Abstract

We propose a new design of bulk glass optical current sensor immune to reflection phase shift, in which an annular graded-index magneto-optical glass with a small prism is used as a sensing head, and the inner and outer layers of the glass possess gradient refractive indices, while the center layer is uniform. Our theoretical analyses show that under certain conditions the light beam will no longer reach the interface between the magneto-optical glass and air during the propagation in the sensing head. Therefore the reflection phase shift could be avoided essentially, resulting in dramatic enhancement of the sensitivity. The influences of the geometrical parameters on the beam traces and the effective range of the initial angle are specified by numerical simulations.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, and D. A. Jackson, “Recent process in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097-3111 (1995).
    [CrossRef]
  2. C. M. M. Van den Temple, “Model of a new temperature-compensated optical current sensor using Bi12SiO20,” Appl. Opt. 32, 4869-4874 (1993).
    [CrossRef]
  3. C. S. Li and T. Yoshino, “Simultaneous measurement of current and voltage by use of bismuth gemanate crystal,” Appl. Opt. 41, 5391-5397 (2002).
    [CrossRef] [PubMed]
  4. B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9, 57-79 (2003).
    [CrossRef]
  5. Z. P. Wang, Z. J. Huang, C. Kang, Y. H. Luo, A. W. Palmer, and K. T. V. Grattan, “Effects of reflection-induced retardance on the immunity of bulk optic-material current sensors,” Appl. Opt. 37, 7293-7297 (1998).
    [CrossRef]
  6. H. Katsukawa, H. Ishikawa, H. Okajima, and T. W. Cease, “Development of an optical current transducer with a bulk type Faraday sensor for metering,” IEEE Trans. Power Deliv. 11, 702-707 (1996).
    [CrossRef]
  7. Z. P. Wang, C. Kang, Z. J. Huang, W. M. Sun, and S. L. Ruan, “General analysis on the effect of reflection-induced retardance upon the sensitivity of bulk glass current sensors,” Elec. Power Syst. Res. 58, 205-208 (2001).
    [CrossRef]
  8. Y. N. Ning, B. C. B. Chu, and D. A. Jackson, “Miniature Faraday current sensor based on multiple critical angle reflections in a bulk-optic ring,” Opt. Lett. 16, 1996-1998 (1991).
    [CrossRef] [PubMed]
  9. B. C. B. Chu, Y. N. Ning, and D. A. Jackson, “Faraday current sensor that uses a triangular-shaped bulk-optic sensing element,” Opt. Lett. 17, 1167-1169 (1992).
    [CrossRef] [PubMed]
  10. Y. N. Ning and D. A. Jackson, “Faraday effect optical current clamp using a bulk-glass sensing element,” Opt. Lett. 18, 835-837 (1993).
    [CrossRef] [PubMed]
  11. N. E. Fisher, D. A. Jackson, and G. A. Woolsey, “Faraday current sensors and the significance of subtended angles,” Sens. Actuators A, Phys. 63, 119-123 (1997).
    [CrossRef]
  12. G. D. Li, M. G. Kong, G. R. Jones, and J. W. Spencer, “Sensitivity improvement of an optical current sensor with enhanced Faraday rotation,” J. Lightwave Technol. 15, 2253(1997).
    [CrossRef]
  13. B. Yi, B. C. B. Chu, K. S. Chiang, and H. S. H. Chung, “New design of optical electric-current sensor for sensitivity improvement,” IEEE Trans. Instrum. Meas. 49, 418-423(2000).
    [CrossRef]
  14. M. R. Wang, W. M. Zhou, P. Zhang, J. L. Zhao, H. Zhang, and P. F. Wei, “Optical fiber current sensor based on Bi4Ge3O12 crystal with enhanced Faraday rotation by critical angle reflections,” Proc. SPIE 6279, 62791I(2007).
    [CrossRef]
  15. M. R. Wang, W. M. Zhou, J. L. Zhao, P. F. Wei, and P. Zhang, “Optical fiber current sensor based on BGO crystal with enhanced Faraday rotation by reflections,” Acta Photon. Sin. 37, 1186-1190 (2008) (in Chinese).
  16. T. Sato, G. Takahashi, and Y. Inui, “Method and apparatus for optically measuring a current,” European Patent 0088419 Al (14 September 1983).
  17. B. Yi, A. Cruden, and J. R. McDonald, “A novel bulk-glass optical current transducer having an adjustable multi-ring optical path,” in Proceedings of the IEEE Instrumentation and Measurement Technology Conference (IEEE, 1997), pp. 879-882.
  18. J. Song, P. G. McLaren, D. J. Thomson, and R. L. Middleton, “A clamp-on magneto-optical current transducer for power systems,” in Canadian Conference on Electrical and Computer Engineering (IEEE, 1996), pp. 884-887.
  19. E. N. Li, J. M. K. MacAlpine, Y. B. Liu, and B. Yi, “A novel optical current transducer for power systems,” Elec. Power Syst. Res. 46, 21-25 (1998).
    [CrossRef]
  20. K. B. Rochford, A. H. Rose, M. N. Deeter, and G. W. Day, “Faraday effect current sensor with improved sensitivity-bandwidth product,” Opt. Lett. 19, 1903-1905(1994).
    [CrossRef] [PubMed]
  21. T. Yoshino, M. Gojyuki, Y. Takahashi, and T. Shimoyama, “Single glass block Faraday effect current sensor with homogeneous isotropic closed optical circuit,” Appl. Opt. 36, 5566-5573 (1997).
    [CrossRef] [PubMed]
  22. T. Mitsui, K. Tada, Y. Kuhara, and M. Tatsumi, “Magneto-optical converter utilizing faraday effect,” U.S. patent 4560932 (24 December 1985).
  23. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1986).
  24. P. A. Williams, A. H. Rose, G. W. Day, T. E. Milner, and M. N. Deeter, “Temperature dependence of the Verdet constant in several diamagnetic glasses,” Appl. Opt. 30, 1176-1178 (1991).
    [CrossRef] [PubMed]
  25. D. T. Moore, “Gradient-index optics: a review,” Appl. Opt. 19, 1035-1038 (1980).
    [CrossRef] [PubMed]
  26. B. Messerschmidt, B. L. McIntyre, and S. N. Houde-Walter, “Desired concentration-dependent ion exchange for micro-optic lenses,” Appl. Opt. 35, 5670-5676 (1996).
    [CrossRef] [PubMed]

2008 (1)

M. R. Wang, W. M. Zhou, J. L. Zhao, P. F. Wei, and P. Zhang, “Optical fiber current sensor based on BGO crystal with enhanced Faraday rotation by reflections,” Acta Photon. Sin. 37, 1186-1190 (2008) (in Chinese).

2007 (1)

M. R. Wang, W. M. Zhou, P. Zhang, J. L. Zhao, H. Zhang, and P. F. Wei, “Optical fiber current sensor based on Bi4Ge3O12 crystal with enhanced Faraday rotation by critical angle reflections,” Proc. SPIE 6279, 62791I(2007).
[CrossRef]

2003 (1)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9, 57-79 (2003).
[CrossRef]

2002 (1)

2001 (1)

Z. P. Wang, C. Kang, Z. J. Huang, W. M. Sun, and S. L. Ruan, “General analysis on the effect of reflection-induced retardance upon the sensitivity of bulk glass current sensors,” Elec. Power Syst. Res. 58, 205-208 (2001).
[CrossRef]

2000 (1)

B. Yi, B. C. B. Chu, K. S. Chiang, and H. S. H. Chung, “New design of optical electric-current sensor for sensitivity improvement,” IEEE Trans. Instrum. Meas. 49, 418-423(2000).
[CrossRef]

