Abstract

Total internal reflection fluorescence (TIRF) microscopy uses the evanescent field on the aqueous side of a glass/aqueous interface to selectively illuminate fluorophores within ~100 nm of the interface. Applications of the method include epi-illumination TIRF, where the exciting light is refracted by the microscope objective to impinge on the interface at incidence angles beyond critical angle, and prism-based TIRF, where exciting light propagates to the interface externally to the microscope optics. The former has higher background autofluorescence from the glass elements of the objective where the exciting beam is focused, and the latter does not collect near-field emission from the fluorescent sample. Around-the-objective TIRF, developed here, creates the evanescent field by conditioning the exciting laser beam to propagate through the submillimeter gap created by the oil immersion high numerical aperture objective and the glass coverslip. The approach eliminates background light due to the admission of the laser excitation to the microscopic optics while collecting near-field emission from the dipoles excited by the ~50 nm deep evanescent field.

© 2009 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, “A guide to choosing fluorescent proteins,” Nature Methods 2, 905-909(2005).
    [CrossRef]
  2. R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775-2783 (2002).
    [CrossRef]
  3. N. Bobroff, “Position measurement with a resolution and noise-limited instrument,” Rev. Sci. Instrum. 57, 1152-1157(1986).
    [CrossRef]
  4. A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5 nm localization,” Science 300, 2061-2065 (2003).
    [CrossRef]
  5. T. Ruckstuhl and S. Seeger, “Attoliter detection volumes by confocal total-internal-reflection fluorescence microscopy,” Opt. Lett. 29, 569-571 (2004).
    [CrossRef]
  6. T. P. Burghardt, J. E. Charlesworth, M. F. Halstead, J. E. Tarara, and K. Ajtai, “In situ fluorescent protein imaging with metal film-enhanced total internal reflection microscopy,” Biophys. J. 90, 4662-4671 (2006).
    [CrossRef]
  7. J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys. J. 91, 2626-2635 (2006).
    [CrossRef]
  8. T. Ruckstuhl and D. Verdes, “Supercritical angle fluorescence (SAF) microscopy,” Opt. Express 12, 4246-4254 (2004).
    [CrossRef]
  9. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081-13086 (2005).
    [CrossRef]
  10. G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Luhrmann, R. Jan, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440-11445 (2006).
    [CrossRef]
  11. M. A. Lieb, J. M. Zavislan, and L. Novotny, “Single-molecule orientations determined by direct emission pattern imaging,” J. Opt. Soc. Am. B 21, 1210-1215 (2004).
    [CrossRef]
  12. T. P. Burghardt and K. Ajtai, “Mapping microscope object polarized emission to the back focal plane pattern,” J. Biomed. Opt. 14, 034036 (2009).
    [CrossRef]
  13. D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Meth. Enzymol. 361, 1-33 (2003).
    [CrossRef]
  14. D. Axelrod and G. M. Omann, “Combinatorial microscopy,” Nat. Rev. Mol. Cell Biol. 7, 944-952 (2006).
    [CrossRef]
  15. A. L. Stout and D. Axelrod, “Evanescent field excitation of fluorescence by epi-illumination microscopy,” Appl. Opt. 28, 5237-5242 (1989).
    [CrossRef]
  16. D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol. 89, 141-145(1981).
    [CrossRef]
  17. T. P. Burghardt, K. Ajtai, D. K. Chan, M. F. Halstead, J. Li, and Y. Zheng, “GFP tagged regulatory light chain monitors single myosin lever-arm orientation in a muscle fiber,” Biophys. J. 93, 2226-2239 (2007).
    [CrossRef]
  18. T. P. Burghardt, K. Ajtai, and J. Borejdo, “In situ single molecule imaging with attoliter detection using objective total internal reflection confocal microscopy,” Biochemistry 45, 4058-4068 (2006).
    [CrossRef]
  19. A. Yoshida and T. Asakura, “Electromagnetic field near the focus of gaussian beams,” Optik (Jena) 41, 281-292 (1974).
  20. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358-379 (1959).
    [CrossRef]
  21. T. P. Burghardt and N. L. Thompson, “Evanescent intensity of a focused Gaussian light beam undergoing total internal reflection in a prism,” Opt. Eng. 23, 62-67 (1984).
  22. E. H. Hellen and D. Axelrod, “Fluorescence emission at dielectric and metal-film interfaces,” J. Opt. Soc. Am. B 4, 337-350(1987).
    [CrossRef]
  23. D. Axelrod, “Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization,” Biophys. J. 26, 557-573 (1979).
    [CrossRef]
  24. T. P. Burghardt and D. Axelrod, “Total internal reflection/fluorescence photobleaching recovery study of serum albumin adsorption dynamics,” Biophys. J. 33, 455-467 (1981).
    [CrossRef]
  25. A. Mattheyses and D. Axelrod, “Fluorescence emission patterns near glass and metal-coated surfaces investigated with back focal plane imaging,” J. Biomed. Opt. 10, 054007 (2005).
    [CrossRef]
  26. D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu Rev Biophys Bioeng 13, 247-268 (1984).
    [CrossRef]

2009

T. P. Burghardt and K. Ajtai, “Mapping microscope object polarized emission to the back focal plane pattern,” J. Biomed. Opt. 14, 034036 (2009).
[CrossRef]

2007

T. P. Burghardt, K. Ajtai, D. K. Chan, M. F. Halstead, J. Li, and Y. Zheng, “GFP tagged regulatory light chain monitors single myosin lever-arm orientation in a muscle fiber,” Biophys. J. 93, 2226-2239 (2007).
[CrossRef]

2006

T. P. Burghardt, K. Ajtai, and J. Borejdo, “In situ single molecule imaging with attoliter detection using objective total internal reflection confocal microscopy,” Biochemistry 45, 4058-4068 (2006).
[CrossRef]

D. Axelrod and G. M. Omann, “Combinatorial microscopy,” Nat. Rev. Mol. Cell Biol. 7, 944-952 (2006).
[CrossRef]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Luhrmann, R. Jan, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440-11445 (2006).
[CrossRef]

T. P. Burghardt, J. E. Charlesworth, M. F. Halstead, J. E. Tarara, and K. Ajtai, “In situ fluorescent protein imaging with metal film-enhanced total internal reflection microscopy,” Biophys. J. 90, 4662-4671 (2006).
[CrossRef]

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys. J. 91, 2626-2635 (2006).
[CrossRef]

2005

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081-13086 (2005).
[CrossRef]

N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, “A guide to choosing fluorescent proteins,” Nature Methods 2, 905-909(2005).
[CrossRef]

A. Mattheyses and D. Axelrod, “Fluorescence emission patterns near glass and metal-coated surfaces investigated with back focal plane imaging,” J. Biomed. Opt. 10, 054007 (2005).
[CrossRef]

2004

2003

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5 nm localization,” Science 300, 2061-2065 (2003).
[CrossRef]

D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Meth. Enzymol. 361, 1-33 (2003).
[CrossRef]

2002

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775-2783 (2002).
[CrossRef]

1989

1987

1986

N. Bobroff, “Position measurement with a resolution and noise-limited instrument,” Rev. Sci. Instrum. 57, 1152-1157(1986).
[CrossRef]

1984

T. P. Burghardt and N. L. Thompson, “Evanescent intensity of a focused Gaussian light beam undergoing total internal reflection in a prism,” Opt. Eng. 23, 62-67 (1984).

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu Rev Biophys Bioeng 13, 247-268 (1984).
[CrossRef]

1981

T. P. Burghardt and D. Axelrod, “Total internal reflection/fluorescence photobleaching recovery study of serum albumin adsorption dynamics,” Biophys. J. 33, 455-467 (1981).
[CrossRef]

D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol. 89, 141-145(1981).
[CrossRef]

1979

D. Axelrod, “Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization,” Biophys. J. 26, 557-573 (1979).
[CrossRef]

1974

A. Yoshida and T. Asakura, “Electromagnetic field near the focus of gaussian beams,” Optik (Jena) 41, 281-292 (1974).

1959

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358-379 (1959).
[CrossRef]

Ajtai, K.

T. P. Burghardt and K. Ajtai, “Mapping microscope object polarized emission to the back focal plane pattern,” J. Biomed. Opt. 14, 034036 (2009).
[CrossRef]

T. P. Burghardt, K. Ajtai, D. K. Chan, M. F. Halstead, J. Li, and Y. Zheng, “GFP tagged regulatory light chain monitors single myosin lever-arm orientation in a muscle fiber,” Biophys. J. 93, 2226-2239 (2007).
[CrossRef]

T. P. Burghardt, K. Ajtai, and J. Borejdo, “In situ single molecule imaging with attoliter detection using objective total internal reflection confocal microscopy,” Biochemistry 45, 4058-4068 (2006).
[CrossRef]

T. P. Burghardt, J. E. Charlesworth, M. F. Halstead, J. E. Tarara, and K. Ajtai, “In situ fluorescent protein imaging with metal film-enhanced total internal reflection microscopy,” Biophys. J. 90, 4662-4671 (2006).
[CrossRef]

Andrei, M. A.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Luhrmann, R. Jan, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440-11445 (2006).
[CrossRef]

Asakura, T.

A. Yoshida and T. Asakura, “Electromagnetic field near the focus of gaussian beams,” Optik (Jena) 41, 281-292 (1974).

Axelrod, D.

D. Axelrod and G. M. Omann, “Combinatorial microscopy,” Nat. Rev. Mol. Cell Biol. 7, 944-952 (2006).
[CrossRef]

A. Mattheyses and D. Axelrod, “Fluorescence emission patterns near glass and metal-coated surfaces investigated with back focal plane imaging,” J. Biomed. Opt. 10, 054007 (2005).
[CrossRef]

D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Meth. Enzymol. 361, 1-33 (2003).
[CrossRef]

A. L. Stout and D. Axelrod, “Evanescent field excitation of fluorescence by epi-illumination microscopy,” Appl. Opt. 28, 5237-5242 (1989).
[CrossRef]

E. H. Hellen and D. Axelrod, “Fluorescence emission at dielectric and metal-film interfaces,” J. Opt. Soc. Am. B 4, 337-350(1987).
[CrossRef]

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu Rev Biophys Bioeng 13, 247-268 (1984).
[CrossRef]

D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol. 89, 141-145(1981).
[CrossRef]

T. P. Burghardt and D. Axelrod, “Total internal reflection/fluorescence photobleaching recovery study of serum albumin adsorption dynamics,” Biophys. J. 33, 455-467 (1981).
[CrossRef]

D. Axelrod, “Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization,” Biophys. J. 26, 557-573 (1979).
[CrossRef]

Bobroff, N.

N. Bobroff, “Position measurement with a resolution and noise-limited instrument,” Rev. Sci. Instrum. 57, 1152-1157(1986).
[CrossRef]

Borejdo, J.

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys. J. 91, 2626-2635 (2006).
[CrossRef]

T. P. Burghardt, K. Ajtai, and J. Borejdo, “In situ single molecule imaging with attoliter detection using objective total internal reflection confocal microscopy,” Biochemistry 45, 4058-4068 (2006).
[CrossRef]

Burghardt, T. P.

T. P. Burghardt and K. Ajtai, “Mapping microscope object polarized emission to the back focal plane pattern,” J. Biomed. Opt. 14, 034036 (2009).
[CrossRef]

T. P. Burghardt, K. Ajtai, D. K. Chan, M. F. Halstead, J. Li, and Y. Zheng, “GFP tagged regulatory light chain monitors single myosin lever-arm orientation in a muscle fiber,” Biophys. J. 93, 2226-2239 (2007).
[CrossRef]

T. P. Burghardt, K. Ajtai, and J. Borejdo, “In situ single molecule imaging with attoliter detection using objective total internal reflection confocal microscopy,” Biochemistry 45, 4058-4068 (2006).
[CrossRef]

T. P. Burghardt, J. E. Charlesworth, M. F. Halstead, J. E. Tarara, and K. Ajtai, “In situ fluorescent protein imaging with metal film-enhanced total internal reflection microscopy,” Biophys. J. 90, 4662-4671 (2006).
[CrossRef]

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu Rev Biophys Bioeng 13, 247-268 (1984).
[CrossRef]

T. P. Burghardt and N. L. Thompson, “Evanescent intensity of a focused Gaussian light beam undergoing total internal reflection in a prism,” Opt. Eng. 23, 62-67 (1984).

T. P. Burghardt and D. Axelrod, “Total internal reflection/fluorescence photobleaching recovery study of serum albumin adsorption dynamics,” Biophys. J. 33, 455-467 (1981).
[CrossRef]

Calander, N.

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys. J. 91, 2626-2635 (2006).
[CrossRef]

Chan, D. K.

T. P. Burghardt, K. Ajtai, D. K. Chan, M. F. Halstead, J. Li, and Y. Zheng, “GFP tagged regulatory light chain monitors single myosin lever-arm orientation in a muscle fiber,” Biophys. J. 93, 2226-2239 (2007).
[CrossRef]

Charlesworth, J. E.

T. P. Burghardt, J. E. Charlesworth, M. F. Halstead, J. E. Tarara, and K. Ajtai, “In situ fluorescent protein imaging with metal film-enhanced total internal reflection microscopy,” Biophys. J. 90, 4662-4671 (2006).
[CrossRef]

Donnert, G.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Luhrmann, R. Jan, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440-11445 (2006).
[CrossRef]

Eggeling, C.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Luhrmann, R. Jan, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440-11445 (2006).
[CrossRef]

Forkey, J. N.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5 nm localization,” Science 300, 2061-2065 (2003).
[CrossRef]

Goldman, Y. E.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5 nm localization,” Science 300, 2061-2065 (2003).
[CrossRef]

Gryczynski, I.

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys. J. 91, 2626-2635 (2006).
[CrossRef]

Gryczynski, Z.

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys. J. 91, 2626-2635 (2006).
[CrossRef]

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081-13086 (2005).
[CrossRef]

Ha, T.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5 nm localization,” Science 300, 2061-2065 (2003).
[CrossRef]

Halstead, M. F.

T. P. Burghardt, K. Ajtai, D. K. Chan, M. F. Halstead, J. Li, and Y. Zheng, “GFP tagged regulatory light chain monitors single myosin lever-arm orientation in a muscle fiber,” Biophys. J. 93, 2226-2239 (2007).
[CrossRef]

T. P. Burghardt, J. E. Charlesworth, M. F. Halstead, J. E. Tarara, and K. Ajtai, “In situ fluorescent protein imaging with metal film-enhanced total internal reflection microscopy,” Biophys. J. 90, 4662-4671 (2006).
[CrossRef]

Hell, S. W.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Luhrmann, R. Jan, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440-11445 (2006).
[CrossRef]

Hellen, E. H.

Jan, R.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Luhrmann, R. Jan, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440-11445 (2006).
[CrossRef]

Keller, J.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Luhrmann, R. Jan, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440-11445 (2006).
[CrossRef]

Larson, D. R.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775-2783 (2002).
[CrossRef]

Li, J.

T. P. Burghardt, K. Ajtai, D. K. Chan, M. F. Halstead, J. Li, and Y. Zheng, “GFP tagged regulatory light chain monitors single myosin lever-arm orientation in a muscle fiber,” Biophys. J. 93, 2226-2239 (2007).
[CrossRef]

Lieb, M. A.

Luhrmann, R.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Luhrmann, R. Jan, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440-11445 (2006).
[CrossRef]

Mattheyses, A.

A. Mattheyses and D. Axelrod, “Fluorescence emission patterns near glass and metal-coated surfaces investigated with back focal plane imaging,” J. Biomed. Opt. 10, 054007 (2005).
[CrossRef]

McKinney, S. A.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5 nm localization,” Science 300, 2061-2065 (2003).
[CrossRef]

Medda, R.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Luhrmann, R. Jan, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440-11445 (2006).
[CrossRef]

Muthu, P.

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys. J. 91, 2626-2635 (2006).
[CrossRef]

Novotny, L.

Omann, G. M.

D. Axelrod and G. M. Omann, “Combinatorial microscopy,” Nat. Rev. Mol. Cell Biol. 7, 944-952 (2006).
[CrossRef]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358-379 (1959).
[CrossRef]

Rizzoli, S. O.

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Luhrmann, R. Jan, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440-11445 (2006).
[CrossRef]

Ruckstuhl, T.

Seeger, S.

Selvin, P. R.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5 nm localization,” Science 300, 2061-2065 (2003).
[CrossRef]

Shaner, N. C.

N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, “A guide to choosing fluorescent proteins,” Nature Methods 2, 905-909(2005).
[CrossRef]

Steinbach, P. A.

N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, “A guide to choosing fluorescent proteins,” Nature Methods 2, 905-909(2005).
[CrossRef]

Stout, A. L.

Tarara, J. E.

T. P. Burghardt, J. E. Charlesworth, M. F. Halstead, J. E. Tarara, and K. Ajtai, “In situ fluorescent protein imaging with metal film-enhanced total internal reflection microscopy,” Biophys. J. 90, 4662-4671 (2006).
[CrossRef]

Thompson, N. L.

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu Rev Biophys Bioeng 13, 247-268 (1984).
[CrossRef]

T. P. Burghardt and N. L. Thompson, “Evanescent intensity of a focused Gaussian light beam undergoing total internal reflection in a prism,” Opt. Eng. 23, 62-67 (1984).

Thompson, R. E.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775-2783 (2002).
[CrossRef]

Tsien, R. Y.

N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, “A guide to choosing fluorescent proteins,” Nature Methods 2, 905-909(2005).
[CrossRef]

Verdes, D.

Webb, W. W.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775-2783 (2002).
[CrossRef]

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358-379 (1959).
[CrossRef]

Yildiz, A.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5 nm localization,” Science 300, 2061-2065 (2003).
[CrossRef]

Yoshida, A.

A. Yoshida and T. Asakura, “Electromagnetic field near the focus of gaussian beams,” Optik (Jena) 41, 281-292 (1974).

Zavislan, J. M.

Zheng, Y.

T. P. Burghardt, K. Ajtai, D. K. Chan, M. F. Halstead, J. Li, and Y. Zheng, “GFP tagged regulatory light chain monitors single myosin lever-arm orientation in a muscle fiber,” Biophys. J. 93, 2226-2239 (2007).
[CrossRef]

Annu Rev Biophys Bioeng

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu Rev Biophys Bioeng 13, 247-268 (1984).
[CrossRef]

Appl. Opt.

Biochemistry

T. P. Burghardt, K. Ajtai, and J. Borejdo, “In situ single molecule imaging with attoliter detection using objective total internal reflection confocal microscopy,” Biochemistry 45, 4058-4068 (2006).
[CrossRef]

Biophys. J.

T. P. Burghardt, K. Ajtai, D. K. Chan, M. F. Halstead, J. Li, and Y. Zheng, “GFP tagged regulatory light chain monitors single myosin lever-arm orientation in a muscle fiber,” Biophys. J. 93, 2226-2239 (2007).
[CrossRef]

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775-2783 (2002).
[CrossRef]

T. P. Burghardt, J. E. Charlesworth, M. F. Halstead, J. E. Tarara, and K. Ajtai, “In situ fluorescent protein imaging with metal film-enhanced total internal reflection microscopy,” Biophys. J. 90, 4662-4671 (2006).
[CrossRef]

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys. J. 91, 2626-2635 (2006).
[CrossRef]

D. Axelrod, “Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization,” Biophys. J. 26, 557-573 (1979).
[CrossRef]

T. P. Burghardt and D. Axelrod, “Total internal reflection/fluorescence photobleaching recovery study of serum albumin adsorption dynamics,” Biophys. J. 33, 455-467 (1981).
[CrossRef]

J. Biomed. Opt.

A. Mattheyses and D. Axelrod, “Fluorescence emission patterns near glass and metal-coated surfaces investigated with back focal plane imaging,” J. Biomed. Opt. 10, 054007 (2005).
[CrossRef]

T. P. Burghardt and K. Ajtai, “Mapping microscope object polarized emission to the back focal plane pattern,” J. Biomed. Opt. 14, 034036 (2009).
[CrossRef]

J. Cell Biol.

D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol. 89, 141-145(1981).
[CrossRef]

J. Opt. Soc. Am. B

Meth. Enzymol.

D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Meth. Enzymol. 361, 1-33 (2003).
[CrossRef]

Nat. Rev. Mol. Cell Biol.

D. Axelrod and G. M. Omann, “Combinatorial microscopy,” Nat. Rev. Mol. Cell Biol. 7, 944-952 (2006).
[CrossRef]

Nature Methods

N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, “A guide to choosing fluorescent proteins,” Nature Methods 2, 905-909(2005).
[CrossRef]

Opt. Eng.

T. P. Burghardt and N. L. Thompson, “Evanescent intensity of a focused Gaussian light beam undergoing total internal reflection in a prism,” Opt. Eng. 23, 62-67 (1984).

Opt. Express

Opt. Lett.

Optik (Jena)

A. Yoshida and T. Asakura, “Electromagnetic field near the focus of gaussian beams,” Optik (Jena) 41, 281-292 (1974).

Proc. Natl. Acad. Sci. USA

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081-13086 (2005).
[CrossRef]

G. Donnert, J. Keller, R. Medda, M. A. Andrei, S. O. Rizzoli, R. Luhrmann, R. Jan, C. Eggeling, and S. W. Hell, “Macromolecular-scale resolution in biological fluorescence microscopy,” Proc. Natl. Acad. Sci. USA 103, 11440-11445 (2006).
[CrossRef]

Proc. R. Soc. A

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358-379 (1959).
[CrossRef]

Rev. Sci. Instrum.

N. Bobroff, “Position measurement with a resolution and noise-limited instrument,” Rev. Sci. Instrum. 57, 1152-1157(1986).
[CrossRef]

Science

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: single fluorophore imaging with 1.5 nm localization,” Science 300, 2061-2065 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics