Abstract

The gain and noise characteristics of a fiber Brillouin amplifier are studied experimentally and analyzed using a dispersion shifted fiber. Based on these measurements, the optimal conditions of gain and on–off ratio are identified for slow light generation.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. R. Chraplyvy and R. W. Tkach, “Narrowband tunable optical filter for channel selection in densely packed WDM systems,” Electron. Lett. 22, 1084-1085 (1986).
    [CrossRef]
  2. R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Performance of a WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1, 111-113 (1989).
    [CrossRef]
  3. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
    [CrossRef] [PubMed]
  4. K. Y. Song, M. G. Herraez, and L. Thevenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13, 82-88 (2005).
    [CrossRef] [PubMed]
  5. Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748-1750 (2007).
    [CrossRef] [PubMed]
  6. D. Cotter, “Observation of stimulated Brillouin scattering in low-loss silica fibre at 1.3 μm,” Electron. Lett. 18, 495-496(1982).
    [CrossRef]
  7. M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Analysis of the gain and noise characteristics of fibre Brillouin amplifiers,” Opt. Quantum Electron. 26, 35-44 (1994).
    [CrossRef]
  8. Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22, 2378-2384 (2005).
    [CrossRef]
  9. M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, and D. J. Gauthier, “ Distortion management in slow-light pulse delay,” Opt. Express 13, 9995-10002 (2005).
    [CrossRef] [PubMed]
  10. E. Shumakher, N. Orbach, A. Nevet, D. Dahan, and G. Eisenstein, “On the balance between delay, bandwidth and signal distortion in slow light systems based on stimulated Brillouin scattering in optical fibers,” Opt. Express 14, 5877-5884 (2006).
    [CrossRef] [PubMed]
  11. P. Bayvel, I. P. Giles, and P. M. Radmore, “Transient and steady state characteristics of a Brillouin amplifier based on an all-fibre single-mode ring resonator,”Opt. Quantum Electron. 21, S113-S128 (1989).
    [CrossRef]
  12. A. S. Siddiqui and S. Andronikidis, “Transfer characteristics of Brillouin fibre amplifiers for use in self-homodyne coherent optical transmission systems,” Electron. Lett. 25, 264-266 (1989).
    [CrossRef]
  13. L. Xing, L. Zhan, S. Luo, and Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44, 1133-1138 (2008).
    [CrossRef]
  14. M. Dammig, G. Zinner, F. Mitschke, and H. Welling, “Stimulated Brillouin scattering in fibers with and without external feedback,” Phys. Rev. A 48, 3301-3309 (1993).
    [CrossRef] [PubMed]

2008

L. Xing, L. Zhan, S. Luo, and Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44, 1133-1138 (2008).
[CrossRef]

2007

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748-1750 (2007).
[CrossRef] [PubMed]

2006

2005

1994

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Analysis of the gain and noise characteristics of fibre Brillouin amplifiers,” Opt. Quantum Electron. 26, 35-44 (1994).
[CrossRef]

1993

M. Dammig, G. Zinner, F. Mitschke, and H. Welling, “Stimulated Brillouin scattering in fibers with and without external feedback,” Phys. Rev. A 48, 3301-3309 (1993).
[CrossRef] [PubMed]

1989

P. Bayvel, I. P. Giles, and P. M. Radmore, “Transient and steady state characteristics of a Brillouin amplifier based on an all-fibre single-mode ring resonator,”Opt. Quantum Electron. 21, S113-S128 (1989).
[CrossRef]

A. S. Siddiqui and S. Andronikidis, “Transfer characteristics of Brillouin fibre amplifiers for use in self-homodyne coherent optical transmission systems,” Electron. Lett. 25, 264-266 (1989).
[CrossRef]

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Performance of a WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1, 111-113 (1989).
[CrossRef]

1986

A. R. Chraplyvy and R. W. Tkach, “Narrowband tunable optical filter for channel selection in densely packed WDM systems,” Electron. Lett. 22, 1084-1085 (1986).
[CrossRef]

1982

D. Cotter, “Observation of stimulated Brillouin scattering in low-loss silica fibre at 1.3 μm,” Electron. Lett. 18, 495-496(1982).
[CrossRef]

Andronikidis, S.

A. S. Siddiqui and S. Andronikidis, “Transfer characteristics of Brillouin fibre amplifiers for use in self-homodyne coherent optical transmission systems,” Electron. Lett. 25, 264-266 (1989).
[CrossRef]

Bayvel, P.

P. Bayvel, I. P. Giles, and P. M. Radmore, “Transient and steady state characteristics of a Brillouin amplifier based on an all-fibre single-mode ring resonator,”Opt. Quantum Electron. 21, S113-S128 (1989).
[CrossRef]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Boyd, R. W.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748-1750 (2007).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22, 2378-2384 (2005).
[CrossRef]

Chraplyvy, A. R.

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Performance of a WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1, 111-113 (1989).
[CrossRef]

A. R. Chraplyvy and R. W. Tkach, “Narrowband tunable optical filter for channel selection in densely packed WDM systems,” Electron. Lett. 22, 1084-1085 (1986).
[CrossRef]

Cotter, D.

D. Cotter, “Observation of stimulated Brillouin scattering in low-loss silica fibre at 1.3 μm,” Electron. Lett. 18, 495-496(1982).
[CrossRef]

Dahan, D.

Dammig, M.

M. Dammig, G. Zinner, F. Mitschke, and H. Welling, “Stimulated Brillouin scattering in fibers with and without external feedback,” Phys. Rev. A 48, 3301-3309 (1993).
[CrossRef] [PubMed]

Dawes, A. M. C.

Derosier, R. M.

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Performance of a WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1, 111-113 (1989).
[CrossRef]

Eisenstein, G.

Ferreira, M. F.

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Analysis of the gain and noise characteristics of fibre Brillouin amplifiers,” Opt. Quantum Electron. 26, 35-44 (1994).
[CrossRef]

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22, 2378-2384 (2005).
[CrossRef]

Gauthier, D. J.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748-1750 (2007).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22, 2378-2384 (2005).
[CrossRef]

M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, and D. J. Gauthier, “ Distortion management in slow-light pulse delay,” Opt. Express 13, 9995-10002 (2005).
[CrossRef] [PubMed]

Giles, I. P.

P. Bayvel, I. P. Giles, and P. M. Radmore, “Transient and steady state characteristics of a Brillouin amplifier based on an all-fibre single-mode ring resonator,”Opt. Quantum Electron. 21, S113-S128 (1989).
[CrossRef]

Herraez, M. G.

Luo, S.

L. Xing, L. Zhan, S. Luo, and Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44, 1133-1138 (2008).
[CrossRef]

Mitschke, F.

M. Dammig, G. Zinner, F. Mitschke, and H. Welling, “Stimulated Brillouin scattering in fibers with and without external feedback,” Phys. Rev. A 48, 3301-3309 (1993).
[CrossRef] [PubMed]

Neifeld, M. A.

Nevet, A.

Okawachi, Y.

Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22, 2378-2384 (2005).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Orbach, N.

Pinto, J. L.

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Analysis of the gain and noise characteristics of fibre Brillouin amplifiers,” Opt. Quantum Electron. 26, 35-44 (1994).
[CrossRef]

Radmore, P. M.

P. Bayvel, I. P. Giles, and P. M. Radmore, “Transient and steady state characteristics of a Brillouin amplifier based on an all-fibre single-mode ring resonator,”Opt. Quantum Electron. 21, S113-S128 (1989).
[CrossRef]

Rocha, J. F.

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Analysis of the gain and noise characteristics of fibre Brillouin amplifiers,” Opt. Quantum Electron. 26, 35-44 (1994).
[CrossRef]

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22, 2378-2384 (2005).
[CrossRef]

Shumakher, E.

Siddiqui, A. S.

A. S. Siddiqui and S. Andronikidis, “Transfer characteristics of Brillouin fibre amplifiers for use in self-homodyne coherent optical transmission systems,” Electron. Lett. 25, 264-266 (1989).
[CrossRef]

Song, K. Y.

Stenner, M. D.

Thevenaz, L.

Tkach, R. W.

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Performance of a WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1, 111-113 (1989).
[CrossRef]

A. R. Chraplyvy and R. W. Tkach, “Narrowband tunable optical filter for channel selection in densely packed WDM systems,” Electron. Lett. 22, 1084-1085 (1986).
[CrossRef]

Welling, H.

M. Dammig, G. Zinner, F. Mitschke, and H. Welling, “Stimulated Brillouin scattering in fibers with and without external feedback,” Phys. Rev. A 48, 3301-3309 (1993).
[CrossRef] [PubMed]

Willner, A. E.

Xia, Y.

L. Xing, L. Zhan, S. Luo, and Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44, 1133-1138 (2008).
[CrossRef]

Xing, L.

L. Xing, L. Zhan, S. Luo, and Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44, 1133-1138 (2008).
[CrossRef]

Zhan, L.

L. Xing, L. Zhan, S. Luo, and Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44, 1133-1138 (2008).
[CrossRef]

Zhu, Z.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748-1750 (2007).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22, 2378-2384 (2005).
[CrossRef]

M. D. Stenner, M. A. Neifeld, Z. Zhu, A. M. C. Dawes, and D. J. Gauthier, “ Distortion management in slow-light pulse delay,” Opt. Express 13, 9995-10002 (2005).
[CrossRef] [PubMed]

Zinner, G.

M. Dammig, G. Zinner, F. Mitschke, and H. Welling, “Stimulated Brillouin scattering in fibers with and without external feedback,” Phys. Rev. A 48, 3301-3309 (1993).
[CrossRef] [PubMed]

Electron. Lett.

A. R. Chraplyvy and R. W. Tkach, “Narrowband tunable optical filter for channel selection in densely packed WDM systems,” Electron. Lett. 22, 1084-1085 (1986).
[CrossRef]

D. Cotter, “Observation of stimulated Brillouin scattering in low-loss silica fibre at 1.3 μm,” Electron. Lett. 18, 495-496(1982).
[CrossRef]

A. S. Siddiqui and S. Andronikidis, “Transfer characteristics of Brillouin fibre amplifiers for use in self-homodyne coherent optical transmission systems,” Electron. Lett. 25, 264-266 (1989).
[CrossRef]

IEEE J. Quantum Electron.

L. Xing, L. Zhan, S. Luo, and Y. Xia, “High-power low-noise fiber Brillouin amplifier for tunable slow-light delay buffer,” IEEE J. Quantum Electron. 44, 1133-1138 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Performance of a WDM network based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 1, 111-113 (1989).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Quantum Electron.

P. Bayvel, I. P. Giles, and P. M. Radmore, “Transient and steady state characteristics of a Brillouin amplifier based on an all-fibre single-mode ring resonator,”Opt. Quantum Electron. 21, S113-S128 (1989).
[CrossRef]

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Analysis of the gain and noise characteristics of fibre Brillouin amplifiers,” Opt. Quantum Electron. 26, 35-44 (1994).
[CrossRef]

Phys. Rev. A

M. Dammig, G. Zinner, F. Mitschke, and H. Welling, “Stimulated Brillouin scattering in fibers with and without external feedback,” Phys. Rev. A 48, 3301-3309 (1993).
[CrossRef] [PubMed]

Phys. Rev. Lett.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Science

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318, 1748-1750 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup of a FBA.

Fig. 2
Fig. 2

(a) Output Stokes power and (b) transmitted pump power for DSF of lengths 0.5, 2.5, and 5 km for different values of input pump power.

Fig. 3
Fig. 3

Gain with variation in input pump power for DSF of lengths (a)  2.5 km and (b)  5 km .

Fig. 4
Fig. 4

On–off ratio with variation in input pump power for DSF of lengths (a)  2.5 km and (b)  5 km .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

G = P s ( out ) P s ( in ) ,
o n off ratio = P s ( out ) P asp ,
Δ T d = G / Γ B ,

Metrics