1998 (2)

1997 (3)

T. Yoshino, M. Gojyuki, Y. Takahashi, and T. Shimoyama, “Single glass block Faraday effect current sensor with homogeneous isotropic closed optical circuit,” Appl. Opt. 36, 5566-5573 (1997).
[CrossRef] [PubMed]

N. E. Fisher, D. A. Jackson, and G. A. Woolsey, “Faraday current sensors and the significance of subtended angles,” Sens. Actuators A, Phys. 63, 119-123 (1997).
[CrossRef]

G. D. Li, M. G. Kong, G. R. Jones, and J. W. Spencer, “Sensitivity improvement of an optical current sensor with enhanced Faraday rotation,” J. Lightwave Technol. 15, 2253(1997).
[CrossRef]

1996 (2)

H. Katsukawa, H. Ishikawa, H. Okajima, and T. W. Cease, “Development of an optical current transducer with a bulk type Faraday sensor for metering,” IEEE Trans. Power Deliv. 11, 702-707 (1996).
[CrossRef]

B. Messerschmidt, B. L. McIntyre, and S. N. Houde-Walter, “Desired concentration-dependent ion exchange for micro-optic lenses,” Appl. Opt. 35, 5670-5676 (1996).
[CrossRef] [PubMed]

1995 (1)

N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, and D. A. Jackson, “Recent process in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097-3111 (1995).
[CrossRef]

1994 (1)

1993 (2)

1992 (1)

1991 (2)

1980 (1)

Born, M.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1986).

Cease, T. W.

H. Katsukawa, H. Ishikawa, H. Okajima, and T. W. Cease, “Development of an optical current transducer with a bulk type Faraday sensor for metering,” IEEE Trans. Power Deliv. 11, 702-707 (1996).
[CrossRef]

Chiang, K. S.

B. Yi, B. C. B. Chu, K. S. Chiang, and H. S. H. Chung, “New design of optical electric-current sensor for sensitivity improvement,” IEEE Trans. Instrum. Meas. 49, 418-423(2000).
[CrossRef]

Chu, B. C. B.

Chung, H. S. H.

B. Yi, B. C. B. Chu, K. S. Chiang, and H. S. H. Chung, “New design of optical electric-current sensor for sensitivity improvement,” IEEE Trans. Instrum. Meas. 49, 418-423(2000).
[CrossRef]

Cruden, A.

B. Yi, A. Cruden, and J. R. McDonald, “A novel bulk-glass optical current transducer having an adjustable multi-ring optical path,” in Proceedings of the IEEE Instrumentation and Measurement Technology Conference (IEEE, 1997), pp. 879-882.

Day, G. W.

Deeter, M. N.

Fisher, N. E.

N. E. Fisher, D. A. Jackson, and G. A. Woolsey, “Faraday current sensors and the significance of subtended angles,” Sens. Actuators A, Phys. 63, 119-123 (1997).
[CrossRef]

Gojyuki, M.

Grattan, K. T. V.

Z. P. Wang, Z. J. Huang, C. Kang, Y. H. Luo, A. W. Palmer, and K. T. V. Grattan, “Effects of reflection-induced retardance on the immunity of bulk optic-material current sensors,” Appl. Opt. 37, 7293-7297 (1998).
[CrossRef]

N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, and D. A. Jackson, “Recent process in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097-3111 (1995).
[CrossRef]

Houde-Walter, S. N.

Huang, Z. J.

Z. P. Wang, C. Kang, Z. J. Huang, W. M. Sun, and S. L. Ruan, “General analysis on the effect of reflection-induced retardance upon the sensitivity of bulk glass current sensors,” Elec. Power Syst. Res. 58, 205-208 (2001).
[CrossRef]

Z. P. Wang, Z. J. Huang, C. Kang, Y. H. Luo, A. W. Palmer, and K. T. V. Grattan, “Effects of reflection-induced retardance on the immunity of bulk optic-material current sensors,” Appl. Opt. 37, 7293-7297 (1998).
[CrossRef]

Inui, Y.

T. Sato, G. Takahashi, and Y. Inui, “Method and apparatus for optically measuring a current,” European Patent 0088419 Al (14 September 1983).

Ishikawa, H.

H. Katsukawa, H. Ishikawa, H. Okajima, and T. W. Cease, “Development of an optical current transducer with a bulk type Faraday sensor for metering,” IEEE Trans. Power Deliv. 11, 702-707 (1996).
[CrossRef]

Jackson, D. A.

Jones, G. R.

G. D. Li, M. G. Kong, G. R. Jones, and J. W. Spencer, “Sensitivity improvement of an optical current sensor with enhanced Faraday rotation,” J. Lightwave Technol. 15, 2253(1997).
[CrossRef]

Kang, C.

Z. P. Wang, C. Kang, Z. J. Huang, W. M. Sun, and S. L. Ruan, “General analysis on the effect of reflection-induced retardance upon the sensitivity of bulk glass current sensors,” Elec. Power Syst. Res. 58, 205-208 (2001).
[CrossRef]

Z. P. Wang, Z. J. Huang, C. Kang, Y. H. Luo, A. W. Palmer, and K. T. V. Grattan, “Effects of reflection-induced retardance on the immunity of bulk optic-material current sensors,” Appl. Opt. 37, 7293-7297 (1998).
[CrossRef]

Katsukawa, H.

H. Katsukawa, H. Ishikawa, H. Okajima, and T. W. Cease, “Development of an optical current transducer with a bulk type Faraday sensor for metering,” IEEE Trans. Power Deliv. 11, 702-707 (1996).
[CrossRef]

Kong, M. G.

G. D. Li, M. G. Kong, G. R. Jones, and J. W. Spencer, “Sensitivity improvement of an optical current sensor with enhanced Faraday rotation,” J. Lightwave Technol. 15, 2253(1997).
[CrossRef]

Kuhara, Y.

T. Mitsui, K. Tada, Y. Kuhara, and M. Tatsumi, “Magneto-optical converter utilizing faraday effect,” U.S. patent 4560932 (24 December 1985).

Lee, B.

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9, 57-79 (2003).
[CrossRef]

Li, C. S.

Li, E. N.

E. N. Li, J. M. K. MacAlpine, Y. B. Liu, and B. Yi, “A novel optical current transducer for power systems,” Elec. Power Syst. Res. 46, 21-25 (1998).
[CrossRef]

Li, G. D.

G. D. Li, M. G. Kong, G. R. Jones, and J. W. Spencer, “Sensitivity improvement of an optical current sensor with enhanced Faraday rotation,” J. Lightwave Technol. 15, 2253(1997).
[CrossRef]

Liu, Y. B.

E. N. Li, J. M. K. MacAlpine, Y. B. Liu, and B. Yi, “A novel optical current transducer for power systems,” Elec. Power Syst. Res. 46, 21-25 (1998).
[CrossRef]

Luo, Y. H.

MacAlpine, J. M. K.

E. N. Li, J. M. K. MacAlpine, Y. B. Liu, and B. Yi, “A novel optical current transducer for power systems,” Elec. Power Syst. Res. 46, 21-25 (1998).
[CrossRef]

McDonald, J. R.

B. Yi, A. Cruden, and J. R. McDonald, “A novel bulk-glass optical current transducer having an adjustable multi-ring optical path,” in Proceedings of the IEEE Instrumentation and Measurement Technology Conference (IEEE, 1997), pp. 879-882.

McIntyre, B. L.

McLaren, P. G.

J. Song, P. G. McLaren, D. J. Thomson, and R. L. Middleton, “A clamp-on magneto-optical current transducer for power systems,” in Canadian Conference on Electrical and Computer Engineering (IEEE, 1996), pp. 884-887.

Messerschmidt, B.

Middleton, R. L.

J. Song, P. G. McLaren, D. J. Thomson, and R. L. Middleton, “A clamp-on magneto-optical current transducer for power systems,” in Canadian Conference on Electrical and Computer Engineering (IEEE, 1996), pp. 884-887.

Milner, T. E.

Mitsui, T.

T. Mitsui, K. Tada, Y. Kuhara, and M. Tatsumi, “Magneto-optical converter utilizing faraday effect,” U.S. patent 4560932 (24 December 1985).

Moore, D. T.

Ning, N.

N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, and D. A. Jackson, “Recent process in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097-3111 (1995).
[CrossRef]

Ning, Y. N.

Okajima, H.

H. Katsukawa, H. Ishikawa, H. Okajima, and T. W. Cease, “Development of an optical current transducer with a bulk type Faraday sensor for metering,” IEEE Trans. Power Deliv. 11, 702-707 (1996).
[CrossRef]

Palmer, A. W.

Z. P. Wang, Z. J. Huang, C. Kang, Y. H. Luo, A. W. Palmer, and K. T. V. Grattan, “Effects of reflection-induced retardance on the immunity of bulk optic-material current sensors,” Appl. Opt. 37, 7293-7297 (1998).
[CrossRef]

N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, and D. A. Jackson, “Recent process in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097-3111 (1995).
[CrossRef]

Rochford, K. B.

Rose, A. H.

Ruan, S. L.

Z. P. Wang, C. Kang, Z. J. Huang, W. M. Sun, and S. L. Ruan, “General analysis on the effect of reflection-induced retardance upon the sensitivity of bulk glass current sensors,” Elec. Power Syst. Res. 58, 205-208 (2001).
[CrossRef]

Sato, T.

T. Sato, G. Takahashi, and Y. Inui, “Method and apparatus for optically measuring a current,” European Patent 0088419 Al (14 September 1983).

Shimoyama, T.

Song, J.

J. Song, P. G. McLaren, D. J. Thomson, and R. L. Middleton, “A clamp-on magneto-optical current transducer for power systems,” in Canadian Conference on Electrical and Computer Engineering (IEEE, 1996), pp. 884-887.

Spencer, J. W.

G. D. Li, M. G. Kong, G. R. Jones, and J. W. Spencer, “Sensitivity improvement of an optical current sensor with enhanced Faraday rotation,” J. Lightwave Technol. 15, 2253(1997).
[CrossRef]

Sun, W. M.

Z. P. Wang, C. Kang, Z. J. Huang, W. M. Sun, and S. L. Ruan, “General analysis on the effect of reflection-induced retardance upon the sensitivity of bulk glass current sensors,” Elec. Power Syst. Res. 58, 205-208 (2001).
[CrossRef]

Tada, K.

T. Mitsui, K. Tada, Y. Kuhara, and M. Tatsumi, “Magneto-optical converter utilizing faraday effect,” U.S. patent 4560932 (24 December 1985).

Takahashi, G.

T. Sato, G. Takahashi, and Y. Inui, “Method and apparatus for optically measuring a current,” European Patent 0088419 Al (14 September 1983).

Takahashi, Y.

Tatsumi, M.

T. Mitsui, K. Tada, Y. Kuhara, and M. Tatsumi, “Magneto-optical converter utilizing faraday effect,” U.S. patent 4560932 (24 December 1985).

Thomson, D. J.

J. Song, P. G. McLaren, D. J. Thomson, and R. L. Middleton, “A clamp-on magneto-optical current transducer for power systems,” in Canadian Conference on Electrical and Computer Engineering (IEEE, 1996), pp. 884-887.

Van den Temple, C. M. M.

Wang, M. R.

M. R. Wang, W. M. Zhou, J. L. Zhao, P. F. Wei, and P. Zhang, “Optical fiber current sensor based on BGO crystal with enhanced Faraday rotation by reflections,” Acta Photon. Sin. 37, 1186-1190 (2008) (in Chinese).

M. R. Wang, W. M. Zhou, P. Zhang, J. L. Zhao, H. Zhang, and P. F. Wei, “Optical fiber current sensor based on Bi4Ge3O12 crystal with enhanced Faraday rotation by critical angle reflections,” Proc. SPIE 6279, 62791I(2007).
[CrossRef]

Wang, Z. P.

Z. P. Wang, C. Kang, Z. J. Huang, W. M. Sun, and S. L. Ruan, “General analysis on the effect of reflection-induced retardance upon the sensitivity of bulk glass current sensors,” Elec. Power Syst. Res. 58, 205-208 (2001).
[CrossRef]

Z. P. Wang, Z. J. Huang, C. Kang, Y. H. Luo, A. W. Palmer, and K. T. V. Grattan, “Effects of reflection-induced retardance on the immunity of bulk optic-material current sensors,” Appl. Opt. 37, 7293-7297 (1998).
[CrossRef]

N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, and D. A. Jackson, “Recent process in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097-3111 (1995).
[CrossRef]

Wei, P. F.

M. R. Wang, W. M. Zhou, J. L. Zhao, P. F. Wei, and P. Zhang, “Optical fiber current sensor based on BGO crystal with enhanced Faraday rotation by reflections,” Acta Photon. Sin. 37, 1186-1190 (2008) (in Chinese).

M. R. Wang, W. M. Zhou, P. Zhang, J. L. Zhao, H. Zhang, and P. F. Wei, “Optical fiber current sensor based on Bi4Ge3O12 crystal with enhanced Faraday rotation by critical angle reflections,” Proc. SPIE 6279, 62791I(2007).
[CrossRef]

Williams, P. A.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1986).

Woolsey, G. A.

N. E. Fisher, D. A. Jackson, and G. A. Woolsey, “Faraday current sensors and the significance of subtended angles,” Sens. Actuators A, Phys. 63, 119-123 (1997).
[CrossRef]

Yi, B.

B. Yi, B. C. B. Chu, K. S. Chiang, and H. S. H. Chung, “New design of optical electric-current sensor for sensitivity improvement,” IEEE Trans. Instrum. Meas. 49, 418-423(2000).
[CrossRef]

E. N. Li, J. M. K. MacAlpine, Y. B. Liu, and B. Yi, “A novel optical current transducer for power systems,” Elec. Power Syst. Res. 46, 21-25 (1998).
[CrossRef]

B. Yi, A. Cruden, and J. R. McDonald, “A novel bulk-glass optical current transducer having an adjustable multi-ring optical path,” in Proceedings of the IEEE Instrumentation and Measurement Technology Conference (IEEE, 1997), pp. 879-882.

Yoshino, T.

Zhang, H.

M. R. Wang, W. M. Zhou, P. Zhang, J. L. Zhao, H. Zhang, and P. F. Wei, “Optical fiber current sensor based on Bi4Ge3O12 crystal with enhanced Faraday rotation by critical angle reflections,” Proc. SPIE 6279, 62791I(2007).
[CrossRef]

Zhang, P.

M. R. Wang, W. M. Zhou, J. L. Zhao, P. F. Wei, and P. Zhang, “Optical fiber current sensor based on BGO crystal with enhanced Faraday rotation by reflections,” Acta Photon. Sin. 37, 1186-1190 (2008) (in Chinese).

M. R. Wang, W. M. Zhou, P. Zhang, J. L. Zhao, H. Zhang, and P. F. Wei, “Optical fiber current sensor based on Bi4Ge3O12 crystal with enhanced Faraday rotation by critical angle reflections,” Proc. SPIE 6279, 62791I(2007).
[CrossRef]

Zhao, J. L.

M. R. Wang, W. M. Zhou, J. L. Zhao, P. F. Wei, and P. Zhang, “Optical fiber current sensor based on BGO crystal with enhanced Faraday rotation by reflections,” Acta Photon. Sin. 37, 1186-1190 (2008) (in Chinese).

M. R. Wang, W. M. Zhou, P. Zhang, J. L. Zhao, H. Zhang, and P. F. Wei, “Optical fiber current sensor based on Bi4Ge3O12 crystal with enhanced Faraday rotation by critical angle reflections,” Proc. SPIE 6279, 62791I(2007).
[CrossRef]

Zhou, W. M.

M. R. Wang, W. M. Zhou, J. L. Zhao, P. F. Wei, and P. Zhang, “Optical fiber current sensor based on BGO crystal with enhanced Faraday rotation by reflections,” Acta Photon. Sin. 37, 1186-1190 (2008) (in Chinese).

M. R. Wang, W. M. Zhou, P. Zhang, J. L. Zhao, H. Zhang, and P. F. Wei, “Optical fiber current sensor based on Bi4Ge3O12 crystal with enhanced Faraday rotation by critical angle reflections,” Proc. SPIE 6279, 62791I(2007).
[CrossRef]

Acta Photon. Sin. (1)

M. R. Wang, W. M. Zhou, J. L. Zhao, P. F. Wei, and P. Zhang, “Optical fiber current sensor based on BGO crystal with enhanced Faraday rotation by reflections,” Acta Photon. Sin. 37, 1186-1190 (2008) (in Chinese).

Appl. Opt. (7)

Elec. Power Syst. Res. (2)

E. N. Li, J. M. K. MacAlpine, Y. B. Liu, and B. Yi, “A novel optical current transducer for power systems,” Elec. Power Syst. Res. 46, 21-25 (1998).
[CrossRef]

Z. P. Wang, C. Kang, Z. J. Huang, W. M. Sun, and S. L. Ruan, “General analysis on the effect of reflection-induced retardance upon the sensitivity of bulk glass current sensors,” Elec. Power Syst. Res. 58, 205-208 (2001).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

B. Yi, B. C. B. Chu, K. S. Chiang, and H. S. H. Chung, “New design of optical electric-current sensor for sensitivity improvement,” IEEE Trans. Instrum. Meas. 49, 418-423(2000).
[CrossRef]

IEEE Trans. Power Deliv. (1)

H. Katsukawa, H. Ishikawa, H. Okajima, and T. W. Cease, “Development of an optical current transducer with a bulk type Faraday sensor for metering,” IEEE Trans. Power Deliv. 11, 702-707 (1996).
[CrossRef]

J. Lightwave Technol. (1)

G. D. Li, M. G. Kong, G. R. Jones, and J. W. Spencer, “Sensitivity improvement of an optical current sensor with enhanced Faraday rotation,” J. Lightwave Technol. 15, 2253(1997).
[CrossRef]

Opt. Fiber Technol. (1)

B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9, 57-79 (2003).
[CrossRef]

Opt. Lett. (4)

Proc. SPIE (1)

M. R. Wang, W. M. Zhou, P. Zhang, J. L. Zhao, H. Zhang, and P. F. Wei, “Optical fiber current sensor based on Bi4Ge3O12 crystal with enhanced Faraday rotation by critical angle reflections,” Proc. SPIE 6279, 62791I(2007).
[CrossRef]

Rev. Sci. Instrum. (1)

N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, and D. A. Jackson, “Recent process in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097-3111 (1995).
[CrossRef]

Sens. Actuators A, Phys. (1)

N. E. Fisher, D. A. Jackson, and G. A. Woolsey, “Faraday current sensors and the significance of subtended angles,” Sens. Actuators A, Phys. 63, 119-123 (1997).
[CrossRef]

Other (5)

T. Sato, G. Takahashi, and Y. Inui, “Method and apparatus for optically measuring a current,” European Patent 0088419 Al (14 September 1983).

B. Yi, A. Cruden, and J. R. McDonald, “A novel bulk-glass optical current transducer having an adjustable multi-ring optical path,” in Proceedings of the IEEE Instrumentation and Measurement Technology Conference (IEEE, 1997), pp. 879-882.

J. Song, P. G. McLaren, D. J. Thomson, and R. L. Middleton, “A clamp-on magneto-optical current transducer for power systems,” in Canadian Conference on Electrical and Computer Engineering (IEEE, 1996), pp. 884-887.

T. Mitsui, K. Tada, Y. Kuhara, and M. Tatsumi, “Magneto-optical converter utilizing faraday effect,” U.S. patent 4560932 (24 December 1985).

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Beam traces in a graded-index medium.

Fig. 2
Fig. 2

(a) Schematic diagram of the sensing head with graded-index layers and a small prism, and (b) the transverse refractive index distribution (b).

Fig. 3
Fig. 3

Schematic diagram of the beam refraction in the sensing head.

Fig. 4
Fig. 4

Simulations of the beam traces in the sensing head with the parameters, in row (a),  n 0 = 2.0 , n 2 = 1.5 , a = 1 mm , b = 2 mm , and r 0 = 20 mm , and, in row (b),  n 0 = 1.6 , n 2 = 1.5 , a = 0.5 mm , b = 4 mm , and r 0 = 20 mm , respectively. (a1)–(a5) correspond to different initial angles γ = 10 ° , 20 ° , 36.5 ° , 50 ° , and 58.5 ° , and (b1)–(b5) correspond to γ = 5 ° , 10 ° , 16.85 ° , 35 ° , and 50.4 ° , respectively.

Fig. 5
Fig. 5

Period T versus the initial angle γ at a = 1 mm , b = 2 mm , r 0 = 37 mm , n 0 = 1.6 , and n 2 = 1.3 .

Fig. 6
Fig. 6

Period T versus the initial angle γ at (a) different refractive index gradients ( a = 1 mm , b = 2 mm , and r 0 = 37 mm ) and (b) different parameters of a, b ( n 0 = 1.6 , n 2 = 1.3 , and r 0 = 37 mm ).

Fig. 7
Fig. 7

(a) Schematic diagram of a period of the beam trace and (b) τ versus γ at a = 1 mm , b = 2 mm , r 0 = 37 mm , n 0 = 1.6 , and n 2 = 1.5 .

Fig. 8
Fig. 8

Beam traces at different initial angles with a = 1 mm , b = 2 mm , r 0 = 37 mm , n 0 = 1.6 , and n 2 = 1.5 : (a)  γ = 13.19 ° , (b)  γ = 11.69 ° , and (c)  γ = 12.01 ° .

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Φ F = l V H d l ,
n 2 ( x ) = n 0 2 [ 1 ( m x ) 2 ] ,
x ( z ) = ( sin γ m ) sin ( m z cos γ + φ 0 ) ,
{ n 2 ( r ) = n 0 2 [ 1 m 2 ( r 0 b r ) 2 ] n 2 ( r ) = n 0 2 n 2 ( r ) = n 0 2 [ 1 m 2 ( r r 0 b ) 2 ] r 0 b a r < r 0 b r 0 b r r 0 + b r 0 + b < r r 0 + b + a ,
Φ F = V H d l = V N i N l I ,
n m sin φ m = n m + 1 sin φ m + 1 ,
r m + 1 = r m cos d θ + r m sin d θ cot φ m + 1 .
n m + 1 r m + 1 sin φ m + 1 = n m r m sin φ m = C ,
γ γ c = arccos n 2 ( r 0 + b + a ) n 0 r i < arccos n 2 ( r 0 b a ) n 0 r i ,
r 0 + b + a r 0 + b n 0 n 2 .
n T + 2 γ = n ( 2 γ + τ ) + 2 γ = 2 N l π ( n = 1 , 2 , 3 ) .

Metrics