Abstract

We used in situ radiance/irradiance profiles to retrieve profiles of the spectral backscattering coefficient for all particles in an E. huxleyi coccolithophore bloom off the coast of Plymouth, UK. At high detached coccolith concentrations the spectra of backscattering all showed a minimum near 550 to 600nm. Using flow cytometry estimates of the detached coccolith concentration, and assuming all of the backscattering (over and above the backscattering by the water itself) was due to detached coccoliths, we determined the upper limit of the backscattering cross section (σb) of individual coccoliths to be 0.123±0.039μm2/coccolith at 500nm. Physical models of detached coccoliths were then developed and the discrete dipole approximation was used to compute their average backscattering cross section in random orientation. The result was 0.092μm2 at 500nm, with the computed σb displaying a spectral shape similar to the measurements, but with less apparent increase in backscattering toward the red. When σb is computed on a per mole of calcite, rather than a per coccolith basis, it agreed reasonably well with that determined for acid-labile backscattering at 632nm averaged over several species of cultured calcifying algae. Intact coccolithophore cells were taken into account by arguing that coccoliths attached to coccolithophore cells (forming a “coccosphere”) backscatter in a manner similar to free coccoliths in random orientation. Estimating the number of coccoliths per coccosphere and using the observed number of coccolithophore cells resulted is an apparent backscattering cross section at 500nm of 0.114±0.013μm2/coccolith, in satisfactory agreement with the measured backscattering.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. G. Ackleson, “Optical determinations of suspended sediment dynamics in western Long Island Sound and the Connecticut River plume,” J. Geophys. Res. 111, C07009 (2006).
    [CrossRef]
  2. A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters),” J. Geophys. Res. 93C, 10,749-10,768 (1988).
    [CrossRef]
  3. A. Bricaud, A. Morel, and L. Prieur, “Optical efficiency factors of some phytoplankters,” Limnol. Oceanogr. 28, 816-832(1983).
  4. H. R. Gordon and A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, 1983).
  5. D. Stramski and D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343-383 (1991).
    [CrossRef]
  6. N. Hoepffner and S. Sathyendranath, “Determination of major groups of phytoplankton pigments from absorption spectra of total particulate matter,” J. Geophys. Res. 98, 22789-22803(1993).
    [CrossRef]
  7. D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61, 27-56 (2004).
    [CrossRef]
  8. W. R. Clavano, E. Boss, and L. Karp-Boss, “Inherent optical properties of non-spherical marine-like particles--from theory to observations,” in Oceanography and Marine Biology: An Annual Review, R. N. Gibson, R. J. M. Atkinson, and J. D. M.Gordon, eds. (CRC, 2007), Vol. 45, pp. 1-38.
  9. W. M. Balch, H. R. Gordon, B. C. Bowler, D. T. Drapeau, and E. S. Booth, “Calcium carbonate measurements in the surface global ocean based on moderate-resolution imaging spectroradiometer data,” J. Geophys. Res. 110, C07001 (2005).
    [CrossRef]
  10. Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, 2000).
  11. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848-872 (1988).
    [CrossRef]
  12. H. R. Gordon and T. Du, “Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi,” Limnol. Oceanogr. 46, 1438-1454 (2001).
  13. T. J. Smyth, G. F. Moore, S. B. Groom, P. E. Land, and T. Tyrrell, “Optical modeling and measurements of a coccolithophore bloom,” Appl. Opt. 41, 7679-7688 (2002).
    [CrossRef]
  14. S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, and C. R. McClain, “An overview of SeaWiFS and ocean color,” of SeaWiFS Tech. Rep. Series, Tech. Memo. 104566, Vol. 1, S.B.Hooker and E.R.Firestone, eds., NASA, Greenbelt, MD, 1992.
  15. H. R. Gordon, G. C. Boynton, W. M. Balch, S. B. Groom, D. S. Harbour, and T. J. Smyth, “Retrieval of coccolithophore calcite concentration from SeaWiFS imagery,” Geophys. Res. Lett. 28, 1587-1590 (2001).
    [CrossRef]
  16. J. L. Mueller and R. W. Austin, “Ocean optics protocols for SeaWiFS validation, rev. 1,” of SeaWiFS Tech. Rep. Series, Tech. Memo. 104566, Vol. 25, S.B.Hooker and E.Firestone, eds., Nasa, Greebelt, MD, 1995.
  17. H. R. Gordon, and G. C. Boynton, “A radiance--irradiance inversion algorithm for estimating the absorption and backscattering coefficients of natural waters: stratified water bodies,” Appl. Opt. 37, 3886-3896 (1998).
    [CrossRef]
  18. H. R. Gordon, “The sensitivity of radiative transfer to small-angle scattering in the ocean: a quantitative assessment,” Appl. Opt. 32, 7505-7511 (1993).
    [CrossRef]
  19. T. J. Petzold, “Volume scattering functions for selected natural waters,” SIO Ref. 72-78 (Scripps Institution of Oceanography, 1972).
  20. C. D. Mobley, Light and Water; Radiative Transfer in Natural Waters (Academic, 1994).
  21. J. R. V. Zaneveld, A. Barnard, and E. Boss, “Theoretical derivation of the depth average of remotely sensed optical parameters,” Opt. Express 13, 9052-9061 (2005).
    [CrossRef]
  22. J. Piskozub, T. Neumann, and L. Wozniak, “Ocean color remote sensing: choosing the correct depth weighting function,” Opt. Express 16, 14683-14688 (2008).
    [CrossRef]
  23. H. R. Gordon and D. K. Clark, “Remote sensing optical properties of a stratified ocean: an improved interpretation,” Appl. Opt. 19, 3428-3430 (1980).
    [CrossRef]
  24. H. R. Gordon, M. R. Lewis, S. D. McLean, M. S. Twardowski, S. A. Freeman, K. J. Voss, and G. C. Boynton, “Spectra of particulate backscattering in natural waters,” Opt. Express 17, 16192-16208 (2009).
    [CrossRef]
  25. W. M. Balch, A. J. Plueddeman, B. C. Bowler, and D. T. Drapeau, “Chalk-Ex--the fate of CaCO3 particles in the mixed layer: evolution of patch optical properties,” J. Geophys. Res. 114, C07020 (2009).
    [CrossRef]
  26. G. C. Boynton and H. R. Gordon, “An irradiance inversion algorithm for absorption and backscattering coefficients: improvement for very clear waters,” Appl. Opt. 41, 2224-2227(2002).
    [CrossRef]
  27. R. M. Chomko, H. R. Gordon, S. Maritorena, and D. A. Siegel, “Simultaneous retrieval of oceanic and atmospheric parameters for ocean color imagery by spectral optimization: a validation,” Remote Sens. Environ. 84, 208-220 (2003).
    [CrossRef]
  28. C. P. Kuchinke, H. R. Gordon, and B. A. Franz, “Spectral optimization for constituent retrieval in Case 2 waters. I: implementation and performance,” Remote Sens. Environ. 113, 571-587 (2009).
    [CrossRef]
  29. C. P. Kuchinke, H. R. Gordon, L. W. Harding, Jr., and K. J. Voss, “Spectral optimization for constituent retrieval in Case 2 waters II: validation study in the Chesapeake Bay,” Remote Sens. Environ. 113, 610-621 (2009).
    [CrossRef]
  30. W. M. Balch, P. Holligan, S. Ackleson, and K. Voss, “Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine,” Limnol. Oceanogr. 36, 629-643 (1991).
  31. W. M. Balch, K. Kilpatrick, P. M. Holligan, D. Harbour, and E. Fernandez, “The 1991 coccolithophore bloom in the central north Atlantic II: relating optics to coccolith concentration,” Limnol. Oceanogr. 41, 1684-1696 (1996).
  32. K. J. Voss, W. M. Balch, and K. A. Kilpatrick, “Scattering and attenuation properties of Emiliania huxleyi cells and their detached coccoliths,” Limnol. Oceanogr. 43, 870-876(1998).
  33. H. R. Gordon, “Backscattering of light from disk-like particles: is fine-scale structure or gross morphology more important?,” Appl. Opt. 45, 7166-7173 (2006).
    [CrossRef]
  34. H. R. Gordon, “Backscattering of light from disk-like particles with aperiodic angular fine structure,” Opt. Express 15, 16424-16430 (2007).
    [CrossRef]
  35. J. R. Young and P. Ziveri, “Calculation of coccolith volume and its use in calibration of carbonate flux estimates,” Deep Sea Res. II 47, 1679-1700 (2000).
    [CrossRef]
  36. J. R. Young, J. M. Didymus, P. R. Brown, B. Prins, and S. Mann, “Crystal assembly and phylogenetic evolution in heterococcoliths,” Nature 356, 516-518 (1992).
    [CrossRef]
  37. H. R. Gordon, “Rayleigh-Gans scattering approximation: surprisingly useful for understanding backscattering from disk-like particles,” Opt. Express 15, 5572-5588(2007).
    [CrossRef]
  38. B. T. Draine, and P. Flatau, “Discrete dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491-1499(1994).
    [CrossRef]
  39. W. M. Balch, D. T. Drapeau, T. L. Cucci, R. D. Vaillancourt, K. A. Kilpatrick, and J. J. Fritz, “Optical backscattering by calcifying algae: separating the contributions of particulate inorganic and organic carbon fractions,” J. Geophys. Res. 104, 1541-1558 (1999).
    [CrossRef]
  40. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  41. W. M. Balch, J. J. Fritz, and E. Fernandez, “Decoupling of calcification and photosynthesis in the coccolithophere Emiliania huxleyi under steady-state light limited growth,” Mar. Ecol. Prog. Ser. 142, 87-97 (1996).
    [CrossRef]
  42. Y. S. Nakamura, S.-Y.Suzkui, and J. Hiromi, “Development and collapse for a Gymnodinium mikimotoi red tide in the Seto Inland Sea,” Aquat. Microb. Ecol. 10, 131-137(1996).
    [CrossRef]
  43. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).
  44. L. Karp-Boss and P. A. Jumurs, “Motion of diatom chains in steady shear flow,” Limnol. Oceanogr. 43, 1767-1773(1998).

2009 (4)

H. R. Gordon, M. R. Lewis, S. D. McLean, M. S. Twardowski, S. A. Freeman, K. J. Voss, and G. C. Boynton, “Spectra of particulate backscattering in natural waters,” Opt. Express 17, 16192-16208 (2009).
[CrossRef]

W. M. Balch, A. J. Plueddeman, B. C. Bowler, and D. T. Drapeau, “Chalk-Ex--the fate of CaCO3 particles in the mixed layer: evolution of patch optical properties,” J. Geophys. Res. 114, C07020 (2009).
[CrossRef]

C. P. Kuchinke, H. R. Gordon, and B. A. Franz, “Spectral optimization for constituent retrieval in Case 2 waters. I: implementation and performance,” Remote Sens. Environ. 113, 571-587 (2009).
[CrossRef]

C. P. Kuchinke, H. R. Gordon, L. W. Harding, Jr., and K. J. Voss, “Spectral optimization for constituent retrieval in Case 2 waters II: validation study in the Chesapeake Bay,” Remote Sens. Environ. 113, 610-621 (2009).
[CrossRef]

2008 (1)

2007 (2)

2006 (2)

H. R. Gordon, “Backscattering of light from disk-like particles: is fine-scale structure or gross morphology more important?,” Appl. Opt. 45, 7166-7173 (2006).
[CrossRef]

S. G. Ackleson, “Optical determinations of suspended sediment dynamics in western Long Island Sound and the Connecticut River plume,” J. Geophys. Res. 111, C07009 (2006).
[CrossRef]

2005 (2)

W. M. Balch, H. R. Gordon, B. C. Bowler, D. T. Drapeau, and E. S. Booth, “Calcium carbonate measurements in the surface global ocean based on moderate-resolution imaging spectroradiometer data,” J. Geophys. Res. 110, C07001 (2005).
[CrossRef]

J. R. V. Zaneveld, A. Barnard, and E. Boss, “Theoretical derivation of the depth average of remotely sensed optical parameters,” Opt. Express 13, 9052-9061 (2005).
[CrossRef]

2004 (1)

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61, 27-56 (2004).
[CrossRef]

2003 (1)

R. M. Chomko, H. R. Gordon, S. Maritorena, and D. A. Siegel, “Simultaneous retrieval of oceanic and atmospheric parameters for ocean color imagery by spectral optimization: a validation,” Remote Sens. Environ. 84, 208-220 (2003).
[CrossRef]

2002 (2)

2001 (2)

H. R. Gordon, G. C. Boynton, W. M. Balch, S. B. Groom, D. S. Harbour, and T. J. Smyth, “Retrieval of coccolithophore calcite concentration from SeaWiFS imagery,” Geophys. Res. Lett. 28, 1587-1590 (2001).
[CrossRef]

H. R. Gordon and T. Du, “Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi,” Limnol. Oceanogr. 46, 1438-1454 (2001).

2000 (1)

J. R. Young and P. Ziveri, “Calculation of coccolith volume and its use in calibration of carbonate flux estimates,” Deep Sea Res. II 47, 1679-1700 (2000).
[CrossRef]

1999 (1)

W. M. Balch, D. T. Drapeau, T. L. Cucci, R. D. Vaillancourt, K. A. Kilpatrick, and J. J. Fritz, “Optical backscattering by calcifying algae: separating the contributions of particulate inorganic and organic carbon fractions,” J. Geophys. Res. 104, 1541-1558 (1999).
[CrossRef]

1998 (3)

L. Karp-Boss and P. A. Jumurs, “Motion of diatom chains in steady shear flow,” Limnol. Oceanogr. 43, 1767-1773(1998).

K. J. Voss, W. M. Balch, and K. A. Kilpatrick, “Scattering and attenuation properties of Emiliania huxleyi cells and their detached coccoliths,” Limnol. Oceanogr. 43, 870-876(1998).

H. R. Gordon, and G. C. Boynton, “A radiance--irradiance inversion algorithm for estimating the absorption and backscattering coefficients of natural waters: stratified water bodies,” Appl. Opt. 37, 3886-3896 (1998).
[CrossRef]

1996 (3)

W. M. Balch, K. Kilpatrick, P. M. Holligan, D. Harbour, and E. Fernandez, “The 1991 coccolithophore bloom in the central north Atlantic II: relating optics to coccolith concentration,” Limnol. Oceanogr. 41, 1684-1696 (1996).

W. M. Balch, J. J. Fritz, and E. Fernandez, “Decoupling of calcification and photosynthesis in the coccolithophere Emiliania huxleyi under steady-state light limited growth,” Mar. Ecol. Prog. Ser. 142, 87-97 (1996).
[CrossRef]

Y. S. Nakamura, S.-Y.Suzkui, and J. Hiromi, “Development and collapse for a Gymnodinium mikimotoi red tide in the Seto Inland Sea,” Aquat. Microb. Ecol. 10, 131-137(1996).
[CrossRef]

1994 (1)

1993 (2)

H. R. Gordon, “The sensitivity of radiative transfer to small-angle scattering in the ocean: a quantitative assessment,” Appl. Opt. 32, 7505-7511 (1993).
[CrossRef]

N. Hoepffner and S. Sathyendranath, “Determination of major groups of phytoplankton pigments from absorption spectra of total particulate matter,” J. Geophys. Res. 98, 22789-22803(1993).
[CrossRef]

1992 (1)

J. R. Young, J. M. Didymus, P. R. Brown, B. Prins, and S. Mann, “Crystal assembly and phylogenetic evolution in heterococcoliths,” Nature 356, 516-518 (1992).
[CrossRef]

1991 (2)

W. M. Balch, P. Holligan, S. Ackleson, and K. Voss, “Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine,” Limnol. Oceanogr. 36, 629-643 (1991).

D. Stramski and D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343-383 (1991).
[CrossRef]

1988 (2)

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters),” J. Geophys. Res. 93C, 10,749-10,768 (1988).
[CrossRef]

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848-872 (1988).
[CrossRef]

1983 (1)

A. Bricaud, A. Morel, and L. Prieur, “Optical efficiency factors of some phytoplankters,” Limnol. Oceanogr. 28, 816-832(1983).

1980 (1)

Ackleson, S.

W. M. Balch, P. Holligan, S. Ackleson, and K. Voss, “Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine,” Limnol. Oceanogr. 36, 629-643 (1991).

Ackleson, S. G.

S. G. Ackleson, “Optical determinations of suspended sediment dynamics in western Long Island Sound and the Connecticut River plume,” J. Geophys. Res. 111, C07009 (2006).
[CrossRef]

Austin, R. W.

J. L. Mueller and R. W. Austin, “Ocean optics protocols for SeaWiFS validation, rev. 1,” of SeaWiFS Tech. Rep. Series, Tech. Memo. 104566, Vol. 25, S.B.Hooker and E.Firestone, eds., Nasa, Greebelt, MD, 1995.

Balch, W. M.

W. M. Balch, A. J. Plueddeman, B. C. Bowler, and D. T. Drapeau, “Chalk-Ex--the fate of CaCO3 particles in the mixed layer: evolution of patch optical properties,” J. Geophys. Res. 114, C07020 (2009).
[CrossRef]

W. M. Balch, H. R. Gordon, B. C. Bowler, D. T. Drapeau, and E. S. Booth, “Calcium carbonate measurements in the surface global ocean based on moderate-resolution imaging spectroradiometer data,” J. Geophys. Res. 110, C07001 (2005).
[CrossRef]

H. R. Gordon, G. C. Boynton, W. M. Balch, S. B. Groom, D. S. Harbour, and T. J. Smyth, “Retrieval of coccolithophore calcite concentration from SeaWiFS imagery,” Geophys. Res. Lett. 28, 1587-1590 (2001).
[CrossRef]

W. M. Balch, D. T. Drapeau, T. L. Cucci, R. D. Vaillancourt, K. A. Kilpatrick, and J. J. Fritz, “Optical backscattering by calcifying algae: separating the contributions of particulate inorganic and organic carbon fractions,” J. Geophys. Res. 104, 1541-1558 (1999).
[CrossRef]

K. J. Voss, W. M. Balch, and K. A. Kilpatrick, “Scattering and attenuation properties of Emiliania huxleyi cells and their detached coccoliths,” Limnol. Oceanogr. 43, 870-876(1998).

W. M. Balch, K. Kilpatrick, P. M. Holligan, D. Harbour, and E. Fernandez, “The 1991 coccolithophore bloom in the central north Atlantic II: relating optics to coccolith concentration,” Limnol. Oceanogr. 41, 1684-1696 (1996).

W. M. Balch, J. J. Fritz, and E. Fernandez, “Decoupling of calcification and photosynthesis in the coccolithophere Emiliania huxleyi under steady-state light limited growth,” Mar. Ecol. Prog. Ser. 142, 87-97 (1996).
[CrossRef]

W. M. Balch, P. Holligan, S. Ackleson, and K. Voss, “Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine,” Limnol. Oceanogr. 36, 629-643 (1991).

Barnard, A.

Bogucki, D.

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61, 27-56 (2004).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Booth, E. S.

W. M. Balch, H. R. Gordon, B. C. Bowler, D. T. Drapeau, and E. S. Booth, “Calcium carbonate measurements in the surface global ocean based on moderate-resolution imaging spectroradiometer data,” J. Geophys. Res. 110, C07001 (2005).
[CrossRef]

Boss, E.

J. R. V. Zaneveld, A. Barnard, and E. Boss, “Theoretical derivation of the depth average of remotely sensed optical parameters,” Opt. Express 13, 9052-9061 (2005).
[CrossRef]

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61, 27-56 (2004).
[CrossRef]

W. R. Clavano, E. Boss, and L. Karp-Boss, “Inherent optical properties of non-spherical marine-like particles--from theory to observations,” in Oceanography and Marine Biology: An Annual Review, R. N. Gibson, R. J. M. Atkinson, and J. D. M.Gordon, eds. (CRC, 2007), Vol. 45, pp. 1-38.

Bowler, B. C.

W. M. Balch, A. J. Plueddeman, B. C. Bowler, and D. T. Drapeau, “Chalk-Ex--the fate of CaCO3 particles in the mixed layer: evolution of patch optical properties,” J. Geophys. Res. 114, C07020 (2009).
[CrossRef]

W. M. Balch, H. R. Gordon, B. C. Bowler, D. T. Drapeau, and E. S. Booth, “Calcium carbonate measurements in the surface global ocean based on moderate-resolution imaging spectroradiometer data,” J. Geophys. Res. 110, C07001 (2005).
[CrossRef]

Boynton, G. C.

Bricaud, A.

A. Bricaud, A. Morel, and L. Prieur, “Optical efficiency factors of some phytoplankters,” Limnol. Oceanogr. 28, 816-832(1983).

Brown, P. R.

J. R. Young, J. M. Didymus, P. R. Brown, B. Prins, and S. Mann, “Crystal assembly and phylogenetic evolution in heterococcoliths,” Nature 356, 516-518 (1992).
[CrossRef]

Chomko, R. M.

R. M. Chomko, H. R. Gordon, S. Maritorena, and D. A. Siegel, “Simultaneous retrieval of oceanic and atmospheric parameters for ocean color imagery by spectral optimization: a validation,” Remote Sens. Environ. 84, 208-220 (2003).
[CrossRef]

Clark, D. K.

Clavano, W. R.

W. R. Clavano, E. Boss, and L. Karp-Boss, “Inherent optical properties of non-spherical marine-like particles--from theory to observations,” in Oceanography and Marine Biology: An Annual Review, R. N. Gibson, R. J. M. Atkinson, and J. D. M.Gordon, eds. (CRC, 2007), Vol. 45, pp. 1-38.

Cucci, T. L.

W. M. Balch, D. T. Drapeau, T. L. Cucci, R. D. Vaillancourt, K. A. Kilpatrick, and J. J. Fritz, “Optical backscattering by calcifying algae: separating the contributions of particulate inorganic and organic carbon fractions,” J. Geophys. Res. 104, 1541-1558 (1999).
[CrossRef]

Didymus, J. M.

J. R. Young, J. M. Didymus, P. R. Brown, B. Prins, and S. Mann, “Crystal assembly and phylogenetic evolution in heterococcoliths,” Nature 356, 516-518 (1992).
[CrossRef]

Draine, B. T.

B. T. Draine, and P. Flatau, “Discrete dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491-1499(1994).
[CrossRef]

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848-872 (1988).
[CrossRef]

Drapeau, D. T.

W. M. Balch, A. J. Plueddeman, B. C. Bowler, and D. T. Drapeau, “Chalk-Ex--the fate of CaCO3 particles in the mixed layer: evolution of patch optical properties,” J. Geophys. Res. 114, C07020 (2009).
[CrossRef]

W. M. Balch, H. R. Gordon, B. C. Bowler, D. T. Drapeau, and E. S. Booth, “Calcium carbonate measurements in the surface global ocean based on moderate-resolution imaging spectroradiometer data,” J. Geophys. Res. 110, C07001 (2005).
[CrossRef]

W. M. Balch, D. T. Drapeau, T. L. Cucci, R. D. Vaillancourt, K. A. Kilpatrick, and J. J. Fritz, “Optical backscattering by calcifying algae: separating the contributions of particulate inorganic and organic carbon fractions,” J. Geophys. Res. 104, 1541-1558 (1999).
[CrossRef]

Du, T.

H. R. Gordon and T. Du, “Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi,” Limnol. Oceanogr. 46, 1438-1454 (2001).

Esaias, W. E.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, and C. R. McClain, “An overview of SeaWiFS and ocean color,” of SeaWiFS Tech. Rep. Series, Tech. Memo. 104566, Vol. 1, S.B.Hooker and E.R.Firestone, eds., NASA, Greenbelt, MD, 1992.

Feldman, G. C.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, and C. R. McClain, “An overview of SeaWiFS and ocean color,” of SeaWiFS Tech. Rep. Series, Tech. Memo. 104566, Vol. 1, S.B.Hooker and E.R.Firestone, eds., NASA, Greenbelt, MD, 1992.

Fernandez, E.

W. M. Balch, K. Kilpatrick, P. M. Holligan, D. Harbour, and E. Fernandez, “The 1991 coccolithophore bloom in the central north Atlantic II: relating optics to coccolith concentration,” Limnol. Oceanogr. 41, 1684-1696 (1996).

W. M. Balch, J. J. Fritz, and E. Fernandez, “Decoupling of calcification and photosynthesis in the coccolithophere Emiliania huxleyi under steady-state light limited growth,” Mar. Ecol. Prog. Ser. 142, 87-97 (1996).
[CrossRef]

Flatau, P.

Franz, B. A.

C. P. Kuchinke, H. R. Gordon, and B. A. Franz, “Spectral optimization for constituent retrieval in Case 2 waters. I: implementation and performance,” Remote Sens. Environ. 113, 571-587 (2009).
[CrossRef]

Freeman, S. A.

Fritz, J. J.

W. M. Balch, D. T. Drapeau, T. L. Cucci, R. D. Vaillancourt, K. A. Kilpatrick, and J. J. Fritz, “Optical backscattering by calcifying algae: separating the contributions of particulate inorganic and organic carbon fractions,” J. Geophys. Res. 104, 1541-1558 (1999).
[CrossRef]

W. M. Balch, J. J. Fritz, and E. Fernandez, “Decoupling of calcification and photosynthesis in the coccolithophere Emiliania huxleyi under steady-state light limited growth,” Mar. Ecol. Prog. Ser. 142, 87-97 (1996).
[CrossRef]

Gordon, H. R.

C. P. Kuchinke, H. R. Gordon, L. W. Harding, Jr., and K. J. Voss, “Spectral optimization for constituent retrieval in Case 2 waters II: validation study in the Chesapeake Bay,” Remote Sens. Environ. 113, 610-621 (2009).
[CrossRef]

C. P. Kuchinke, H. R. Gordon, and B. A. Franz, “Spectral optimization for constituent retrieval in Case 2 waters. I: implementation and performance,” Remote Sens. Environ. 113, 571-587 (2009).
[CrossRef]

H. R. Gordon, M. R. Lewis, S. D. McLean, M. S. Twardowski, S. A. Freeman, K. J. Voss, and G. C. Boynton, “Spectra of particulate backscattering in natural waters,” Opt. Express 17, 16192-16208 (2009).
[CrossRef]

H. R. Gordon, “Backscattering of light from disk-like particles with aperiodic angular fine structure,” Opt. Express 15, 16424-16430 (2007).
[CrossRef]

H. R. Gordon, “Rayleigh-Gans scattering approximation: surprisingly useful for understanding backscattering from disk-like particles,” Opt. Express 15, 5572-5588(2007).
[CrossRef]

H. R. Gordon, “Backscattering of light from disk-like particles: is fine-scale structure or gross morphology more important?,” Appl. Opt. 45, 7166-7173 (2006).
[CrossRef]

W. M. Balch, H. R. Gordon, B. C. Bowler, D. T. Drapeau, and E. S. Booth, “Calcium carbonate measurements in the surface global ocean based on moderate-resolution imaging spectroradiometer data,” J. Geophys. Res. 110, C07001 (2005).
[CrossRef]

R. M. Chomko, H. R. Gordon, S. Maritorena, and D. A. Siegel, “Simultaneous retrieval of oceanic and atmospheric parameters for ocean color imagery by spectral optimization: a validation,” Remote Sens. Environ. 84, 208-220 (2003).
[CrossRef]

G. C. Boynton and H. R. Gordon, “An irradiance inversion algorithm for absorption and backscattering coefficients: improvement for very clear waters,” Appl. Opt. 41, 2224-2227(2002).
[CrossRef]

H. R. Gordon, G. C. Boynton, W. M. Balch, S. B. Groom, D. S. Harbour, and T. J. Smyth, “Retrieval of coccolithophore calcite concentration from SeaWiFS imagery,” Geophys. Res. Lett. 28, 1587-1590 (2001).
[CrossRef]

H. R. Gordon and T. Du, “Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi,” Limnol. Oceanogr. 46, 1438-1454 (2001).

H. R. Gordon, and G. C. Boynton, “A radiance--irradiance inversion algorithm for estimating the absorption and backscattering coefficients of natural waters: stratified water bodies,” Appl. Opt. 37, 3886-3896 (1998).
[CrossRef]

H. R. Gordon, “The sensitivity of radiative transfer to small-angle scattering in the ocean: a quantitative assessment,” Appl. Opt. 32, 7505-7511 (1993).
[CrossRef]

H. R. Gordon and D. K. Clark, “Remote sensing optical properties of a stratified ocean: an improved interpretation,” Appl. Opt. 19, 3428-3430 (1980).
[CrossRef]

H. R. Gordon and A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, 1983).

Gregg, W. W.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, and C. R. McClain, “An overview of SeaWiFS and ocean color,” of SeaWiFS Tech. Rep. Series, Tech. Memo. 104566, Vol. 1, S.B.Hooker and E.R.Firestone, eds., NASA, Greenbelt, MD, 1992.

Groom, S. B.

T. J. Smyth, G. F. Moore, S. B. Groom, P. E. Land, and T. Tyrrell, “Optical modeling and measurements of a coccolithophore bloom,” Appl. Opt. 41, 7679-7688 (2002).
[CrossRef]

H. R. Gordon, G. C. Boynton, W. M. Balch, S. B. Groom, D. S. Harbour, and T. J. Smyth, “Retrieval of coccolithophore calcite concentration from SeaWiFS imagery,” Geophys. Res. Lett. 28, 1587-1590 (2001).
[CrossRef]

Harbour, D.

W. M. Balch, K. Kilpatrick, P. M. Holligan, D. Harbour, and E. Fernandez, “The 1991 coccolithophore bloom in the central north Atlantic II: relating optics to coccolith concentration,” Limnol. Oceanogr. 41, 1684-1696 (1996).

Harbour, D. S.

H. R. Gordon, G. C. Boynton, W. M. Balch, S. B. Groom, D. S. Harbour, and T. J. Smyth, “Retrieval of coccolithophore calcite concentration from SeaWiFS imagery,” Geophys. Res. Lett. 28, 1587-1590 (2001).
[CrossRef]

Harding, L. W.

C. P. Kuchinke, H. R. Gordon, L. W. Harding, Jr., and K. J. Voss, “Spectral optimization for constituent retrieval in Case 2 waters II: validation study in the Chesapeake Bay,” Remote Sens. Environ. 113, 610-621 (2009).
[CrossRef]

Hiromi, J.

Y. S. Nakamura, S.-Y.Suzkui, and J. Hiromi, “Development and collapse for a Gymnodinium mikimotoi red tide in the Seto Inland Sea,” Aquat. Microb. Ecol. 10, 131-137(1996).
[CrossRef]

Hoepffner, N.

N. Hoepffner and S. Sathyendranath, “Determination of major groups of phytoplankton pigments from absorption spectra of total particulate matter,” J. Geophys. Res. 98, 22789-22803(1993).
[CrossRef]

Holligan, P.

W. M. Balch, P. Holligan, S. Ackleson, and K. Voss, “Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine,” Limnol. Oceanogr. 36, 629-643 (1991).

Holligan, P. M.

W. M. Balch, K. Kilpatrick, P. M. Holligan, D. Harbour, and E. Fernandez, “The 1991 coccolithophore bloom in the central north Atlantic II: relating optics to coccolith concentration,” Limnol. Oceanogr. 41, 1684-1696 (1996).

Hooker, S. B.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, and C. R. McClain, “An overview of SeaWiFS and ocean color,” of SeaWiFS Tech. Rep. Series, Tech. Memo. 104566, Vol. 1, S.B.Hooker and E.R.Firestone, eds., NASA, Greenbelt, MD, 1992.

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Jumurs, P. A.

L. Karp-Boss and P. A. Jumurs, “Motion of diatom chains in steady shear flow,” Limnol. Oceanogr. 43, 1767-1773(1998).

Karp-Boss, L.

L. Karp-Boss and P. A. Jumurs, “Motion of diatom chains in steady shear flow,” Limnol. Oceanogr. 43, 1767-1773(1998).

W. R. Clavano, E. Boss, and L. Karp-Boss, “Inherent optical properties of non-spherical marine-like particles--from theory to observations,” in Oceanography and Marine Biology: An Annual Review, R. N. Gibson, R. J. M. Atkinson, and J. D. M.Gordon, eds. (CRC, 2007), Vol. 45, pp. 1-38.

Kiefer, D. A.

D. Stramski and D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343-383 (1991).
[CrossRef]

Kilpatrick, K.

W. M. Balch, K. Kilpatrick, P. M. Holligan, D. Harbour, and E. Fernandez, “The 1991 coccolithophore bloom in the central north Atlantic II: relating optics to coccolith concentration,” Limnol. Oceanogr. 41, 1684-1696 (1996).

Kilpatrick, K. A.

W. M. Balch, D. T. Drapeau, T. L. Cucci, R. D. Vaillancourt, K. A. Kilpatrick, and J. J. Fritz, “Optical backscattering by calcifying algae: separating the contributions of particulate inorganic and organic carbon fractions,” J. Geophys. Res. 104, 1541-1558 (1999).
[CrossRef]

K. J. Voss, W. M. Balch, and K. A. Kilpatrick, “Scattering and attenuation properties of Emiliania huxleyi cells and their detached coccoliths,” Limnol. Oceanogr. 43, 870-876(1998).

Kuchinke, C. P.

C. P. Kuchinke, H. R. Gordon, L. W. Harding, Jr., and K. J. Voss, “Spectral optimization for constituent retrieval in Case 2 waters II: validation study in the Chesapeake Bay,” Remote Sens. Environ. 113, 610-621 (2009).
[CrossRef]

C. P. Kuchinke, H. R. Gordon, and B. A. Franz, “Spectral optimization for constituent retrieval in Case 2 waters. I: implementation and performance,” Remote Sens. Environ. 113, 571-587 (2009).
[CrossRef]

Land, P. E.

Lewis, M. R.

Mann, S.

J. R. Young, J. M. Didymus, P. R. Brown, B. Prins, and S. Mann, “Crystal assembly and phylogenetic evolution in heterococcoliths,” Nature 356, 516-518 (1992).
[CrossRef]

Maritorena, S.

R. M. Chomko, H. R. Gordon, S. Maritorena, and D. A. Siegel, “Simultaneous retrieval of oceanic and atmospheric parameters for ocean color imagery by spectral optimization: a validation,” Remote Sens. Environ. 84, 208-220 (2003).
[CrossRef]

McClain, C. R.

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, and C. R. McClain, “An overview of SeaWiFS and ocean color,” of SeaWiFS Tech. Rep. Series, Tech. Memo. 104566, Vol. 1, S.B.Hooker and E.R.Firestone, eds., NASA, Greenbelt, MD, 1992.

McLean, S. D.

Mobley, C. D.

C. D. Mobley, Light and Water; Radiative Transfer in Natural Waters (Academic, 1994).

Moore, G. F.

Morel, A.

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters),” J. Geophys. Res. 93C, 10,749-10,768 (1988).
[CrossRef]

A. Bricaud, A. Morel, and L. Prieur, “Optical efficiency factors of some phytoplankters,” Limnol. Oceanogr. 28, 816-832(1983).

Morel, A. Y.

H. R. Gordon and A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, 1983).

Mueller, J. L.

J. L. Mueller and R. W. Austin, “Ocean optics protocols for SeaWiFS validation, rev. 1,” of SeaWiFS Tech. Rep. Series, Tech. Memo. 104566, Vol. 25, S.B.Hooker and E.Firestone, eds., Nasa, Greebelt, MD, 1995.

Nakamura, Y. S.

Y. S. Nakamura, S.-Y.Suzkui, and J. Hiromi, “Development and collapse for a Gymnodinium mikimotoi red tide in the Seto Inland Sea,” Aquat. Microb. Ecol. 10, 131-137(1996).
[CrossRef]

Neumann, T.

Petzold, T. J.

T. J. Petzold, “Volume scattering functions for selected natural waters,” SIO Ref. 72-78 (Scripps Institution of Oceanography, 1972).

Piskozub, J.

Plueddeman, A. J.

W. M. Balch, A. J. Plueddeman, B. C. Bowler, and D. T. Drapeau, “Chalk-Ex--the fate of CaCO3 particles in the mixed layer: evolution of patch optical properties,” J. Geophys. Res. 114, C07020 (2009).
[CrossRef]

Prieur, L.

A. Bricaud, A. Morel, and L. Prieur, “Optical efficiency factors of some phytoplankters,” Limnol. Oceanogr. 28, 816-832(1983).

Prins, B.

J. R. Young, J. M. Didymus, P. R. Brown, B. Prins, and S. Mann, “Crystal assembly and phylogenetic evolution in heterococcoliths,” Nature 356, 516-518 (1992).
[CrossRef]

Sathyendranath, S.

N. Hoepffner and S. Sathyendranath, “Determination of major groups of phytoplankton pigments from absorption spectra of total particulate matter,” J. Geophys. Res. 98, 22789-22803(1993).
[CrossRef]

Siegel, D. A.

R. M. Chomko, H. R. Gordon, S. Maritorena, and D. A. Siegel, “Simultaneous retrieval of oceanic and atmospheric parameters for ocean color imagery by spectral optimization: a validation,” Remote Sens. Environ. 84, 208-220 (2003).
[CrossRef]

Smyth, T. J.

T. J. Smyth, G. F. Moore, S. B. Groom, P. E. Land, and T. Tyrrell, “Optical modeling and measurements of a coccolithophore bloom,” Appl. Opt. 41, 7679-7688 (2002).
[CrossRef]

H. R. Gordon, G. C. Boynton, W. M. Balch, S. B. Groom, D. S. Harbour, and T. J. Smyth, “Retrieval of coccolithophore calcite concentration from SeaWiFS imagery,” Geophys. Res. Lett. 28, 1587-1590 (2001).
[CrossRef]

Stramski, D.

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61, 27-56 (2004).
[CrossRef]

D. Stramski and D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343-383 (1991).
[CrossRef]

Suzkui, S.-Y.

Y. S. Nakamura, S.-Y.Suzkui, and J. Hiromi, “Development and collapse for a Gymnodinium mikimotoi red tide in the Seto Inland Sea,” Aquat. Microb. Ecol. 10, 131-137(1996).
[CrossRef]

Twardowski, M. S.

Tyrrell, T.

Vaillancourt, R. D.

W. M. Balch, D. T. Drapeau, T. L. Cucci, R. D. Vaillancourt, K. A. Kilpatrick, and J. J. Fritz, “Optical backscattering by calcifying algae: separating the contributions of particulate inorganic and organic carbon fractions,” J. Geophys. Res. 104, 1541-1558 (1999).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).

Voss, K.

W. M. Balch, P. Holligan, S. Ackleson, and K. Voss, “Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine,” Limnol. Oceanogr. 36, 629-643 (1991).

Voss, K. J.

C. P. Kuchinke, H. R. Gordon, L. W. Harding, Jr., and K. J. Voss, “Spectral optimization for constituent retrieval in Case 2 waters II: validation study in the Chesapeake Bay,” Remote Sens. Environ. 113, 610-621 (2009).
[CrossRef]

H. R. Gordon, M. R. Lewis, S. D. McLean, M. S. Twardowski, S. A. Freeman, K. J. Voss, and G. C. Boynton, “Spectra of particulate backscattering in natural waters,” Opt. Express 17, 16192-16208 (2009).
[CrossRef]

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61, 27-56 (2004).
[CrossRef]

K. J. Voss, W. M. Balch, and K. A. Kilpatrick, “Scattering and attenuation properties of Emiliania huxleyi cells and their detached coccoliths,” Limnol. Oceanogr. 43, 870-876(1998).

Wozniak, L.

Young, J. R.

J. R. Young and P. Ziveri, “Calculation of coccolith volume and its use in calibration of carbonate flux estimates,” Deep Sea Res. II 47, 1679-1700 (2000).
[CrossRef]

J. R. Young, J. M. Didymus, P. R. Brown, B. Prins, and S. Mann, “Crystal assembly and phylogenetic evolution in heterococcoliths,” Nature 356, 516-518 (1992).
[CrossRef]

Zaneveld, J. R. V.

Ziveri, P.

J. R. Young and P. Ziveri, “Calculation of coccolith volume and its use in calibration of carbonate flux estimates,” Deep Sea Res. II 47, 1679-1700 (2000).
[CrossRef]

Appl. Opt. (6)

Aquat. Microb. Ecol. (1)

Y. S. Nakamura, S.-Y.Suzkui, and J. Hiromi, “Development and collapse for a Gymnodinium mikimotoi red tide in the Seto Inland Sea,” Aquat. Microb. Ecol. 10, 131-137(1996).
[CrossRef]

Astrophys. J. (1)

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848-872 (1988).
[CrossRef]

Deep Sea Res. II (1)

J. R. Young and P. Ziveri, “Calculation of coccolith volume and its use in calibration of carbonate flux estimates,” Deep Sea Res. II 47, 1679-1700 (2000).
[CrossRef]

Geophys. Res. Lett. (1)

H. R. Gordon, G. C. Boynton, W. M. Balch, S. B. Groom, D. S. Harbour, and T. J. Smyth, “Retrieval of coccolithophore calcite concentration from SeaWiFS imagery,” Geophys. Res. Lett. 28, 1587-1590 (2001).
[CrossRef]

J. Geophys. Res. (6)

W. M. Balch, A. J. Plueddeman, B. C. Bowler, and D. T. Drapeau, “Chalk-Ex--the fate of CaCO3 particles in the mixed layer: evolution of patch optical properties,” J. Geophys. Res. 114, C07020 (2009).
[CrossRef]

S. G. Ackleson, “Optical determinations of suspended sediment dynamics in western Long Island Sound and the Connecticut River plume,” J. Geophys. Res. 111, C07009 (2006).
[CrossRef]

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters),” J. Geophys. Res. 93C, 10,749-10,768 (1988).
[CrossRef]

N. Hoepffner and S. Sathyendranath, “Determination of major groups of phytoplankton pigments from absorption spectra of total particulate matter,” J. Geophys. Res. 98, 22789-22803(1993).
[CrossRef]

W. M. Balch, H. R. Gordon, B. C. Bowler, D. T. Drapeau, and E. S. Booth, “Calcium carbonate measurements in the surface global ocean based on moderate-resolution imaging spectroradiometer data,” J. Geophys. Res. 110, C07001 (2005).
[CrossRef]

W. M. Balch, D. T. Drapeau, T. L. Cucci, R. D. Vaillancourt, K. A. Kilpatrick, and J. J. Fritz, “Optical backscattering by calcifying algae: separating the contributions of particulate inorganic and organic carbon fractions,” J. Geophys. Res. 104, 1541-1558 (1999).
[CrossRef]

J. Opt. Soc. Am. A (1)

Limnol. Oceanogr. (6)

L. Karp-Boss and P. A. Jumurs, “Motion of diatom chains in steady shear flow,” Limnol. Oceanogr. 43, 1767-1773(1998).

A. Bricaud, A. Morel, and L. Prieur, “Optical efficiency factors of some phytoplankters,” Limnol. Oceanogr. 28, 816-832(1983).

H. R. Gordon and T. Du, “Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi,” Limnol. Oceanogr. 46, 1438-1454 (2001).

W. M. Balch, P. Holligan, S. Ackleson, and K. Voss, “Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine,” Limnol. Oceanogr. 36, 629-643 (1991).

W. M. Balch, K. Kilpatrick, P. M. Holligan, D. Harbour, and E. Fernandez, “The 1991 coccolithophore bloom in the central north Atlantic II: relating optics to coccolith concentration,” Limnol. Oceanogr. 41, 1684-1696 (1996).

K. J. Voss, W. M. Balch, and K. A. Kilpatrick, “Scattering and attenuation properties of Emiliania huxleyi cells and their detached coccoliths,” Limnol. Oceanogr. 43, 870-876(1998).

Mar. Ecol. Prog. Ser. (1)

W. M. Balch, J. J. Fritz, and E. Fernandez, “Decoupling of calcification and photosynthesis in the coccolithophere Emiliania huxleyi under steady-state light limited growth,” Mar. Ecol. Prog. Ser. 142, 87-97 (1996).
[CrossRef]

Nature (1)

J. R. Young, J. M. Didymus, P. R. Brown, B. Prins, and S. Mann, “Crystal assembly and phylogenetic evolution in heterococcoliths,” Nature 356, 516-518 (1992).
[CrossRef]

Opt. Express (5)

Prog. Oceanogr. (2)

D. Stramski and D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343-383 (1991).
[CrossRef]

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61, 27-56 (2004).
[CrossRef]

Remote Sens. Environ. (3)

R. M. Chomko, H. R. Gordon, S. Maritorena, and D. A. Siegel, “Simultaneous retrieval of oceanic and atmospheric parameters for ocean color imagery by spectral optimization: a validation,” Remote Sens. Environ. 84, 208-220 (2003).
[CrossRef]

C. P. Kuchinke, H. R. Gordon, and B. A. Franz, “Spectral optimization for constituent retrieval in Case 2 waters. I: implementation and performance,” Remote Sens. Environ. 113, 571-587 (2009).
[CrossRef]

C. P. Kuchinke, H. R. Gordon, L. W. Harding, Jr., and K. J. Voss, “Spectral optimization for constituent retrieval in Case 2 waters II: validation study in the Chesapeake Bay,” Remote Sens. Environ. 113, 610-621 (2009).
[CrossRef]

Other (9)

J. L. Mueller and R. W. Austin, “Ocean optics protocols for SeaWiFS validation, rev. 1,” of SeaWiFS Tech. Rep. Series, Tech. Memo. 104566, Vol. 25, S.B.Hooker and E.Firestone, eds., Nasa, Greebelt, MD, 1995.

W. R. Clavano, E. Boss, and L. Karp-Boss, “Inherent optical properties of non-spherical marine-like particles--from theory to observations,” in Oceanography and Marine Biology: An Annual Review, R. N. Gibson, R. J. M. Atkinson, and J. D. M.Gordon, eds. (CRC, 2007), Vol. 45, pp. 1-38.

Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, 2000).

H. R. Gordon and A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, 1983).

S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, and C. R. McClain, “An overview of SeaWiFS and ocean color,” of SeaWiFS Tech. Rep. Series, Tech. Memo. 104566, Vol. 1, S.B.Hooker and E.R.Firestone, eds., NASA, Greenbelt, MD, 1992.

T. J. Petzold, “Volume scattering functions for selected natural waters,” SIO Ref. 72-78 (Scripps Institution of Oceanography, 1972).

C. D. Mobley, Light and Water; Radiative Transfer in Natural Waters (Academic, 1994).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Chalk-Ex campaign: The synthetic “bloom” resulting from the deployment of finely ground chalk particles (mean diameter, 2 μm ). Note the horizontal inhomogeneity.

Fig. 2
Fig. 2

Measured backscattering coefficient at 470 nm at the Chalk-Ex site (given in the text) before dispersal of the chalk (points) and retrieved backscattering at 490 nm using the inversion algorithm (continuous curve).

Fig. 3
Fig. 3

Measured backscattering coefficient at 470 nm at the Chalk-Ex site after the dispersal of the chalk (points) and retrieved backscattering at 490 nm using the inversion algorithm (continuous curve).

Fig. 4
Fig. 4

Retrieved absorption coefficient at the Chalk-Ex site before and after dispersal of the chalk over the depth range of high concentrations of chalk (top 20 m ).

Fig. 5
Fig. 5

Retrieved absorption coefficient minus that of water ( a w ) at the Stations 1–4 in the Plymouth bloom at 5 m depth.

Fig. 6
Fig. 6

Retrieved backscattering coefficient at Stations 1–4 in the Plymouth bloom at 5 m depth.

Fig. 7
Fig. 7

Backscattering at 500 nm divided by the detached coccolith concentration as a function of the detached coccolith con centration as measured by flow cytometry. This is an estimate of σ b . Note, 1 ml / m = 10 6 μm 2 / coccolith , so 100 × 10 9 ml / m = 0.100 μm 2 / coccolith .

Fig. 8
Fig. 8

Backscattering at 500 nm (minus that at Station 1) divided by the detached coccolith concentration (minus that at Station 1) as a function of the detached coccolith concentration (minus that at Station 1) as measured by flow cytometry. This is an estimate of σ b . Note, 1 ml / m = 10 6 μm 2 / coccolith , so 100 × 10 9 ml / m = 0.100 μm 2 / coccolith .

Fig. 9
Fig. 9

Schematic of the model of the position of the individual dipoles comprising the body of a detached coccolith. The top two disks are the proximal shield. They have a diameter of 3.5 μm . The thickness of this disk ranges from 0.04 to 0.06 μm . The two central “washer-shaped” disks represent the cylinder joining the proximal and distal shields. This cylinder has an inner diameter of 1.38 μm and an outer diameter of 1.58 μm . The “pinwheel” at the bottom represents the distal shield, and is shown here with 10 “vanes.” In the actual coccolith model, the distal shield has 40 “vanes.” The separation between the distal and proximal shields is 0.30 to 0.35 μm . In the figure, the bottom four objects have a refractive index of 1.20, while the top two objects have an index of 1.19. The maximum number of layers (6 are shown here) of dipoles in the actual coccolith model is up to 24, corresponding to a layer spacing of 0.02 μm .

Fig. 10
Fig. 10

Backscattering cross section σ b of the model coccoliths. The panels clockwise starting from the upper left are for shield diameters D = 3.5 μm and thicknesses t = 0.04 , 0.05, and 0.06 μm , with each panel containing three different separations between the proximal and distal shields in μm (“Gap”). The fourth panel is the σ b averaged over the other three. The dashed lines in the fourth panel correspond to the measured spectra normalized to 0.085 μm 2 / coccolith at 510 nm . To get σ b specific to a mole of calcite (in units m 2 / mole of calcite) multiply the ordinate scale on the lower right panel by 44.2 m 2 / mole , i.e., at 600 nm σ b = 2.26 m 2 / mole .

Fig. 11
Fig. 11

Backscattering probability of the model coccoliths. The panels clockwise starting from the upper left are for shield diameters D = 3.5 μm and t = 0.04 , 0.05, and 0.06 μm , with each panel containing three different separations between the proximal and distal shields in μm (“Gap”). The fourth panel is the backscattering probability averaged over the other three, i.e., the average of σ b divided by the average of σ.

Fig. 12
Fig. 12

Spectral scattering properties of the “average” model coccolith ( t = 0.05 μm and gap = 0.325 μm ) as a function of the diameter (D) of the shields, as the diameter is varied from varied from 2.5 to 4.0 μm . Clockwise from the lower left, the spectra are for σ b / σ , σ, σ b , and σ b / D 2 , respectively. (D is in μm .)

Fig. 13
Fig. 13

Backscattering cross section of a particle consisting of two concentric spherical shells as a function of the overall particle radius (R).

Fig. 14
Fig. 14

Same as Fig. 13, except the results are normalized at 600 nm , and the backscattering of two parallel disks (disk diameter of 3.50 μm , disk thickness of 0.05 μm , and disk separation of 0.325 μm ) in random orientation has been included as well.

Tables (2)

Tables Icon

Table 1 Comparison of the SeaWiFS Retrieved Backscattering and Absorption Parameters at 443 nm with those Derived from Inversion of the In-Water Radiance/Irradiance Data a

Tables Icon

Table 2 Coccolith Concentration ( N Cocc = N Coccolith in ml 1 ) and the Ratio of Coccolith to Coccospheres ( N Cocc / N cell , N cell = N Coccosphere ) as a Function of Depth (z in m) for the Four Stations Examined

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

a = 1 P 0 Δ P a Δ and β ( Θ ) = 1 P 0 Δ 2 P s ( Θ ) Δ Ω Δ .
b = 1 P 0 Δ P s Δ = 2 π 0 π β ( Θ ) sin Θ d Θ ,
b b = 2 π π / 2 π β ( Θ ) sin Θ d Θ .
b = N σ and b b = N σ b ,
σ b ( apparent ) = σ b ( coccolith ) + N Coccosphere N Coccolith σ b ( coccosphere ) .

Metrics