Abstract

A cross-shaped aperture is proposed to improve signal-to-noise ratio (SNR) in the holographic data stor age system (HDSS). Both simulated and experimental results show that higher SNR can be achieved by the cross-shaped aperture than traditional square or circular apertures with the same area. A maximum gain of 20% in SNR is obtained for the optimized cross-shaped aperture. The sensitivities to pixel misalignment and magnification error are also numerically compared.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915-917 (1993).
    [CrossRef] [PubMed]
  2. G. W. Burr, C. M. Jefferson, H. Coufal, M. Jurich, J. A. Hoffnagle, R. M. Macfarlane, and R. M. Shelby, “Volume holographic data storage at areal density of 250 gigapixels/in.2,” Opt. Lett. 26, 444-446 (2001).
    [CrossRef]
  3. S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, “High-transfer-rate high-capacity holographic disk data-storage system,” Appl. Opt. 43, 4902-4914 (2004).
    [CrossRef] [PubMed]
  4. W. L. Wilson, L. Dhar, and K. R. Curtis, “Progress toward the commercial realization of high performance holographic data storage: Architecture and function of the InPhase Technologies holographic drive,” Proc. SPIE 6335, 63350G (2006).
    [CrossRef]
  5. H. Horimai and X. D. Tan, “Holographic information storage system: today and future,” IEEE Trans. Magn. 43, 943-947 (2007).
    [CrossRef]
  6. R. M. Shelby, J. A. Hoffnagle, G. W. Burr, C. M. Jefferson, M. P. Bernal, H. Coufal, R. K. Grygier, H. Gunther, R. M. Macfarlane, and G. T. Sincerbox, “Pixel-matched holographic data storage with megabit pages,” Opt. Lett. 22, 1509-1511 (1997).
    [CrossRef]
  7. M. P. Bernal, G. W. Burr, H. Coufal, and M. Quintanilla, “Balancing interpixel cross talk and detector noise to optimize areal density in holographic storage systems,” Appl. Opt. 37, 5377-5385 (1998).
    [CrossRef]
  8. Z. Wang, G. F. Jin, Q. S. He, and M. X. Wu, “Simultaneous defocusing of the aperture and medium on a spectroholographic storage system,” Appl. Opt. 46, 5770-5778 (2007).
    [CrossRef] [PubMed]
  9. J. W. Yang, L. M. Bernardo, and Y. S. Bae, “Improving holographic data storage by use of an optimized phase mask,” Appl. Opt. 38, 5641-5645 (1999).
    [CrossRef]
  10. W. X. Shang, Q. S. He, and G. F. Jin, “Nonlinear blind equalization for volume holographic data storage,” Chin. Phys. Lett. 21, 1741-1744 (2004).
    [CrossRef]
  11. A. He and G. Mathew, “Nonlinear equalization for holographic data storage systems,” Appl. Opt. 45, 2731-2741(2006).
    [CrossRef] [PubMed]
  12. G. W. Burr and T. Weiss, “Compensation for pixel misregistration in volume holographic data storage,” Opt. Lett. 26, 542-544 (2001).
    [CrossRef]
  13. L. Menetrier and G. W. Burr, “Density implications of shift compensation postprocessing in holographic storage systems,” Appl. Opt. 42, 845-860 (2003).
    [CrossRef] [PubMed]
  14. G. W. Burr, J. Ashley, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, and B. Marcus, “Modulation coding for pixel-matched holographic data storage,” Opt. Lett. 22, 639-641(1997).
    [CrossRef] [PubMed]
  15. W. C. Chou and M. A. Neifeld, “Interleaving and error correction in volume holographic memory systems,” Appl. Opt. 37, 6951-6968 (1998).
    [CrossRef]
  16. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  17. G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, and C. M. Jefferson, “Noise reduction of page-oriented data storage by inverse filtering during recording,” Opt. Lett. 23, 289-291(1998).
    [CrossRef]

2007

2006

A. He and G. Mathew, “Nonlinear equalization for holographic data storage systems,” Appl. Opt. 45, 2731-2741(2006).
[CrossRef] [PubMed]

W. L. Wilson, L. Dhar, and K. R. Curtis, “Progress toward the commercial realization of high performance holographic data storage: Architecture and function of the InPhase Technologies holographic drive,” Proc. SPIE 6335, 63350G (2006).
[CrossRef]

2004

2003

2001

1999

1998

1997

1993

Ashley, J.

Bae, Y. S.

Bernal, M. P.

Bernardo, L. M.

Bjornson, E.

Burr, G. W.

Chou, W. C.

Coufal, H.

Curtis, K. R.

W. L. Wilson, L. Dhar, and K. R. Curtis, “Progress toward the commercial realization of high performance holographic data storage: Architecture and function of the InPhase Technologies holographic drive,” Proc. SPIE 6335, 63350G (2006).
[CrossRef]

Dhar, L.

W. L. Wilson, L. Dhar, and K. R. Curtis, “Progress toward the commercial realization of high performance holographic data storage: Architecture and function of the InPhase Technologies holographic drive,” Proc. SPIE 6335, 63350G (2006).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Grygier, R. K.

Gunther, H.

He, A.

He, Q. S.

Z. Wang, G. F. Jin, Q. S. He, and M. X. Wu, “Simultaneous defocusing of the aperture and medium on a spectroholographic storage system,” Appl. Opt. 46, 5770-5778 (2007).
[CrossRef] [PubMed]

W. X. Shang, Q. S. He, and G. F. Jin, “Nonlinear blind equalization for volume holographic data storage,” Chin. Phys. Lett. 21, 1741-1744 (2004).
[CrossRef]

Hesselink, L.

Hoffnagle, J. A.

Horimai, H.

H. Horimai and X. D. Tan, “Holographic information storage system: today and future,” IEEE Trans. Magn. 43, 943-947 (2007).
[CrossRef]

Jefferson, C. M.

Jin, G. F.

Z. Wang, G. F. Jin, Q. S. He, and M. X. Wu, “Simultaneous defocusing of the aperture and medium on a spectroholographic storage system,” Appl. Opt. 46, 5770-5778 (2007).
[CrossRef] [PubMed]

W. X. Shang, Q. S. He, and G. F. Jin, “Nonlinear blind equalization for volume holographic data storage,” Chin. Phys. Lett. 21, 1741-1744 (2004).
[CrossRef]

Jurich, M.

Kwan, D.

Macfarlane, R. M.

Marcus, B.

Mathew, G.

Menetrier, L.

Mok, F. H.

Neifeld, M. A.

Okas, R.

Orlov, S. S.

Phillips, W.

Quintanilla, M.

Shang, W. X.

W. X. Shang, Q. S. He, and G. F. Jin, “Nonlinear blind equalization for volume holographic data storage,” Chin. Phys. Lett. 21, 1741-1744 (2004).
[CrossRef]

Shelby, R. M.

Sincerbox, G. T.

Snyder, R.

Sundaram, P.

Takashima, Y.

Tan, X. D.

H. Horimai and X. D. Tan, “Holographic information storage system: today and future,” IEEE Trans. Magn. 43, 943-947 (2007).
[CrossRef]

Wang, Z.

Weiss, T.

Wilson, W. L.

W. L. Wilson, L. Dhar, and K. R. Curtis, “Progress toward the commercial realization of high performance holographic data storage: Architecture and function of the InPhase Technologies holographic drive,” Proc. SPIE 6335, 63350G (2006).
[CrossRef]

Wu, M. X.

Yang, J. W.

Appl. Opt.

Chin. Phys. Lett.

W. X. Shang, Q. S. He, and G. F. Jin, “Nonlinear blind equalization for volume holographic data storage,” Chin. Phys. Lett. 21, 1741-1744 (2004).
[CrossRef]

IEEE Trans. Magn.

H. Horimai and X. D. Tan, “Holographic information storage system: today and future,” IEEE Trans. Magn. 43, 943-947 (2007).
[CrossRef]

Opt. Lett.

Proc. SPIE

W. L. Wilson, L. Dhar, and K. R. Curtis, “Progress toward the commercial realization of high performance holographic data storage: Architecture and function of the InPhase Technologies holographic drive,” Proc. SPIE 6335, 63350G (2006).
[CrossRef]

Other

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of a typical holographic data storage system.

Fig. 2
Fig. 2

Thirteen-pixel pattern used to study interpixel cross talk.

Fig. 3
Fig. 3

Pixel distribution on the CMOS.

Fig. 4
Fig. 4

(a) Cross-shaped, (b) square, and (c) circular apertures taken into account.

Fig. 5
Fig. 5

Simulated SNRs of the cross-shaped apertures with different areas.

Fig. 6
Fig. 6

Simulated SNR versus area for cross-shaped, square, and circular apertures.

Fig. 7
Fig. 7

Comparison of the sensitivity to pixel misalignment of the proposed cross-shaped aperture with that of the square and circular apertures. (a) SNR when pixel misalignment exists in the x direction (denoted by δ x ). (b) SNR when pixel misalignment exists in both thex and the y directions (denoted by δ x and δ y , respectively).

Fig. 8
Fig. 8

Comparison of the sensitivity to magnification error of the proposed cross-shaped aperture with that of the square and circular apertures.

Fig. 9
Fig. 9

SNR of the experimentally received signal of the proposed cross-shaped, square, and circular apertures.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

U ( x 0 , y 0 ) = a ( m , n ) rect ( x 0 m Γ 1 g 1 Γ 1 ) rect ( y 0 n Γ 1 g 1 Γ 1 ) ,
U ( x 1 , y 1 ) = 1 i λ f 1 F { U ( x 0 , y 0 ) } = a ( m , n ) i λ f 1 g 1 2 Γ 1 2 sinc ( g 1 Γ 1 x 1 λ f 1 ) sinc ( g 1 Γ 1 y 1 λ f 1 ) exp [ i 2 π ( m Γ 1 x 1 λ f 1 + n Γ 1 y 1 λ f 1 ) ] ,
U ( x 1 , y 1 ) = U ( x 1 , y 1 ) P ( x 1 , y 1 ) ,
U ( x , y ) = 1 i λ f 2 F { U ( x 1 , y 1 ) } = a ( m , n ) g 1 2 Γ 1 2 λ 2 f 1 f 2 P sinc ( g 1 Γ 1 x 1 λ f 1 ) sinc ( g 1 Γ 1 y 1 λ f 1 ) · exp { i 2 π [ x 1 λ f 2 ( x + f 2 f 1 m Γ 1 ) + y 1 λ f 2 ( y + f 2 f 1 n Γ 1 ) ] } d x 1 d y 1 .
E ( x , y ) = g 1 2 Γ 1 2 λ 2 f 1 f 2 P sinc ( g 1 Γ 1 x 1 λ f 1 ) sinc ( g 1 Γ 1 y 1 λ f 1 ) exp [ i 2 π ( x 1 λ f 2 x + y 1 λ f 2 y ) ] d x 1 d y 1 .
U ( x , y ) = a ( m , n ) E ( x + f 2 f 1 m Γ 1 , y + f 2 f 1 n Γ 1 ) .
f 2 f 1 = Γ 2 Γ 1 .
U ( x , y ) = a ( m , n ) E ( x + m Γ 2 , y + n Γ 2 ) .
U T ( x , y ) = | j | + | k | 2 a ( m + j , n + k ) E ( x + ( m + j ) Γ 2 , y + ( n + k ) Γ 2 ) ,
I ( m , n ) = g 2 y Γ 2 / 2 g 2 y Γ 2 / 2 g 2 x Γ 2 / 2 g 2 x Γ 2 / 2 | U T ( x , y ) | 2 d x d y .
SNR = μ 1 μ 0 σ 0 2 + σ 1 2 ,
P ( x 1 , y 1 ) = rect ( x 1 D ) rect ( y 1 d ) + rect ( x 1 d ) [ rect ( y 1 D ) rect ( y 1 d ) ] ,
E ( x , y ) = 4 f 1 f 2 [ ϕ 1 ( x ) ϕ 2 ( y ) + ϕ 2 ( x ) ϕ 3 ( y ) ] ,
ϕ 1 ( t ) = 0 α sinc ( s ) cos ( 2 π f 1 f 2 t g 1 Γ 1 s ) d s ,
ϕ 2 ( t ) = 0 β sinc ( s ) cos ( 2 π f 1 f 2 t g 1 Γ 1 s ) d s ,
ϕ 3 ( t ) = β α sinc ( s ) cos ( 2 π f 1 f 2 t g 1 Γ 1 s ) d s ,
α = k 1 g 1 2 , β = k 2 g 1 2 , k 1 = D D N , k 2 = d D N , D N = λ f 1 Γ 1 ,
E ( x , y ) = 4 f 1 f 2 ϕ ( x ) ϕ ( y ) ,
ϕ ( t ) = 0 α sinc ( s ) cos ( 2 π f 1 f 2 t g 1 Γ 1 s ) d s ,
α = k g 1 2 , k = D D N , D N = λ f 1 Γ 1 .
P ( x 1 , y 1 ) = { 1 x 1 2 + y 1 2 D / 2 0 x 1 2 + y 1 2 > D / 2 ,
E ( x , y ) = f 1 f 2 ϕ ( x , y ) ,
ϕ ( x , y ) = 0 α 0 2 π sinc ( s cos θ ) sinc ( s sin θ ) cos [ 2 π f 1 f 2 s g 1 Γ 1 ( x cos θ + y sin θ ) ] s d s d θ ,
α = k g 1 2 , k = D D N , D N = λ f 1 Γ 1 .

Metrics