Abstract

We present a theoretical study of the ambient refractive index sensing characteristics of long period gratings in bare and metal-coated D-shaped fibers. An equivalent rectangular core waveguide method based on the first-order perturbation theory has been used to study the modal behavior of the waveguide. Power coupling corresponding to dual resonance in both cases has been investigated, and an optimum metal thickness giving maximum sensitivity has been found to exist. The study shows that the dual resonances can be shifted to lower wavelengths by increasing (decreasing) the metal thickness (core to flat surface separation). Further, an optimum combination of metal thickness and core to flat surface separation, corresponding to maximum sensitivity, has been presented for different cladding modes and their relative performance has been discussed. It has been shown theoretically that detection of refractive index changes as small as 1.67×107RIU in the ambient region is possible using the optimized parameters. The study should find application in realizing highly sensitive biochemical sensors.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription