Abstract

The past decade has seen a significant growth in research targeted at space-based observatories for imaging exosolar planets. The challenge is in designing an imaging system for high contrast. Even with a perfect coronagraph that modifies the point spread function to achieve high contrast, wavefront sensing and control is needed to correct the errors in the optics and generate a “dark hole.” The high-contrast imaging laboratory at Princeton University is equipped with two Boston Micromachines Kilo-DMs. We review here an algorithm designed to achieve high contrast on both sides of the image plane while minimizing the stroke necessary from each deformable mirror (DM). This algorithm uses the first DM to correct for amplitude aberrations and uses the second DM to create a flat wavefront in the pupil plane. We then show the first results obtained at Princeton with this correction algorithm, and we demonstrate a symmetric dark hole in monochromatic light.

© 2009 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Malbet, J. W. Yu, and M. Shao, “High dynamic range imaging using a deformable mirror for space coronagraphy,” Publ. Astron. Soc. Pac. 107, 386-396 (1995).
    [CrossRef]
  2. R. A. Brown and C. J. Burrows, “On the feasibility of detecting extrasolar planets by reflected starlight using the Hubble Space Telescope,” Icarus 87, 484-491 (1990).
    [CrossRef]
  3. J. Trauger, “The Eclipse Mission of imaging of nearby planetary systems: concept and laboratory validation,” American Astronomical Society Meeting 205 (American Astronomical Society, 2004), Vol. 36, p. 1344.
  4. P. J. Bordé and W. A. Traub, “High-contrast imaging from space: speckle nulling in a low-aberration regime,” Astrophys. J. 638, 488-501 (2006).
    [CrossRef]
  5. A. Give'on, B. Kern, S. Shaklan, D. C. Moody, and L. Pueyo, “Electric field conjugation--a broadband wavefront correction algorithm for high-contrast imaging systems,” American Astronomical Society Meeting Abstracts 211 (American Astronomical Society, 2007), Vol. 39, p. 975.
  6. A. Give'on, N. Kasdin, and R. Vanderbei, “Closed-loop wavefront correction for high contrast imaging: the peek-a-boo algorithm,” in Proceedings of the International Astronomical Union (Cambridge U. Press, 2006), Vol. 200, pp. 541-546.
  7. L. Pueyo and N. J. Kasdin, “Polychromatic compensation of propagated aberrations for high-contrast imaging,” Astrophys. J. 666, 609-625 (2007).
    [CrossRef]
  8. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. O. Flannery, Numerical Recipes in C (Cambridge U. Press, 1995).
  9. S. B. Shaklan, J. J. Green, and D. M. Palacios, “The terrestrial planet finder coronagraph optical surface requirements,” Proc. SPIE 6265, 11-19 (2006).
  10. S. B. Shaklan and J. J. Green, “Reflectivity and optical surface height requirements in a broadband coronagraph. 1. Contrast floor due to controllable spatial frequencies,” Appl. Opt. 45, 5143-5156 (2006).
    [CrossRef]

2007 (1)

L. Pueyo and N. J. Kasdin, “Polychromatic compensation of propagated aberrations for high-contrast imaging,” Astrophys. J. 666, 609-625 (2007).
[CrossRef]

2006 (3)

S. B. Shaklan, J. J. Green, and D. M. Palacios, “The terrestrial planet finder coronagraph optical surface requirements,” Proc. SPIE 6265, 11-19 (2006).

S. B. Shaklan and J. J. Green, “Reflectivity and optical surface height requirements in a broadband coronagraph. 1. Contrast floor due to controllable spatial frequencies,” Appl. Opt. 45, 5143-5156 (2006).
[CrossRef]

P. J. Bordé and W. A. Traub, “High-contrast imaging from space: speckle nulling in a low-aberration regime,” Astrophys. J. 638, 488-501 (2006).
[CrossRef]

1995 (1)

F. Malbet, J. W. Yu, and M. Shao, “High dynamic range imaging using a deformable mirror for space coronagraphy,” Publ. Astron. Soc. Pac. 107, 386-396 (1995).
[CrossRef]

1990 (1)

R. A. Brown and C. J. Burrows, “On the feasibility of detecting extrasolar planets by reflected starlight using the Hubble Space Telescope,” Icarus 87, 484-491 (1990).
[CrossRef]

Bordé, P. J.

P. J. Bordé and W. A. Traub, “High-contrast imaging from space: speckle nulling in a low-aberration regime,” Astrophys. J. 638, 488-501 (2006).
[CrossRef]

Brown, R. A.

R. A. Brown and C. J. Burrows, “On the feasibility of detecting extrasolar planets by reflected starlight using the Hubble Space Telescope,” Icarus 87, 484-491 (1990).
[CrossRef]

Burrows, C. J.

R. A. Brown and C. J. Burrows, “On the feasibility of detecting extrasolar planets by reflected starlight using the Hubble Space Telescope,” Icarus 87, 484-491 (1990).
[CrossRef]

Flannery, B. O.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. O. Flannery, Numerical Recipes in C (Cambridge U. Press, 1995).

Give'on, A.

A. Give'on, B. Kern, S. Shaklan, D. C. Moody, and L. Pueyo, “Electric field conjugation--a broadband wavefront correction algorithm for high-contrast imaging systems,” American Astronomical Society Meeting Abstracts 211 (American Astronomical Society, 2007), Vol. 39, p. 975.

A. Give'on, N. Kasdin, and R. Vanderbei, “Closed-loop wavefront correction for high contrast imaging: the peek-a-boo algorithm,” in Proceedings of the International Astronomical Union (Cambridge U. Press, 2006), Vol. 200, pp. 541-546.

Green, J. J.

S. B. Shaklan, J. J. Green, and D. M. Palacios, “The terrestrial planet finder coronagraph optical surface requirements,” Proc. SPIE 6265, 11-19 (2006).

S. B. Shaklan and J. J. Green, “Reflectivity and optical surface height requirements in a broadband coronagraph. 1. Contrast floor due to controllable spatial frequencies,” Appl. Opt. 45, 5143-5156 (2006).
[CrossRef]

Kasdin, N.

A. Give'on, N. Kasdin, and R. Vanderbei, “Closed-loop wavefront correction for high contrast imaging: the peek-a-boo algorithm,” in Proceedings of the International Astronomical Union (Cambridge U. Press, 2006), Vol. 200, pp. 541-546.

Kasdin, N. J.

L. Pueyo and N. J. Kasdin, “Polychromatic compensation of propagated aberrations for high-contrast imaging,” Astrophys. J. 666, 609-625 (2007).
[CrossRef]

Kern, B.

A. Give'on, B. Kern, S. Shaklan, D. C. Moody, and L. Pueyo, “Electric field conjugation--a broadband wavefront correction algorithm for high-contrast imaging systems,” American Astronomical Society Meeting Abstracts 211 (American Astronomical Society, 2007), Vol. 39, p. 975.

Malbet, F.

F. Malbet, J. W. Yu, and M. Shao, “High dynamic range imaging using a deformable mirror for space coronagraphy,” Publ. Astron. Soc. Pac. 107, 386-396 (1995).
[CrossRef]

Moody, D. C.

A. Give'on, B. Kern, S. Shaklan, D. C. Moody, and L. Pueyo, “Electric field conjugation--a broadband wavefront correction algorithm for high-contrast imaging systems,” American Astronomical Society Meeting Abstracts 211 (American Astronomical Society, 2007), Vol. 39, p. 975.

Palacios, D. M.

S. B. Shaklan, J. J. Green, and D. M. Palacios, “The terrestrial planet finder coronagraph optical surface requirements,” Proc. SPIE 6265, 11-19 (2006).

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. O. Flannery, Numerical Recipes in C (Cambridge U. Press, 1995).

Pueyo, L.

L. Pueyo and N. J. Kasdin, “Polychromatic compensation of propagated aberrations for high-contrast imaging,” Astrophys. J. 666, 609-625 (2007).
[CrossRef]

A. Give'on, B. Kern, S. Shaklan, D. C. Moody, and L. Pueyo, “Electric field conjugation--a broadband wavefront correction algorithm for high-contrast imaging systems,” American Astronomical Society Meeting Abstracts 211 (American Astronomical Society, 2007), Vol. 39, p. 975.

Shaklan, S.

A. Give'on, B. Kern, S. Shaklan, D. C. Moody, and L. Pueyo, “Electric field conjugation--a broadband wavefront correction algorithm for high-contrast imaging systems,” American Astronomical Society Meeting Abstracts 211 (American Astronomical Society, 2007), Vol. 39, p. 975.

Shaklan, S. B.

S. B. Shaklan, J. J. Green, and D. M. Palacios, “The terrestrial planet finder coronagraph optical surface requirements,” Proc. SPIE 6265, 11-19 (2006).

S. B. Shaklan and J. J. Green, “Reflectivity and optical surface height requirements in a broadband coronagraph. 1. Contrast floor due to controllable spatial frequencies,” Appl. Opt. 45, 5143-5156 (2006).
[CrossRef]

Shao, M.

F. Malbet, J. W. Yu, and M. Shao, “High dynamic range imaging using a deformable mirror for space coronagraphy,” Publ. Astron. Soc. Pac. 107, 386-396 (1995).
[CrossRef]

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. O. Flannery, Numerical Recipes in C (Cambridge U. Press, 1995).

Traub, W. A.

P. J. Bordé and W. A. Traub, “High-contrast imaging from space: speckle nulling in a low-aberration regime,” Astrophys. J. 638, 488-501 (2006).
[CrossRef]

Trauger, J.

J. Trauger, “The Eclipse Mission of imaging of nearby planetary systems: concept and laboratory validation,” American Astronomical Society Meeting 205 (American Astronomical Society, 2004), Vol. 36, p. 1344.

Vanderbei, R.

A. Give'on, N. Kasdin, and R. Vanderbei, “Closed-loop wavefront correction for high contrast imaging: the peek-a-boo algorithm,” in Proceedings of the International Astronomical Union (Cambridge U. Press, 2006), Vol. 200, pp. 541-546.

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. O. Flannery, Numerical Recipes in C (Cambridge U. Press, 1995).

Yu, J. W.

F. Malbet, J. W. Yu, and M. Shao, “High dynamic range imaging using a deformable mirror for space coronagraphy,” Publ. Astron. Soc. Pac. 107, 386-396 (1995).
[CrossRef]

Appl. Opt. (1)

Astrophys. J. (2)

P. J. Bordé and W. A. Traub, “High-contrast imaging from space: speckle nulling in a low-aberration regime,” Astrophys. J. 638, 488-501 (2006).
[CrossRef]

L. Pueyo and N. J. Kasdin, “Polychromatic compensation of propagated aberrations for high-contrast imaging,” Astrophys. J. 666, 609-625 (2007).
[CrossRef]

Icarus (1)

R. A. Brown and C. J. Burrows, “On the feasibility of detecting extrasolar planets by reflected starlight using the Hubble Space Telescope,” Icarus 87, 484-491 (1990).
[CrossRef]

Proc. SPIE (1)

S. B. Shaklan, J. J. Green, and D. M. Palacios, “The terrestrial planet finder coronagraph optical surface requirements,” Proc. SPIE 6265, 11-19 (2006).

Publ. Astron. Soc. Pac. (1)

F. Malbet, J. W. Yu, and M. Shao, “High dynamic range imaging using a deformable mirror for space coronagraphy,” Publ. Astron. Soc. Pac. 107, 386-396 (1995).
[CrossRef]

Other (4)

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. O. Flannery, Numerical Recipes in C (Cambridge U. Press, 1995).

J. Trauger, “The Eclipse Mission of imaging of nearby planetary systems: concept and laboratory validation,” American Astronomical Society Meeting 205 (American Astronomical Society, 2004), Vol. 36, p. 1344.

A. Give'on, B. Kern, S. Shaklan, D. C. Moody, and L. Pueyo, “Electric field conjugation--a broadband wavefront correction algorithm for high-contrast imaging systems,” American Astronomical Society Meeting Abstracts 211 (American Astronomical Society, 2007), Vol. 39, p. 975.

A. Give'on, N. Kasdin, and R. Vanderbei, “Closed-loop wavefront correction for high contrast imaging: the peek-a-boo algorithm,” in Proceedings of the International Astronomical Union (Cambridge U. Press, 2006), Vol. 200, pp. 541-546.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics