 39-48(2006).
[CrossRef]

E. J. Welle, W. L. Roberts, C. D. Carter, and J. M. Donbar, “The response of a propane-air counter-flow diffusion flame subjected to a transient flow field,” Combust. Flame 135, 285-297 (2003).
[CrossRef]

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502-514 (1998).
[CrossRef]

M. S. Woolridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, and C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame 131, 98-109 (2002).
[CrossRef]

W. D. Kulatilaka, R. P. Lucht, S. F. Hanna, and V. R. Katta, “Two-color, two-photon laser-induced polarization spectroscopy (LIPS) measurements of atomic hydrogen in near-adiabatic atmospheric pressure hydrogen/air flames,” Combust. Flame 137, 523-537 (2004).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (2)

E. C. Rea Jr., A. Y. Chang, and R. K. Hanson, “Shock-tube study of pressure broadening of the A2Σ+−X2Π (0,0) band of OH by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 37, 117-127 (1987).
[CrossRef]

J. J. Olivero and R. L. Longbothum, “Empirical fits to the Voigt line width: a brief review,” J. Quant. Spectrosc. Radiat. Transfer 17, 233-236 (1977).
[CrossRef]

Opt. Lett. (2)

Prog. Energy Combust. Sci. (1)

N. M. Laurendeau, “Temperature measurements by light-scattering methods,” Prog. Energy Combust. Sci. 14, 147-170(1988).
[CrossRef]

Other (6)

R. J. Hall and A. C. Eckbreth, “Coherent anti-Stokes Raman spectroscopy (CARS): application to combustion diagnostics,” in Laser Applications, J. F. Ready and R. K. Erf, eds. (Academic, 1984), Vol. 5, pp. 213-309.

K. Kohse-Höinghaus and J. B. Jeffries, Applied Combustion Diagnostics (Taylor and Francis, 2002).

B. J. McBride and S. Gordon, Computer Program for the Calculation of Complex Chemical Equilibrium: Compositions and Applications, NASA Reference Publication 1311 (NASA Lewis Research Center, 1996).

D. R. Stull and H. Prophet, JANAF Thermochemical Tables, 2nd ed., National Standard Reference Data System-National Bureau of Standards37 (1971).

J. Luque and D. R. Crosley, “LIFBASE, database and spectral simulation for diatomic molecules (v 1.6),” SRI International Report MP-99-009 (1999).

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Taylor and Francis, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Sketch of Hencken burner, showing the region of interest (ROI) within the flame that is used for PLIF imaging.

Fig. 2
Fig. 2

Experimental setup for fluorescence measurements: F, filter; L, lens; M, mirror; HWP, half-wave plate; P, thin-film polarizer; FCU, frequency-conversion unit.

Fig. 3
Fig. 3

Integrated area under an absorption line with respect to the center wavelength, λ 0 , and the integration width, Δ λ i . (width shown represents a graphical representation of the integration range, not the actual width used).

Fig. 4
Fig. 4

PLIF signal above the exit of the Hencken burner.

Fig. 5
Fig. 5

Horizontal slice of PLIF intensity for determination of uniform interrogation region.

Fig. 6
Fig. 6

OH-concentration shape function and associated laser-intensity ratio for absorption corrections. Symbols represent an OH-concentration shape function within the flame, as determined from fluorescence imaging, and the solid curve represents the transmitted laser power through the flame.

Fig. 7
Fig. 7

Overlap-correction shape functions: g a ( v ) , absorption-line shape (the Q 1 ( 5 ) and Q 21 ( 5 ) transitions are shown); g 1 ( v ) , laser line shape; g o ( v ) , overlap line shape.

Fig. 8
Fig. 8

Temperature as a function of equivalence ratio extracted from various OH line pairs.

Fig. 9
Fig. 9

Temperature sensitivity as a function of superequilibrium OH concentration for an equivalence ratio of 1.0.

Fig. 10
Fig. 10

Extracted temperatures from closely spaced and isolated spectral lines of OH.

Fig. 11
Fig. 11

Excitation-scan data and fit for the Q 1 ( 5 ) and Q 21 ( 5 ) lines at φ = 1.0 .

Fig. 12
Fig. 12

Excitation-scan data and fit for the Q 1 ( 14 ) line at φ = 1.0 .

Fig. 13
Fig. 13

Measured temperature as a function of the integration width of the peaks.

Fig. 14
Fig. 14

Measured line areas S 1 and S 2 along with their ratio and product as a function of the integration width.

Fig. 15
Fig. 15

Temperature measurements using the ratio of line- center intensities and the ratio of integrated intensities over the transition lines for Q 1 ( 14 ) / Q 1 ( 5 ) .

Tables (1)

Tables Icon

Table 1 Line-Center Locations Determined from LIFBASE 2.0 [22]

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S = λ 0 Δ λ i λ 0 + Δ λ i F ( v ) d v ,
F = h v c Ω 4 π V I v N 1 0 B 12 A A + Q .
F V N 1 0 I v B 12 A A + Q .
Q = i ( x i ) ( P k T ) ( τ i ) ,
g o ( v ) = g l ( v l ) g a ( v a ) d v .
( S 1 · S 2 ) / ( Δ λ i ) 0.

Metrics