Abstract

We report on innovative application of microchannels with access holes fabricated by femtosecond laser irradiation followed by chemical etching. This technique allows us to demonstrate a novel approach to the achievement of organic photonic devices in which the properties of a conjugated polymer in solution are exploited in a microfluidic configuration to produce an easy-to-integrate photonic device. Filling the microchannel with a diluted polyfluorene solution, we exploit the unique properties of isolated polymeric chains such as ultrafast gain switching (switching response time of 150fs) with a 100% on–off ratio. In addition, by dispersing nanoparticles in the polymeric solution we are able to achieve random lasing in the microchannel.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381-386 (2006).
    [CrossRef] [PubMed]
  2. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photon. 1, 106-114 (2007).
    [CrossRef]
  3. Z. Y. Li, and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4, 145-158 (2008).
    [CrossRef]
  4. D. Erickson and D. Q. Li, “Integrated microfluidic devices,” Anal. Chim. Acta 507, 11-26 (2004).
    [CrossRef]
  5. K. C. Vishnubhatla, J. Clark, G. Lanzani, R. Ramponi, R. Osellame, and T. Virgili, “Ultrafast optofluidic gain switch based on conjugated polymer in femtosecond laser fabricated microchannels,” Appl. Phys. Lett. 94, 041123 (2009).
    [CrossRef]
  6. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219-225 (2008).
    [CrossRef]
  7. R. Osellame, V. Maselli, R. Martinez Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett. 90, 231118 (2007).
    [CrossRef]
  8. K. C. Vishnubhatla, N. Bellini, R. Ramponi, G. Cerullo, and R. Osellame, “Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching,” Opt. Express 17, 8685-8695 (2009).
    [CrossRef] [PubMed]
  9. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729-1731 (1996).
    [CrossRef] [PubMed]
  10. C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93-95 (2001).
    [CrossRef]
  11. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20, 1559-1567 (2003).
    [CrossRef]
  12. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three dimensional integrated optics,” Appl. Phys. A 77, 109-111 (2003).
    [CrossRef]
  13. S. M. Eaton, H. Zhang, and “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708-4716 (2005).
    [CrossRef] [PubMed]
  14. A. Ymeti, J. S. Kanger, J. Greve, G. A. J. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417-1421 (2005).
    [CrossRef]
  15. T. Virgili, D. Marinotto, G. Lanzani, and D. D. C. Bradley, “Ultrafast resonant optical switching in isolated polyfluorenes chains,” Appl. Phys. Lett. 86, 091113 (2005).
    [CrossRef]
  16. C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47-61 (2006).
    [CrossRef]
  17. A. Marcinkevicius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26, 277-279 (2001).
    [CrossRef]
  18. Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express 12, 2120-2129 (2004).
    [CrossRef] [PubMed]
  19. V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, and P. L. Cavallotti, “Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching,” Appl. Phys. Lett. 88, 191107 (2006).
    [CrossRef]
  20. D. D. C. Bradley, M. Grell, X. Long, H. Mellor, A. Grice, M. Inbasekaran, and E. P. Woo, “Influence of aggregation on the optical properties of a polyfluorene,” Proc. SPIE 3145, 254-259 (1997).
    [CrossRef]
  21. A. W. Grice, D. D. C. Bradley, M. T. Bernius, M. Inbasekaran, W. W. Wu, and E. P. Woo, “High brightness and efficiency blue light-emitting polymer diodes,” Appl. Phys. Lett. 73, 629-631 (1998).
    [CrossRef]
  22. T. Virgili, D. Marinotto, C. Manzoni, G. Cerullo, and G. Lanzani, “Ultrafast intrachain photoexcitation of polymeric semiconductors,” Phys. Rev. Lett. 94, 117402 (2005).
    [CrossRef] [PubMed]
  23. A. Gambetta, T. Virgili, and G. Lanzani, “Ultrafast excitation cross-correlation photoconductivity in polyfluorene photodiodes,” Appl. Phys. Lett. 86, 253509 (2005).
    [CrossRef]
  24. C. Gadermaier, G. Cerullo, G. Sansone, G. Leising, U. Scherf, and G. Lanzani, “Time-resolved charge carrier generation from higher lying excited states in conjugated polymers,” Phys. Rev. Lett. 89, 117402 (2002).
    [CrossRef] [PubMed]
  25. D. S. Wiersma, “The physics and applications of random lasers,” Nature Phys. 4, 359-367 (2008).
    [CrossRef]
  26. G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86, 131105 (2005).
    [CrossRef]
  27. I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers and optical amplifiers,” Chem. Rev. 107, 1272-1295 (2007).
    [CrossRef] [PubMed]
  28. O. Svelto, Principles of Lasers, 4th ed. (Plenum, 2008).
  29. S. Perissinotto, G. Lanzani, M. Zavelani-Rossi, M. Salerno, and G. Gigli, “Ultrafast optical switching in distributed feedback polymer laser,” Appl. Phys. Lett. 91, 191108 (2007).
    [CrossRef]

2009 (2)

K. C. Vishnubhatla, J. Clark, G. Lanzani, R. Ramponi, R. Osellame, and T. Virgili, “Ultrafast optofluidic gain switch based on conjugated polymer in femtosecond laser fabricated microchannels,” Appl. Phys. Lett. 94, 041123 (2009).
[CrossRef]

K. C. Vishnubhatla, N. Bellini, R. Ramponi, G. Cerullo, and R. Osellame, “Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching,” Opt. Express 17, 8685-8695 (2009).
[CrossRef] [PubMed]

2008 (3)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219-225 (2008).
[CrossRef]

Z. Y. Li, and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4, 145-158 (2008).
[CrossRef]

D. S. Wiersma, “The physics and applications of random lasers,” Nature Phys. 4, 359-367 (2008).
[CrossRef]

2007 (4)

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers and optical amplifiers,” Chem. Rev. 107, 1272-1295 (2007).
[CrossRef] [PubMed]

S. Perissinotto, G. Lanzani, M. Zavelani-Rossi, M. Salerno, and G. Gigli, “Ultrafast optical switching in distributed feedback polymer laser,” Appl. Phys. Lett. 91, 191108 (2007).
[CrossRef]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photon. 1, 106-114 (2007).
[CrossRef]

R. Osellame, V. Maselli, R. Martinez Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett. 90, 231118 (2007).
[CrossRef]

2006 (3)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47-61 (2006).
[CrossRef]

V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, and P. L. Cavallotti, “Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching,” Appl. Phys. Lett. 88, 191107 (2006).
[CrossRef]

2005 (6)

T. Virgili, D. Marinotto, C. Manzoni, G. Cerullo, and G. Lanzani, “Ultrafast intrachain photoexcitation of polymeric semiconductors,” Phys. Rev. Lett. 94, 117402 (2005).
[CrossRef] [PubMed]

A. Gambetta, T. Virgili, and G. Lanzani, “Ultrafast excitation cross-correlation photoconductivity in polyfluorene photodiodes,” Appl. Phys. Lett. 86, 253509 (2005).
[CrossRef]

G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86, 131105 (2005).
[CrossRef]

S. M. Eaton, H. Zhang, and “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708-4716 (2005).
[CrossRef] [PubMed]

A. Ymeti, J. S. Kanger, J. Greve, G. A. J. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417-1421 (2005).
[CrossRef]

T. Virgili, D. Marinotto, G. Lanzani, and D. D. C. Bradley, “Ultrafast resonant optical switching in isolated polyfluorenes chains,” Appl. Phys. Lett. 86, 091113 (2005).
[CrossRef]

2004 (2)

2003 (2)

R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20, 1559-1567 (2003).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three dimensional integrated optics,” Appl. Phys. A 77, 109-111 (2003).
[CrossRef]

2002 (1)

C. Gadermaier, G. Cerullo, G. Sansone, G. Leising, U. Scherf, and G. Lanzani, “Time-resolved charge carrier generation from higher lying excited states in conjugated polymers,” Phys. Rev. Lett. 89, 117402 (2002).
[CrossRef] [PubMed]

2001 (2)

1998 (1)

A. W. Grice, D. D. C. Bradley, M. T. Bernius, M. Inbasekaran, W. W. Wu, and E. P. Woo, “High brightness and efficiency blue light-emitting polymer diodes,” Appl. Phys. Lett. 73, 629-631 (1998).
[CrossRef]

1997 (1)

D. D. C. Bradley, M. Grell, X. Long, H. Mellor, A. Grice, M. Inbasekaran, and E. P. Woo, “Influence of aggregation on the optical properties of a polyfluorene,” Proc. SPIE 3145, 254-259 (1997).
[CrossRef]

1996 (1)

Bado, P.

Bellini, N.

Bellouard, Y.

Bernius, M. T.

A. W. Grice, D. D. C. Bradley, M. T. Bernius, M. Inbasekaran, W. W. Wu, and E. P. Woo, “High brightness and efficiency blue light-emitting polymer diodes,” Appl. Phys. Lett. 73, 629-631 (1998).
[CrossRef]

Besselink, G. A. J.

A. Ymeti, J. S. Kanger, J. Greve, G. A. J. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417-1421 (2005).
[CrossRef]

Bhardwaj, V. R.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47-61 (2006).
[CrossRef]

Bradley, D. D. C.

T. Virgili, D. Marinotto, G. Lanzani, and D. D. C. Bradley, “Ultrafast resonant optical switching in isolated polyfluorenes chains,” Appl. Phys. Lett. 86, 091113 (2005).
[CrossRef]

A. W. Grice, D. D. C. Bradley, M. T. Bernius, M. Inbasekaran, W. W. Wu, and E. P. Woo, “High brightness and efficiency blue light-emitting polymer diodes,” Appl. Phys. Lett. 73, 629-631 (1998).
[CrossRef]

D. D. C. Bradley, M. Grell, X. Long, H. Mellor, A. Grice, M. Inbasekaran, and E. P. Woo, “Influence of aggregation on the optical properties of a polyfluorene,” Proc. SPIE 3145, 254-259 (1997).
[CrossRef]

Brodeur, A.

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three dimensional integrated optics,” Appl. Phys. A 77, 109-111 (2003).
[CrossRef]

Cavallotti, P. L.

V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, and P. L. Cavallotti, “Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching,” Appl. Phys. Lett. 88, 191107 (2006).
[CrossRef]

Cerullo, G.

K. C. Vishnubhatla, N. Bellini, R. Ramponi, G. Cerullo, and R. Osellame, “Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching,” Opt. Express 17, 8685-8695 (2009).
[CrossRef] [PubMed]

R. Osellame, V. Maselli, R. Martinez Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett. 90, 231118 (2007).
[CrossRef]

V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, and P. L. Cavallotti, “Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching,” Appl. Phys. Lett. 88, 191107 (2006).
[CrossRef]

T. Virgili, D. Marinotto, C. Manzoni, G. Cerullo, and G. Lanzani, “Ultrafast intrachain photoexcitation of polymeric semiconductors,” Phys. Rev. Lett. 94, 117402 (2005).
[CrossRef] [PubMed]

R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20, 1559-1567 (2003).
[CrossRef]

C. Gadermaier, G. Cerullo, G. Sansone, G. Leising, U. Scherf, and G. Lanzani, “Time-resolved charge carrier generation from higher lying excited states in conjugated polymers,” Phys. Rev. Lett. 89, 117402 (2002).
[CrossRef] [PubMed]

Clark, J.

K. C. Vishnubhatla, J. Clark, G. Lanzani, R. Ramponi, R. Osellame, and T. Virgili, “Ultrafast optofluidic gain switch based on conjugated polymer in femtosecond laser fabricated microchannels,” Appl. Phys. Lett. 94, 041123 (2009).
[CrossRef]

Corkum, P. B.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47-61 (2006).
[CrossRef]

Davis, K. M.

De Silvestri, S.

Dice, G. D.

G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86, 131105 (2005).
[CrossRef]

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photon. 1, 106-114 (2007).
[CrossRef]

Dugan, M.

Eaton, S. M.

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photon. 1, 106-114 (2007).
[CrossRef]

Elezzabi, A. Y.

G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86, 131105 (2005).
[CrossRef]

Erickson, D.

D. Erickson and D. Q. Li, “Integrated microfluidic devices,” Anal. Chim. Acta 507, 11-26 (2004).
[CrossRef]

Gadermaier, C.

C. Gadermaier, G. Cerullo, G. Sansone, G. Leising, U. Scherf, and G. Lanzani, “Time-resolved charge carrier generation from higher lying excited states in conjugated polymers,” Phys. Rev. Lett. 89, 117402 (2002).
[CrossRef] [PubMed]

Gambetta, A.

A. Gambetta, T. Virgili, and G. Lanzani, “Ultrafast excitation cross-correlation photoconductivity in polyfluorene photodiodes,” Appl. Phys. Lett. 86, 253509 (2005).
[CrossRef]

García, J. F.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219-225 (2008).
[CrossRef]

Gigli, G.

S. Perissinotto, G. Lanzani, M. Zavelani-Rossi, M. Salerno, and G. Gigli, “Ultrafast optical switching in distributed feedback polymer laser,” Appl. Phys. Lett. 91, 191108 (2007).
[CrossRef]

Grell, M.

D. D. C. Bradley, M. Grell, X. Long, H. Mellor, A. Grice, M. Inbasekaran, and E. P. Woo, “Influence of aggregation on the optical properties of a polyfluorene,” Proc. SPIE 3145, 254-259 (1997).
[CrossRef]

Greve, J.

A. Ymeti, J. S. Kanger, J. Greve, G. A. J. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417-1421 (2005).
[CrossRef]

Grice, A.

D. D. C. Bradley, M. Grell, X. Long, H. Mellor, A. Grice, M. Inbasekaran, and E. P. Woo, “Influence of aggregation on the optical properties of a polyfluorene,” Proc. SPIE 3145, 254-259 (1997).
[CrossRef]

Grice, A. W.

A. W. Grice, D. D. C. Bradley, M. T. Bernius, M. Inbasekaran, W. W. Wu, and E. P. Woo, “High brightness and efficiency blue light-emitting polymer diodes,” Appl. Phys. Lett. 73, 629-631 (1998).
[CrossRef]

Heideman, R. G.

A. Ymeti, J. S. Kanger, J. Greve, G. A. J. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417-1421 (2005).
[CrossRef]

Hirao, K.

Hnatovsky, C.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47-61 (2006).
[CrossRef]

Inbasekaran, M.

A. W. Grice, D. D. C. Bradley, M. T. Bernius, M. Inbasekaran, W. W. Wu, and E. P. Woo, “High brightness and efficiency blue light-emitting polymer diodes,” Appl. Phys. Lett. 73, 629-631 (1998).
[CrossRef]

D. D. C. Bradley, M. Grell, X. Long, H. Mellor, A. Grice, M. Inbasekaran, and E. P. Woo, “Influence of aggregation on the optical properties of a polyfluorene,” Proc. SPIE 3145, 254-259 (1997).
[CrossRef]

Juodkazis, S.

Kanger, J. S.

A. Ymeti, J. S. Kanger, J. Greve, G. A. J. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417-1421 (2005).
[CrossRef]

Lambeck, P. V.

A. Ymeti, J. S. Kanger, J. Greve, G. A. J. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417-1421 (2005).
[CrossRef]

Lanzani, G.

K. C. Vishnubhatla, J. Clark, G. Lanzani, R. Ramponi, R. Osellame, and T. Virgili, “Ultrafast optofluidic gain switch based on conjugated polymer in femtosecond laser fabricated microchannels,” Appl. Phys. Lett. 94, 041123 (2009).
[CrossRef]

S. Perissinotto, G. Lanzani, M. Zavelani-Rossi, M. Salerno, and G. Gigli, “Ultrafast optical switching in distributed feedback polymer laser,” Appl. Phys. Lett. 91, 191108 (2007).
[CrossRef]

T. Virgili, D. Marinotto, C. Manzoni, G. Cerullo, and G. Lanzani, “Ultrafast intrachain photoexcitation of polymeric semiconductors,” Phys. Rev. Lett. 94, 117402 (2005).
[CrossRef] [PubMed]

A. Gambetta, T. Virgili, and G. Lanzani, “Ultrafast excitation cross-correlation photoconductivity in polyfluorene photodiodes,” Appl. Phys. Lett. 86, 253509 (2005).
[CrossRef]

T. Virgili, D. Marinotto, G. Lanzani, and D. D. C. Bradley, “Ultrafast resonant optical switching in isolated polyfluorenes chains,” Appl. Phys. Lett. 86, 091113 (2005).
[CrossRef]

C. Gadermaier, G. Cerullo, G. Sansone, G. Leising, U. Scherf, and G. Lanzani, “Time-resolved charge carrier generation from higher lying excited states in conjugated polymers,” Phys. Rev. Lett. 89, 117402 (2002).
[CrossRef] [PubMed]

Laporta, P.

V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, and P. L. Cavallotti, “Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching,” Appl. Phys. Lett. 88, 191107 (2006).
[CrossRef]

R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20, 1559-1567 (2003).
[CrossRef]

Leising, G.

C. Gadermaier, G. Cerullo, G. Sansone, G. Leising, U. Scherf, and G. Lanzani, “Time-resolved charge carrier generation from higher lying excited states in conjugated polymers,” Phys. Rev. Lett. 89, 117402 (2002).
[CrossRef] [PubMed]

Li, D. Q.

D. Erickson and D. Q. Li, “Integrated microfluidic devices,” Anal. Chim. Acta 507, 11-26 (2004).
[CrossRef]

Li, Z. Y.

Z. Y. Li, and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4, 145-158 (2008).
[CrossRef]

Long, X.

D. D. C. Bradley, M. Grell, X. Long, H. Mellor, A. Grice, M. Inbasekaran, and E. P. Woo, “Influence of aggregation on the optical properties of a polyfluorene,” Proc. SPIE 3145, 254-259 (1997).
[CrossRef]

Magagnin, L.

V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, and P. L. Cavallotti, “Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching,” Appl. Phys. Lett. 88, 191107 (2006).
[CrossRef]

Manzoni, C.

T. Virgili, D. Marinotto, C. Manzoni, G. Cerullo, and G. Lanzani, “Ultrafast intrachain photoexcitation of polymeric semiconductors,” Phys. Rev. Lett. 94, 117402 (2005).
[CrossRef] [PubMed]

Marangoni, M.

Marcinkevicius, A.

Marinotto, D.

T. Virgili, D. Marinotto, G. Lanzani, and D. D. C. Bradley, “Ultrafast resonant optical switching in isolated polyfluorenes chains,” Appl. Phys. Lett. 86, 091113 (2005).
[CrossRef]

T. Virgili, D. Marinotto, C. Manzoni, G. Cerullo, and G. Lanzani, “Ultrafast intrachain photoexcitation of polymeric semiconductors,” Phys. Rev. Lett. 94, 117402 (2005).
[CrossRef] [PubMed]

Maselli, V.

R. Osellame, V. Maselli, R. Martinez Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett. 90, 231118 (2007).
[CrossRef]

V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, and P. L. Cavallotti, “Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching,” Appl. Phys. Lett. 88, 191107 (2006).
[CrossRef]

Matsuo, S.

Mazur, E.

Mellor, H.

D. D. C. Bradley, M. Grell, X. Long, H. Mellor, A. Grice, M. Inbasekaran, and E. P. Woo, “Influence of aggregation on the optical properties of a polyfluorene,” Proc. SPIE 3145, 254-259 (1997).
[CrossRef]

Misawa, H.

Miura, K.

Miwa, M.

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photon. 1, 106-114 (2007).
[CrossRef]

Mujumdar, S.

G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86, 131105 (2005).
[CrossRef]

Nishii, J.

Nolte, S.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three dimensional integrated optics,” Appl. Phys. A 77, 109-111 (2003).
[CrossRef]

Osellame, R.

K. C. Vishnubhatla, N. Bellini, R. Ramponi, G. Cerullo, and R. Osellame, “Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching,” Opt. Express 17, 8685-8695 (2009).
[CrossRef] [PubMed]

K. C. Vishnubhatla, J. Clark, G. Lanzani, R. Ramponi, R. Osellame, and T. Virgili, “Ultrafast optofluidic gain switch based on conjugated polymer in femtosecond laser fabricated microchannels,” Appl. Phys. Lett. 94, 041123 (2009).
[CrossRef]

R. Osellame, V. Maselli, R. Martinez Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett. 90, 231118 (2007).
[CrossRef]

V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, and P. L. Cavallotti, “Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching,” Appl. Phys. Lett. 88, 191107 (2006).
[CrossRef]

R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20, 1559-1567 (2003).
[CrossRef]

Perissinotto, S.

S. Perissinotto, G. Lanzani, M. Zavelani-Rossi, M. Salerno, and G. Gigli, “Ultrafast optical switching in distributed feedback polymer laser,” Appl. Phys. Lett. 91, 191108 (2007).
[CrossRef]

Polli, D.

Psaltis, D.

Z. Y. Li, and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4, 145-158 (2008).
[CrossRef]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

Rajeev, P. P.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47-61 (2006).
[CrossRef]

Ramponi, R.

K. C. Vishnubhatla, N. Bellini, R. Ramponi, G. Cerullo, and R. Osellame, “Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching,” Opt. Express 17, 8685-8695 (2009).
[CrossRef] [PubMed]

K. C. Vishnubhatla, J. Clark, G. Lanzani, R. Ramponi, R. Osellame, and T. Virgili, “Ultrafast optofluidic gain switch based on conjugated polymer in femtosecond laser fabricated microchannels,” Appl. Phys. Lett. 94, 041123 (2009).
[CrossRef]

R. Osellame, V. Maselli, R. Martinez Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett. 90, 231118 (2007).
[CrossRef]

V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, and P. L. Cavallotti, “Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching,” Appl. Phys. Lett. 88, 191107 (2006).
[CrossRef]

R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, “Femtosecond writing of active optical waveguides with astigmatically shaped beams,” J. Opt. Soc. Am. B 20, 1559-1567 (2003).
[CrossRef]

Rayner, D. M.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47-61 (2006).
[CrossRef]

Said, A.

Salerno, M.

S. Perissinotto, G. Lanzani, M. Zavelani-Rossi, M. Salerno, and G. Gigli, “Ultrafast optical switching in distributed feedback polymer laser,” Appl. Phys. Lett. 91, 191108 (2007).
[CrossRef]

Samuel, I. D. W.

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers and optical amplifiers,” Chem. Rev. 107, 1272-1295 (2007).
[CrossRef] [PubMed]

Sansone, G.

C. Gadermaier, G. Cerullo, G. Sansone, G. Leising, U. Scherf, and G. Lanzani, “Time-resolved charge carrier generation from higher lying excited states in conjugated polymers,” Phys. Rev. Lett. 89, 117402 (2002).
[CrossRef] [PubMed]

Schaffer, C. B.

Scherf, U.

C. Gadermaier, G. Cerullo, G. Sansone, G. Leising, U. Scherf, and G. Lanzani, “Time-resolved charge carrier generation from higher lying excited states in conjugated polymers,” Phys. Rev. Lett. 89, 117402 (2002).
[CrossRef] [PubMed]

Simova, E.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47-61 (2006).
[CrossRef]

Sugimoto, N.

Svelto, O.

O. Svelto, Principles of Lasers, 4th ed. (Plenum, 2008).

Taccheo, S.

Taylor, R. S.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47-61 (2006).
[CrossRef]

Tuennermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three dimensional integrated optics,” Appl. Phys. A 77, 109-111 (2003).
[CrossRef]

Turnbull, G. A.

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers and optical amplifiers,” Chem. Rev. 107, 1272-1295 (2007).
[CrossRef] [PubMed]

Vazquez, R. Martinez

R. Osellame, V. Maselli, R. Martinez Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett. 90, 231118 (2007).
[CrossRef]

Virgili, T.

K. C. Vishnubhatla, J. Clark, G. Lanzani, R. Ramponi, R. Osellame, and T. Virgili, “Ultrafast optofluidic gain switch based on conjugated polymer in femtosecond laser fabricated microchannels,” Appl. Phys. Lett. 94, 041123 (2009).
[CrossRef]

A. Gambetta, T. Virgili, and G. Lanzani, “Ultrafast excitation cross-correlation photoconductivity in polyfluorene photodiodes,” Appl. Phys. Lett. 86, 253509 (2005).
[CrossRef]

T. Virgili, D. Marinotto, C. Manzoni, G. Cerullo, and G. Lanzani, “Ultrafast intrachain photoexcitation of polymeric semiconductors,” Phys. Rev. Lett. 94, 117402 (2005).
[CrossRef] [PubMed]

T. Virgili, D. Marinotto, G. Lanzani, and D. D. C. Bradley, “Ultrafast resonant optical switching in isolated polyfluorenes chains,” Appl. Phys. Lett. 86, 091113 (2005).
[CrossRef]

Vishnubhatla, K. C.

K. C. Vishnubhatla, N. Bellini, R. Ramponi, G. Cerullo, and R. Osellame, “Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching,” Opt. Express 17, 8685-8695 (2009).
[CrossRef] [PubMed]

K. C. Vishnubhatla, J. Clark, G. Lanzani, R. Ramponi, R. Osellame, and T. Virgili, “Ultrafast optofluidic gain switch based on conjugated polymer in femtosecond laser fabricated microchannels,” Appl. Phys. Lett. 94, 041123 (2009).
[CrossRef]

Watanabe, M.

Wiersma, D. S.

D. S. Wiersma, “The physics and applications of random lasers,” Nature Phys. 4, 359-367 (2008).
[CrossRef]

Wijn, R.

A. Ymeti, J. S. Kanger, J. Greve, G. A. J. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417-1421 (2005).
[CrossRef]

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three dimensional integrated optics,” Appl. Phys. A 77, 109-111 (2003).
[CrossRef]

Woo, E. P.

A. W. Grice, D. D. C. Bradley, M. T. Bernius, M. Inbasekaran, W. W. Wu, and E. P. Woo, “High brightness and efficiency blue light-emitting polymer diodes,” Appl. Phys. Lett. 73, 629-631 (1998).
[CrossRef]

D. D. C. Bradley, M. Grell, X. Long, H. Mellor, A. Grice, M. Inbasekaran, and E. P. Woo, “Influence of aggregation on the optical properties of a polyfluorene,” Proc. SPIE 3145, 254-259 (1997).
[CrossRef]

Wu, W. W.

A. W. Grice, D. D. C. Bradley, M. T. Bernius, M. Inbasekaran, W. W. Wu, and E. P. Woo, “High brightness and efficiency blue light-emitting polymer diodes,” Appl. Phys. Lett. 73, 629-631 (1998).
[CrossRef]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

Ymeti, A.

A. Ymeti, J. S. Kanger, J. Greve, G. A. J. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417-1421 (2005).
[CrossRef]

Zavelani-Rossi, M.

S. Perissinotto, G. Lanzani, M. Zavelani-Rossi, M. Salerno, and G. Gigli, “Ultrafast optical switching in distributed feedback polymer laser,” Appl. Phys. Lett. 91, 191108 (2007).
[CrossRef]

Zhang, H.

Anal. Chim. Acta (1)

D. Erickson and D. Q. Li, “Integrated microfluidic devices,” Anal. Chim. Acta 507, 11-26 (2004).
[CrossRef]

Appl. Phys. A (2)

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three dimensional integrated optics,” Appl. Phys. A 77, 109-111 (2003).
[CrossRef]

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47-61 (2006).
[CrossRef]

Appl. Phys. Lett. (8)

T. Virgili, D. Marinotto, G. Lanzani, and D. D. C. Bradley, “Ultrafast resonant optical switching in isolated polyfluorenes chains,” Appl. Phys. Lett. 86, 091113 (2005).
[CrossRef]

K. C. Vishnubhatla, J. Clark, G. Lanzani, R. Ramponi, R. Osellame, and T. Virgili, “Ultrafast optofluidic gain switch based on conjugated polymer in femtosecond laser fabricated microchannels,” Appl. Phys. Lett. 94, 041123 (2009).
[CrossRef]

R. Osellame, V. Maselli, R. Martinez Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett. 90, 231118 (2007).
[CrossRef]

V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, and P. L. Cavallotti, “Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching,” Appl. Phys. Lett. 88, 191107 (2006).
[CrossRef]

A. W. Grice, D. D. C. Bradley, M. T. Bernius, M. Inbasekaran, W. W. Wu, and E. P. Woo, “High brightness and efficiency blue light-emitting polymer diodes,” Appl. Phys. Lett. 73, 629-631 (1998).
[CrossRef]

A. Gambetta, T. Virgili, and G. Lanzani, “Ultrafast excitation cross-correlation photoconductivity in polyfluorene photodiodes,” Appl. Phys. Lett. 86, 253509 (2005).
[CrossRef]

G. D. Dice, S. Mujumdar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86, 131105 (2005).
[CrossRef]

S. Perissinotto, G. Lanzani, M. Zavelani-Rossi, M. Salerno, and G. Gigli, “Ultrafast optical switching in distributed feedback polymer laser,” Appl. Phys. Lett. 91, 191108 (2007).
[CrossRef]

Biosens. Bioelectron. (1)

A. Ymeti, J. S. Kanger, J. Greve, G. A. J. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron. 20, 1417-1421 (2005).
[CrossRef]

Chem. Rev. (1)

I. D. W. Samuel and G. A. Turnbull, “Organic semiconductor lasers and optical amplifiers,” Chem. Rev. 107, 1272-1295 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Microfluid. Nanofluid. (1)

Z. Y. Li, and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4, 145-158 (2008).
[CrossRef]

Nat. Photon. (2)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219-225 (2008).
[CrossRef]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photon. 1, 106-114 (2007).
[CrossRef]

Nature (1)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

Nature Phys. (1)

D. S. Wiersma, “The physics and applications of random lasers,” Nature Phys. 4, 359-367 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. Lett. (2)

C. Gadermaier, G. Cerullo, G. Sansone, G. Leising, U. Scherf, and G. Lanzani, “Time-resolved charge carrier generation from higher lying excited states in conjugated polymers,” Phys. Rev. Lett. 89, 117402 (2002).
[CrossRef] [PubMed]

T. Virgili, D. Marinotto, C. Manzoni, G. Cerullo, and G. Lanzani, “Ultrafast intrachain photoexcitation of polymeric semiconductors,” Phys. Rev. Lett. 94, 117402 (2005).
[CrossRef] [PubMed]

Proc. SPIE (1)

D. D. C. Bradley, M. Grell, X. Long, H. Mellor, A. Grice, M. Inbasekaran, and E. P. Woo, “Influence of aggregation on the optical properties of a polyfluorene,” Proc. SPIE 3145, 254-259 (1997).
[CrossRef]

Other (1)

O. Svelto, Principles of Lasers, 4th ed. (Plenum, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the (a) writing setup and (b) etching of the written structure in a HF acid bath.

Fig. 2
Fig. 2

(a) Substrate with three etched channels of different lengths (compared with the dimension of 1 Euro coin) and (b) channel used for the experiments (the blow up shows the magnified image of the access holes).

Fig. 3
Fig. 3

PPP dynamics (open squares) and pump–probe dynamics (filled squares) of 3 gL 1 PFO solution at 490 nm . Inset shows a magnified image of the gain switch mechanism.

Fig. 4
Fig. 4

Normalized photoluminescence from a PFO solution (open squares) and from a nanoparticle dispersed PFO solution (filled squares) at (a) low excitation density and (b) higher excitation density. The lasing cavity mode emission is represented by the dotted curve. The inset shows the FWHM as a function of excitation energy densities for the PFO solution (open squares) and for the nanoparticle dispersed PFO solution (filled squares).

Fig. 5
Fig. 5

PL emission spectra taken at 0.5 s intervals from the same nanoparticle dispersed PFO solution.

Fig. 6
Fig. 6

Schematic representation of the optofluidic random laser on a chip.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ λ = λ 2 2 n L ,

Metrics