Abstract

We developed a simple seminumerical method to model, get design parameters, and estimate performance of side-polished microstructured optical fiber (SPMOF)-based devices. As an example, we analyze a SPMOF directional coupler and show good agreement between the available experimental results and our theoretically estimated characteristics of such a coupler. To further demonstrate the utility of our design approach, we also propose a new wavelength filter design based on the use of a SPMOF half- coupler, which is loaded with an overlay planar waveguide and should find applications as a gain- flattening filter for erbium-doped fiber amplifiers or as a bandstop filter, in general. To show the applicability of our approach even to surface plasmonic components, we also propose a SPMOF polarizer design, which could be formed by coating the top polished surface of a SPMOF half-coupler with a metal layer.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
    [CrossRef]
  2. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  3. N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395-1397(1999).
    [CrossRef]
  4. B. H. Lee, J. B. Eom, J. Kim, D. S. Moon, U. C. Paek, and G. H. Yang, “Photonic crystal fiber coupler,” Opt. Lett. 27, 812-814 (2002).
    [CrossRef]
  5. H. Kim, J. Kim, U. C. Paek, and B. H. Lee, “Tunable photonic crystal fiber coupler based on a side-polishing technique,” Opt. Lett. 29, 1194-1196 (2004).
    [CrossRef] [PubMed]
  6. H. S. Jang, K. N. Park, and K. S. Lee, “Characterization of tunable photonic crystal fiber directional couplers,” Appl. Opt. 46, 3688-3693 (2007).
    [CrossRef] [PubMed]
  7. R. K. Varshney, “Side-polished fiber coupler half block and devices,” in Guided Wave Optics, A. Sharma, ed. (Viva Books, 2005), pp. 110-127.
  8. K. N. Park and K. S. Lee, “Improved effective-index method for analysis of photonic crystal fibers,” Opt. Lett. 30, 958-960(2005).
    [CrossRef] [PubMed]
  9. A. Sharma, J. Kompella, and P. K. Mishra, “Analysis of fiber directional couplers and coupler half-blocks using a new simple model for single-mode fibers,” J. Lightwave Technol. 8, 143-151 (1990).
    [CrossRef]
  10. R. K. Varshney, A. Singh, K. Pande, and B. P. Pal, “Side-polished fiber-based gain-flattening filter for erbium doped fiber amplifiers,” Opt. Commun. 271, 441-444 (2007).
    [CrossRef]
  11. R. K. Varshney, B. Nagaraju, A. Singh, B. P. Pal, and A. K. Kar, “Design and realization of an all-fiber broadband tunable gain equalization filter for DWDM signals,” Opt. Express 15, 13519-13530 (2007).
    [CrossRef] [PubMed]
  12. A. K. Ghatak, K. Thyagarajan, and M. R. Shenoy, “Numerical analysis of planar optical waveguides using matrix approach,” J. Lightwave Technol. 5, 660-667 (1987).
    [CrossRef]
  13. J. N. Polky and G. L. Mitchell, “Metal-clad planar dielectric waveguide for integrated optics,” J. Opt. Soc. Am. 64, 274-279(1974).
    [CrossRef]
  14. K. Thyagarajan, S. Diggavi, and A. K. Ghatak, “Design and analysis of a novel polarisation splitting directional coupler,” Electron. Lett. 24, 869-870 (1988).
    [CrossRef]
  15. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

2007 (3)

2005 (1)

2004 (1)

2002 (1)

2000 (1)

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

1999 (1)

1997 (1)

1990 (1)

A. Sharma, J. Kompella, and P. K. Mishra, “Analysis of fiber directional couplers and coupler half-blocks using a new simple model for single-mode fibers,” J. Lightwave Technol. 8, 143-151 (1990).
[CrossRef]

1988 (1)

K. Thyagarajan, S. Diggavi, and A. K. Ghatak, “Design and analysis of a novel polarisation splitting directional coupler,” Electron. Lett. 24, 869-870 (1988).
[CrossRef]

1987 (1)

A. K. Ghatak, K. Thyagarajan, and M. R. Shenoy, “Numerical analysis of planar optical waveguides using matrix approach,” J. Lightwave Technol. 5, 660-667 (1987).
[CrossRef]

1974 (1)

Arriaga, J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

Bennett, P. J.

Birks, T. A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997).
[CrossRef] [PubMed]

Broderick, N. G. R.

Diggavi, S.

K. Thyagarajan, S. Diggavi, and A. K. Ghatak, “Design and analysis of a novel polarisation splitting directional coupler,” Electron. Lett. 24, 869-870 (1988).
[CrossRef]

Eom, J. B.

Ghatak, A. K.

K. Thyagarajan, S. Diggavi, and A. K. Ghatak, “Design and analysis of a novel polarisation splitting directional coupler,” Electron. Lett. 24, 869-870 (1988).
[CrossRef]

A. K. Ghatak, K. Thyagarajan, and M. R. Shenoy, “Numerical analysis of planar optical waveguides using matrix approach,” J. Lightwave Technol. 5, 660-667 (1987).
[CrossRef]

Jang, H. S.

Kar, A. K.

Kim, H.

Kim, J.

Knight, J. C.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997).
[CrossRef] [PubMed]

Kompella, J.

A. Sharma, J. Kompella, and P. K. Mishra, “Analysis of fiber directional couplers and coupler half-blocks using a new simple model for single-mode fibers,” J. Lightwave Technol. 8, 143-151 (1990).
[CrossRef]

Lee, B. H.

Lee, K. S.

Mishra, P. K.

A. Sharma, J. Kompella, and P. K. Mishra, “Analysis of fiber directional couplers and coupler half-blocks using a new simple model for single-mode fibers,” J. Lightwave Technol. 8, 143-151 (1990).
[CrossRef]

Mitchell, G. L.

Monro, T. M.

Moon, D. S.

Nagaraju, B.

Ortigosa-Blanch, A.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

Paek, U. C.

Pal, B. P.

R. K. Varshney, A. Singh, K. Pande, and B. P. Pal, “Side-polished fiber-based gain-flattening filter for erbium doped fiber amplifiers,” Opt. Commun. 271, 441-444 (2007).
[CrossRef]

R. K. Varshney, B. Nagaraju, A. Singh, B. P. Pal, and A. K. Kar, “Design and realization of an all-fiber broadband tunable gain equalization filter for DWDM signals,” Opt. Express 15, 13519-13530 (2007).
[CrossRef] [PubMed]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Pande, K.

R. K. Varshney, A. Singh, K. Pande, and B. P. Pal, “Side-polished fiber-based gain-flattening filter for erbium doped fiber amplifiers,” Opt. Commun. 271, 441-444 (2007).
[CrossRef]

Park, K. N.

Polky, J. N.

Richardson, D. J.

Russell, P. St. J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997).
[CrossRef] [PubMed]

Sharma, A.

A. Sharma, J. Kompella, and P. K. Mishra, “Analysis of fiber directional couplers and coupler half-blocks using a new simple model for single-mode fibers,” J. Lightwave Technol. 8, 143-151 (1990).
[CrossRef]

Shenoy, M. R.

A. K. Ghatak, K. Thyagarajan, and M. R. Shenoy, “Numerical analysis of planar optical waveguides using matrix approach,” J. Lightwave Technol. 5, 660-667 (1987).
[CrossRef]

Singh, A.

R. K. Varshney, B. Nagaraju, A. Singh, B. P. Pal, and A. K. Kar, “Design and realization of an all-fiber broadband tunable gain equalization filter for DWDM signals,” Opt. Express 15, 13519-13530 (2007).
[CrossRef] [PubMed]

R. K. Varshney, A. Singh, K. Pande, and B. P. Pal, “Side-polished fiber-based gain-flattening filter for erbium doped fiber amplifiers,” Opt. Commun. 271, 441-444 (2007).
[CrossRef]

Thyagarajan, K.

K. Thyagarajan, S. Diggavi, and A. K. Ghatak, “Design and analysis of a novel polarisation splitting directional coupler,” Electron. Lett. 24, 869-870 (1988).
[CrossRef]

A. K. Ghatak, K. Thyagarajan, and M. R. Shenoy, “Numerical analysis of planar optical waveguides using matrix approach,” J. Lightwave Technol. 5, 660-667 (1987).
[CrossRef]

Varshney, R. K.

R. K. Varshney, B. Nagaraju, A. Singh, B. P. Pal, and A. K. Kar, “Design and realization of an all-fiber broadband tunable gain equalization filter for DWDM signals,” Opt. Express 15, 13519-13530 (2007).
[CrossRef] [PubMed]

R. K. Varshney, A. Singh, K. Pande, and B. P. Pal, “Side-polished fiber-based gain-flattening filter for erbium doped fiber amplifiers,” Opt. Commun. 271, 441-444 (2007).
[CrossRef]

R. K. Varshney, “Side-polished fiber coupler half block and devices,” in Guided Wave Optics, A. Sharma, ed. (Viva Books, 2005), pp. 110-127.

Wadsworth, W. J.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

Yang, G. H.

Appl. Opt. (1)

Electron. Lett. (1)

K. Thyagarajan, S. Diggavi, and A. K. Ghatak, “Design and analysis of a novel polarisation splitting directional coupler,” Electron. Lett. 24, 869-870 (1988).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

J. Lightwave Technol. (2)

A. Sharma, J. Kompella, and P. K. Mishra, “Analysis of fiber directional couplers and coupler half-blocks using a new simple model for single-mode fibers,” J. Lightwave Technol. 8, 143-151 (1990).
[CrossRef]

A. K. Ghatak, K. Thyagarajan, and M. R. Shenoy, “Numerical analysis of planar optical waveguides using matrix approach,” J. Lightwave Technol. 5, 660-667 (1987).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

R. K. Varshney, A. Singh, K. Pande, and B. P. Pal, “Side-polished fiber-based gain-flattening filter for erbium doped fiber amplifiers,” Opt. Commun. 271, 441-444 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

R. K. Varshney, “Side-polished fiber coupler half block and devices,” in Guided Wave Optics, A. Sharma, ed. (Viva Books, 2005), pp. 110-127.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Equivalent step-index fiber of the MOF.

Fig. 2
Fig. 2

(a) Sschematic diagram of a SPMOF directional coupler and (b) its equivalent structure (in the region of interaction) used in the modeling.

Fig. 3
Fig. 3

Enlarged view of the coupling region in the transverse direction.

Fig. 4
Fig. 4

Variation of normalized coupled power with minimum fiber spacing for the SPMOF directional coupler.

Fig. 5
Fig. 5

Variation of normalized coupled power with minimum fiber spacing for a SPMOF directional coupler. Dashed curve, result obtained by CMT; solid curve, the result yielded by the current approach.

Fig. 6
Fig. 6

Schematic diagram of a SPMOF half-coupler loaded with an overlay.

Fig. 7
Fig. 7

Wavelength response of throughput power for a SPMOF block loaded with an overlay.

Fig. 8
Fig. 8

Loss spectrum of the designed filter with a notch around 1530 nm .

Fig. 9
Fig. 9

Loss as a function of limited cladding thickness for metal-loaded SPMOF.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

ρ c o Λ = c 1 / { 1 + exp [ ( d Λ c 3 ) / c 2 ] } ,
n 2 ( r ) = n c o 2 , r ρ c o = n FSFM 2 , r > ρ c o ,
n 2 ( x ) = n 1 2 , | x | σ ρ c o = n 2 2 , | x | > σ ρ c o ,
n 1 2 = n c o 2 U 2 p 2 k 0 2 ρ c o 2 ,
n 2 2 = n 1 2 p 2 sec 2 ( p σ ) k 0 2 ρ c o 2 ,
U = V 2 ( 1.1428 V 0.996 ) 2 ,
p 3 = 1.3528 + 1.6880 V 0.1894 V 2 ,
σ = 0.8404 + 0.0251 V 0.0046 V 2 .
ψ s ( x ) = Ψ 1 ( x , z 0 ) = j = 1 M a j 1 ψ j 1 ( x ) ,
a j 1 = ψ j 1 * ( x ) ψ s ( x ) d x ψ j 1 * ( x ) ψ j 1 ( x ) d x
Ψ 1 ( x , z ) = j = 1 M a j 1 ψ j 1 ( x ) exp { i β j 1 d z } ,
Ψ k ( x , z ) = j = 1 M a j k ψ j k ( x ) exp { i β j k ( z z k 1 ) } ,
a j k = l = 1 M a l , k 1 exp { i β l , k 1 d z } ψ j k * ( x ) ψ l , k 1 ( x ) d x ψ j k * ( x ) ψ j k ( x ) d x .
Ψ N ( x , z N ) = a s ψ s ,
a s = j = 1 M a j N exp { i β j N } d z ψ s * ( x ) ψ j N ( x ) d x ψ s * ( x ) ψ s ( x ) d x ,
P T = | a s | 2 .

Metrics