Abstract

Our purpose is to improve the performance sensitivity of a fiber sensor used as a fiber optic hydrophone probe (FOHP) by the addition of nanoscale thin film gold coating. The fiber is designed to provide a uniform and spatial averaging free response up to 100 MHz by etching down to an active diameter of approximately 9 μm. The performance sensitivity of straight cleaved (i.e., full size core and cladding) uncoated, tapered uncoated, and tapered thin film gold-coated fiber sensors was compared in the frequency range from 1.5 to 20 MHz in the presence of acoustic amplitude pressure levels as high as 6 MPa. An unprecedented voltage sensitivity of −245 dB relative to 1 V/μPa (560 mV/MPa) was measured for a thin film gold-coated FOHP by optimizing the gold coating thickness.

© 2009 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. Lewin, “High frequency biomedical and industrial ultrasound applications,” in Proceedings of the International Congress on Ultrasonics, doi:10.3728/ICUltrasonics (CEA, 2007). Vienna.1796_lewin_plenary.
  2. S. Umchid, R. Gopinath, K. Srinivasan, P. A. Lewin, A. S. Daryoush, L. Bansal, and M. El-Sherif, “Development of calibration techniques for ultrasound probes in the frequency range from 1 to 100 MHz,” Ultrasonics 49, 306-311(2009).
    [CrossRef]
  3. P. Morris, A. Hurrell, and P. Beard, “Development of 50 MHz Fabry-Perot type fiber optic hydrophone for the characterization of medical ultrasound fields,” Proc. Inst. Acoust. 28, 717-725 (2006).
  4. V. Wilkens, Ch. Koch, and W. Molkenstruck, “Frequency response of a fiber-optic dielectric multilayer hydrophone,” in Proceedings of the 2000 IEEE Ultrasonics Symposium, Vol. 2 (IEEE, 2000), pp. 1113-1116.
  5. P. Fomitchov and S. Krishnaswamy, “Response of a fiber Bragg-grating ultrasound sensor,” Opt. Eng. 42, 956-963(2003).
  6. B.-O. Guan, H.-Y. Tam, S.-T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 17, 169-171 (2005).
    [CrossRef]
  7. J. Staudenraus and W. Eisenmenger, “Fibre-optic probe hydrophone for ultrasonic and shock-wave measurements in water,” Ultrasonics 31, 267-273 (1993).
    [CrossRef]
  8. C. Mu, S. Umchid, A. S. Daryoush, and P. A. Lewin, “Optical hydrophone for broadband medical ultrasound,” in International Topical Meeting on Microwave Photonics (IEEE, 2006), pp. 1-4.
  9. J. E. Parsons, C. A. Cain, and J. B. Fowlkes, “Cost-effective assembly of a basic fiber-optic hydrophone for measurement of high-amplitude therapeutic ultrasound fields,” J. Acoust. Soc. Am. 119, 1432-1440 (2006).
    [CrossRef]
  10. A. S. Daryoush, “RF and microwave photonics in biomedical applications,” in Microwave Photonics: Devices and Applications, S. Iezekiel, ed. (Wiley, 2009), pp 241-256.
  11. R. Gopinath, K. Srinivasan, S. Umchid, L. Bansal, A. S. Daryoush, P. A. Lewin, and M. El-Sherif, “Improved fiber optic hydrophone sensors,” in Ultrasonic Symposium (IEEE, 2007), pp. 2319-2322.
  12. P. A. Lewin, “Practical implementations and technology of measurement devices,” in Ultrasonic Exposimetry, M. C. Ziskin and P. A. Lewin, eds, (CRC Press, 1992), pp 185-215.
  13. P. A. Lewin, “Behaviour of the piezoelectric probe in high pressure amplitude acoustic fields,” in Proceedings of the World Federation for Ultrasound in Medicine and Biology, R. W. Gill and M. J. Dadd, eds. (Academic, 1985).
  14. S. W.Meeks and R. Y.Ting, “Evaluation of PVF2 for underwater shock-wave sensor applications,” J. Acoust. Soc. Am. 75, 1010-1012 (1984).
    [CrossRef]
  15. P. A. Lewin, J. M. Gilmore, and M. E. Schafer, “PVDF sensors for quantitative acoustic shock wave measurements,” in Ultrasonics International '89 Conference Proceedings (Butterworths, 1989).
  16. K. Srinivasan, “Noise cancelled optical receivers in fiber optic hydrophone up to 100 MHz,” M.S. thesis (Drexel University, 2007).

2009 (1)

S. Umchid, R. Gopinath, K. Srinivasan, P. A. Lewin, A. S. Daryoush, L. Bansal, and M. El-Sherif, “Development of calibration techniques for ultrasound probes in the frequency range from 1 to 100 MHz,” Ultrasonics 49, 306-311(2009).
[CrossRef]

2006 (2)

P. Morris, A. Hurrell, and P. Beard, “Development of 50 MHz Fabry-Perot type fiber optic hydrophone for the characterization of medical ultrasound fields,” Proc. Inst. Acoust. 28, 717-725 (2006).

J. E. Parsons, C. A. Cain, and J. B. Fowlkes, “Cost-effective assembly of a basic fiber-optic hydrophone for measurement of high-amplitude therapeutic ultrasound fields,” J. Acoust. Soc. Am. 119, 1432-1440 (2006).
[CrossRef]

2005 (1)

B.-O. Guan, H.-Y. Tam, S.-T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 17, 169-171 (2005).
[CrossRef]

2003 (1)

P. Fomitchov and S. Krishnaswamy, “Response of a fiber Bragg-grating ultrasound sensor,” Opt. Eng. 42, 956-963(2003).

1993 (1)

J. Staudenraus and W. Eisenmenger, “Fibre-optic probe hydrophone for ultrasonic and shock-wave measurements in water,” Ultrasonics 31, 267-273 (1993).
[CrossRef]

1984 (1)

S. W.Meeks and R. Y.Ting, “Evaluation of PVF2 for underwater shock-wave sensor applications,” J. Acoust. Soc. Am. 75, 1010-1012 (1984).
[CrossRef]

Bansal, L.

S. Umchid, R. Gopinath, K. Srinivasan, P. A. Lewin, A. S. Daryoush, L. Bansal, and M. El-Sherif, “Development of calibration techniques for ultrasound probes in the frequency range from 1 to 100 MHz,” Ultrasonics 49, 306-311(2009).
[CrossRef]

R. Gopinath, K. Srinivasan, S. Umchid, L. Bansal, A. S. Daryoush, P. A. Lewin, and M. El-Sherif, “Improved fiber optic hydrophone sensors,” in Ultrasonic Symposium (IEEE, 2007), pp. 2319-2322.

Beard, P.

P. Morris, A. Hurrell, and P. Beard, “Development of 50 MHz Fabry-Perot type fiber optic hydrophone for the characterization of medical ultrasound fields,” Proc. Inst. Acoust. 28, 717-725 (2006).

Cain, C. A.

J. E. Parsons, C. A. Cain, and J. B. Fowlkes, “Cost-effective assembly of a basic fiber-optic hydrophone for measurement of high-amplitude therapeutic ultrasound fields,” J. Acoust. Soc. Am. 119, 1432-1440 (2006).
[CrossRef]

Chan, H. L. W.

B.-O. Guan, H.-Y. Tam, S.-T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 17, 169-171 (2005).
[CrossRef]

Daryoush, A. S.

S. Umchid, R. Gopinath, K. Srinivasan, P. A. Lewin, A. S. Daryoush, L. Bansal, and M. El-Sherif, “Development of calibration techniques for ultrasound probes in the frequency range from 1 to 100 MHz,” Ultrasonics 49, 306-311(2009).
[CrossRef]

C. Mu, S. Umchid, A. S. Daryoush, and P. A. Lewin, “Optical hydrophone for broadband medical ultrasound,” in International Topical Meeting on Microwave Photonics (IEEE, 2006), pp. 1-4.

A. S. Daryoush, “RF and microwave photonics in biomedical applications,” in Microwave Photonics: Devices and Applications, S. Iezekiel, ed. (Wiley, 2009), pp 241-256.

R. Gopinath, K. Srinivasan, S. Umchid, L. Bansal, A. S. Daryoush, P. A. Lewin, and M. El-Sherif, “Improved fiber optic hydrophone sensors,” in Ultrasonic Symposium (IEEE, 2007), pp. 2319-2322.

Eisenmenger, W.

J. Staudenraus and W. Eisenmenger, “Fibre-optic probe hydrophone for ultrasonic and shock-wave measurements in water,” Ultrasonics 31, 267-273 (1993).
[CrossRef]

El-Sherif, M.

S. Umchid, R. Gopinath, K. Srinivasan, P. A. Lewin, A. S. Daryoush, L. Bansal, and M. El-Sherif, “Development of calibration techniques for ultrasound probes in the frequency range from 1 to 100 MHz,” Ultrasonics 49, 306-311(2009).
[CrossRef]

R. Gopinath, K. Srinivasan, S. Umchid, L. Bansal, A. S. Daryoush, P. A. Lewin, and M. El-Sherif, “Improved fiber optic hydrophone sensors,” in Ultrasonic Symposium (IEEE, 2007), pp. 2319-2322.

Fomitchov, P.

P. Fomitchov and S. Krishnaswamy, “Response of a fiber Bragg-grating ultrasound sensor,” Opt. Eng. 42, 956-963(2003).

Fowlkes, J. B.

J. E. Parsons, C. A. Cain, and J. B. Fowlkes, “Cost-effective assembly of a basic fiber-optic hydrophone for measurement of high-amplitude therapeutic ultrasound fields,” J. Acoust. Soc. Am. 119, 1432-1440 (2006).
[CrossRef]

Gilmore, J. M.

P. A. Lewin, J. M. Gilmore, and M. E. Schafer, “PVDF sensors for quantitative acoustic shock wave measurements,” in Ultrasonics International '89 Conference Proceedings (Butterworths, 1989).

Gopinath, R.

S. Umchid, R. Gopinath, K. Srinivasan, P. A. Lewin, A. S. Daryoush, L. Bansal, and M. El-Sherif, “Development of calibration techniques for ultrasound probes in the frequency range from 1 to 100 MHz,” Ultrasonics 49, 306-311(2009).
[CrossRef]

R. Gopinath, K. Srinivasan, S. Umchid, L. Bansal, A. S. Daryoush, P. A. Lewin, and M. El-Sherif, “Improved fiber optic hydrophone sensors,” in Ultrasonic Symposium (IEEE, 2007), pp. 2319-2322.

Guan, B.-O.

B.-O. Guan, H.-Y. Tam, S.-T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 17, 169-171 (2005).
[CrossRef]

Hurrell, A.

P. Morris, A. Hurrell, and P. Beard, “Development of 50 MHz Fabry-Perot type fiber optic hydrophone for the characterization of medical ultrasound fields,” Proc. Inst. Acoust. 28, 717-725 (2006).

Koch, Ch.

V. Wilkens, Ch. Koch, and W. Molkenstruck, “Frequency response of a fiber-optic dielectric multilayer hydrophone,” in Proceedings of the 2000 IEEE Ultrasonics Symposium, Vol. 2 (IEEE, 2000), pp. 1113-1116.

Krishnaswamy, S.

P. Fomitchov and S. Krishnaswamy, “Response of a fiber Bragg-grating ultrasound sensor,” Opt. Eng. 42, 956-963(2003).

Lau, S.-T.

B.-O. Guan, H.-Y. Tam, S.-T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 17, 169-171 (2005).
[CrossRef]

Lewin, P. A.

S. Umchid, R. Gopinath, K. Srinivasan, P. A. Lewin, A. S. Daryoush, L. Bansal, and M. El-Sherif, “Development of calibration techniques for ultrasound probes in the frequency range from 1 to 100 MHz,” Ultrasonics 49, 306-311(2009).
[CrossRef]

C. Mu, S. Umchid, A. S. Daryoush, and P. A. Lewin, “Optical hydrophone for broadband medical ultrasound,” in International Topical Meeting on Microwave Photonics (IEEE, 2006), pp. 1-4.

P. A. Lewin, “Behaviour of the piezoelectric probe in high pressure amplitude acoustic fields,” in Proceedings of the World Federation for Ultrasound in Medicine and Biology, R. W. Gill and M. J. Dadd, eds. (Academic, 1985).

R. Gopinath, K. Srinivasan, S. Umchid, L. Bansal, A. S. Daryoush, P. A. Lewin, and M. El-Sherif, “Improved fiber optic hydrophone sensors,” in Ultrasonic Symposium (IEEE, 2007), pp. 2319-2322.

P. A. Lewin, J. M. Gilmore, and M. E. Schafer, “PVDF sensors for quantitative acoustic shock wave measurements,” in Ultrasonics International '89 Conference Proceedings (Butterworths, 1989).

P. A. Lewin, “Practical implementations and technology of measurement devices,” in Ultrasonic Exposimetry, M. C. Ziskin and P. A. Lewin, eds, (CRC Press, 1992), pp 185-215.

P. A. Lewin, “High frequency biomedical and industrial ultrasound applications,” in Proceedings of the International Congress on Ultrasonics, doi:10.3728/ICUltrasonics (CEA, 2007). Vienna.1796_lewin_plenary.

Meeks, S. W.

S. W.Meeks and R. Y.Ting, “Evaluation of PVF2 for underwater shock-wave sensor applications,” J. Acoust. Soc. Am. 75, 1010-1012 (1984).
[CrossRef]

Molkenstruck, W.

V. Wilkens, Ch. Koch, and W. Molkenstruck, “Frequency response of a fiber-optic dielectric multilayer hydrophone,” in Proceedings of the 2000 IEEE Ultrasonics Symposium, Vol. 2 (IEEE, 2000), pp. 1113-1116.

Morris, P.

P. Morris, A. Hurrell, and P. Beard, “Development of 50 MHz Fabry-Perot type fiber optic hydrophone for the characterization of medical ultrasound fields,” Proc. Inst. Acoust. 28, 717-725 (2006).

Mu, C.

C. Mu, S. Umchid, A. S. Daryoush, and P. A. Lewin, “Optical hydrophone for broadband medical ultrasound,” in International Topical Meeting on Microwave Photonics (IEEE, 2006), pp. 1-4.

Parsons, J. E.

J. E. Parsons, C. A. Cain, and J. B. Fowlkes, “Cost-effective assembly of a basic fiber-optic hydrophone for measurement of high-amplitude therapeutic ultrasound fields,” J. Acoust. Soc. Am. 119, 1432-1440 (2006).
[CrossRef]

Schafer, M. E.

P. A. Lewin, J. M. Gilmore, and M. E. Schafer, “PVDF sensors for quantitative acoustic shock wave measurements,” in Ultrasonics International '89 Conference Proceedings (Butterworths, 1989).

Srinivasan, K.

S. Umchid, R. Gopinath, K. Srinivasan, P. A. Lewin, A. S. Daryoush, L. Bansal, and M. El-Sherif, “Development of calibration techniques for ultrasound probes in the frequency range from 1 to 100 MHz,” Ultrasonics 49, 306-311(2009).
[CrossRef]

K. Srinivasan, “Noise cancelled optical receivers in fiber optic hydrophone up to 100 MHz,” M.S. thesis (Drexel University, 2007).

R. Gopinath, K. Srinivasan, S. Umchid, L. Bansal, A. S. Daryoush, P. A. Lewin, and M. El-Sherif, “Improved fiber optic hydrophone sensors,” in Ultrasonic Symposium (IEEE, 2007), pp. 2319-2322.

Staudenraus, J.

J. Staudenraus and W. Eisenmenger, “Fibre-optic probe hydrophone for ultrasonic and shock-wave measurements in water,” Ultrasonics 31, 267-273 (1993).
[CrossRef]

Tam, H.-Y.

B.-O. Guan, H.-Y. Tam, S.-T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 17, 169-171 (2005).
[CrossRef]

Ting, R. Y.

S. W.Meeks and R. Y.Ting, “Evaluation of PVF2 for underwater shock-wave sensor applications,” J. Acoust. Soc. Am. 75, 1010-1012 (1984).
[CrossRef]

Umchid, S.

S. Umchid, R. Gopinath, K. Srinivasan, P. A. Lewin, A. S. Daryoush, L. Bansal, and M. El-Sherif, “Development of calibration techniques for ultrasound probes in the frequency range from 1 to 100 MHz,” Ultrasonics 49, 306-311(2009).
[CrossRef]

C. Mu, S. Umchid, A. S. Daryoush, and P. A. Lewin, “Optical hydrophone for broadband medical ultrasound,” in International Topical Meeting on Microwave Photonics (IEEE, 2006), pp. 1-4.

R. Gopinath, K. Srinivasan, S. Umchid, L. Bansal, A. S. Daryoush, P. A. Lewin, and M. El-Sherif, “Improved fiber optic hydrophone sensors,” in Ultrasonic Symposium (IEEE, 2007), pp. 2319-2322.

Wilkens, V.

V. Wilkens, Ch. Koch, and W. Molkenstruck, “Frequency response of a fiber-optic dielectric multilayer hydrophone,” in Proceedings of the 2000 IEEE Ultrasonics Symposium, Vol. 2 (IEEE, 2000), pp. 1113-1116.

IEEE Photon. Technol. Lett. (1)

B.-O. Guan, H.-Y. Tam, S.-T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 17, 169-171 (2005).
[CrossRef]

J. Acoust. Soc. Am. (2)

S. W.Meeks and R. Y.Ting, “Evaluation of PVF2 for underwater shock-wave sensor applications,” J. Acoust. Soc. Am. 75, 1010-1012 (1984).
[CrossRef]

J. E. Parsons, C. A. Cain, and J. B. Fowlkes, “Cost-effective assembly of a basic fiber-optic hydrophone for measurement of high-amplitude therapeutic ultrasound fields,” J. Acoust. Soc. Am. 119, 1432-1440 (2006).
[CrossRef]

Opt. Eng. (1)

P. Fomitchov and S. Krishnaswamy, “Response of a fiber Bragg-grating ultrasound sensor,” Opt. Eng. 42, 956-963(2003).

Ultrasonics (2)

S. Umchid, R. Gopinath, K. Srinivasan, P. A. Lewin, A. S. Daryoush, L. Bansal, and M. El-Sherif, “Development of calibration techniques for ultrasound probes in the frequency range from 1 to 100 MHz,” Ultrasonics 49, 306-311(2009).
[CrossRef]

J. Staudenraus and W. Eisenmenger, “Fibre-optic probe hydrophone for ultrasonic and shock-wave measurements in water,” Ultrasonics 31, 267-273 (1993).
[CrossRef]

Other (10)

C. Mu, S. Umchid, A. S. Daryoush, and P. A. Lewin, “Optical hydrophone for broadband medical ultrasound,” in International Topical Meeting on Microwave Photonics (IEEE, 2006), pp. 1-4.

P. A. Lewin, J. M. Gilmore, and M. E. Schafer, “PVDF sensors for quantitative acoustic shock wave measurements,” in Ultrasonics International '89 Conference Proceedings (Butterworths, 1989).

K. Srinivasan, “Noise cancelled optical receivers in fiber optic hydrophone up to 100 MHz,” M.S. thesis (Drexel University, 2007).

P. Morris, A. Hurrell, and P. Beard, “Development of 50 MHz Fabry-Perot type fiber optic hydrophone for the characterization of medical ultrasound fields,” Proc. Inst. Acoust. 28, 717-725 (2006).

V. Wilkens, Ch. Koch, and W. Molkenstruck, “Frequency response of a fiber-optic dielectric multilayer hydrophone,” in Proceedings of the 2000 IEEE Ultrasonics Symposium, Vol. 2 (IEEE, 2000), pp. 1113-1116.

P. A. Lewin, “High frequency biomedical and industrial ultrasound applications,” in Proceedings of the International Congress on Ultrasonics, doi:10.3728/ICUltrasonics (CEA, 2007). Vienna.1796_lewin_plenary.

A. S. Daryoush, “RF and microwave photonics in biomedical applications,” in Microwave Photonics: Devices and Applications, S. Iezekiel, ed. (Wiley, 2009), pp 241-256.

R. Gopinath, K. Srinivasan, S. Umchid, L. Bansal, A. S. Daryoush, P. A. Lewin, and M. El-Sherif, “Improved fiber optic hydrophone sensors,” in Ultrasonic Symposium (IEEE, 2007), pp. 2319-2322.

P. A. Lewin, “Practical implementations and technology of measurement devices,” in Ultrasonic Exposimetry, M. C. Ziskin and P. A. Lewin, eds, (CRC Press, 1992), pp 185-215.

P. A. Lewin, “Behaviour of the piezoelectric probe in high pressure amplitude acoustic fields,” in Proceedings of the World Federation for Ultrasound in Medicine and Biology, R. W. Gill and M. J. Dadd, eds. (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics