Abstract

The diffraction efficiency, focal length, and other radiometric and metrology properties of a phase zone plate were measured by using monochromatic synchrotron radiation in the 7–18.5nm wavelength range. The zone plate was composed of molybdenum zones having a 4mm outer diameter and 70nm nominal thickness and supported on a 100nm thick silicon nitride membrane. The diffraction efficiency was enhanced by the phase shift of the radiation passing through the zones. The measured first-order efficiency was in good agreement with the calculated efficiency. The properties of the zone plate, particularly the small variation of the efficiency with off-axis angle, make it suitable for use in a radiometer to accurately measure the absolutely calibrated extreme ultraviolet emission from the Sun.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. David Attwood, Soft X-Rays and Extreme Ultraviolet Radiation (Cambridge Univ. Press, 2000), pp. 337-349.
  2. J. C. Bremer and W. Yun, “Concept for an extreme ultraviolet sensor with a Fresnel zone plate for the GOES-R Solar Imaging Suite,” Proc. SPIE 5901, 59010P (2005).
    [CrossRef]
  3. J. Seely, G. Holland, J. Bremer, T. Zukowski, M. Feser, Y. Feng, B. Kjornrattanawanich, and L. Goray, “Measurement of zone plate efficiencies in the extreme ultraviolet and applications to radiation monitors for absolute spectral emission,” Proc. SPIE 6317, 63170N (2006).
    [CrossRef]
  4. B. Kjornrattanawanich and S. Bajt, “Structural characterization and lifetime stability of Mo/Y extreme-ultraviolet multilayer mirrors,” Appl. Opt. 43, 5955-5962 (2004).
    [CrossRef] [PubMed]
  5. H. W. Schnopper, L. P. Van Speybroeck, J. P. Delvaille, A. Epstein, E. Källne, R. Z. Bachrach, J. Dijkstra, and L. Lantward, “Diffraction grating transmission efficiencies for XUV and soft x-rays,” Appl. Opt. 16, 1088-1091 (1977).
    [PubMed]
  6. Center for X-Ray Optics, http://www-cxro.lbl.gov/.
  7. R. Soufli and E. M. Gullikson, “Absolute photoabsorption measurements of molybdenum in the range 60 to 930 eV for optical constant determination,” Appl. Opt. 37, 1713-1719(1998).
    [CrossRef]
  8. C. Tarrio, R. N. Watts, T. B. Lucatorto, J. M. Slaughter, and C. M. Falco, “Optical constants of in situ-deposited films of important extreme-ultraviolet multilayer mirror materials,” Appl. Opt. 37, 4100-4104 (1998).
    [CrossRef]
  9. R. Soufli and E. M. Gullikson, “Reflectance measurements on clean surfaces for the determination of optical constants of silicon in the extreme ultraviolet-soft-x-ray region,” Appl. Opt. 36, 5499-5507 (1997).
    [CrossRef] [PubMed]

2006 (1)

J. Seely, G. Holland, J. Bremer, T. Zukowski, M. Feser, Y. Feng, B. Kjornrattanawanich, and L. Goray, “Measurement of zone plate efficiencies in the extreme ultraviolet and applications to radiation monitors for absolute spectral emission,” Proc. SPIE 6317, 63170N (2006).
[CrossRef]

2005 (1)

J. C. Bremer and W. Yun, “Concept for an extreme ultraviolet sensor with a Fresnel zone plate for the GOES-R Solar Imaging Suite,” Proc. SPIE 5901, 59010P (2005).
[CrossRef]

2004 (1)

1998 (2)

1997 (1)

1977 (1)

Attwood, David

David Attwood, Soft X-Rays and Extreme Ultraviolet Radiation (Cambridge Univ. Press, 2000), pp. 337-349.

Bachrach, R. Z.

Bajt, S.

Bremer, J.

J. Seely, G. Holland, J. Bremer, T. Zukowski, M. Feser, Y. Feng, B. Kjornrattanawanich, and L. Goray, “Measurement of zone plate efficiencies in the extreme ultraviolet and applications to radiation monitors for absolute spectral emission,” Proc. SPIE 6317, 63170N (2006).
[CrossRef]

Bremer, J. C.

J. C. Bremer and W. Yun, “Concept for an extreme ultraviolet sensor with a Fresnel zone plate for the GOES-R Solar Imaging Suite,” Proc. SPIE 5901, 59010P (2005).
[CrossRef]

Delvaille, J. P.

Dijkstra, J.

Epstein, A.

Falco, C. M.

Feng, Y.

J. Seely, G. Holland, J. Bremer, T. Zukowski, M. Feser, Y. Feng, B. Kjornrattanawanich, and L. Goray, “Measurement of zone plate efficiencies in the extreme ultraviolet and applications to radiation monitors for absolute spectral emission,” Proc. SPIE 6317, 63170N (2006).
[CrossRef]

Feser, M.

J. Seely, G. Holland, J. Bremer, T. Zukowski, M. Feser, Y. Feng, B. Kjornrattanawanich, and L. Goray, “Measurement of zone plate efficiencies in the extreme ultraviolet and applications to radiation monitors for absolute spectral emission,” Proc. SPIE 6317, 63170N (2006).
[CrossRef]

Goray, L.

J. Seely, G. Holland, J. Bremer, T. Zukowski, M. Feser, Y. Feng, B. Kjornrattanawanich, and L. Goray, “Measurement of zone plate efficiencies in the extreme ultraviolet and applications to radiation monitors for absolute spectral emission,” Proc. SPIE 6317, 63170N (2006).
[CrossRef]

Gullikson, E. M.

Holland, G.

J. Seely, G. Holland, J. Bremer, T. Zukowski, M. Feser, Y. Feng, B. Kjornrattanawanich, and L. Goray, “Measurement of zone plate efficiencies in the extreme ultraviolet and applications to radiation monitors for absolute spectral emission,” Proc. SPIE 6317, 63170N (2006).
[CrossRef]

Källne, E.

Kjornrattanawanich, B.

J. Seely, G. Holland, J. Bremer, T. Zukowski, M. Feser, Y. Feng, B. Kjornrattanawanich, and L. Goray, “Measurement of zone plate efficiencies in the extreme ultraviolet and applications to radiation monitors for absolute spectral emission,” Proc. SPIE 6317, 63170N (2006).
[CrossRef]

B. Kjornrattanawanich and S. Bajt, “Structural characterization and lifetime stability of Mo/Y extreme-ultraviolet multilayer mirrors,” Appl. Opt. 43, 5955-5962 (2004).
[CrossRef] [PubMed]

Lantward, L.

Lucatorto, T. B.

Schnopper, H. W.

Seely, J.

J. Seely, G. Holland, J. Bremer, T. Zukowski, M. Feser, Y. Feng, B. Kjornrattanawanich, and L. Goray, “Measurement of zone plate efficiencies in the extreme ultraviolet and applications to radiation monitors for absolute spectral emission,” Proc. SPIE 6317, 63170N (2006).
[CrossRef]

Slaughter, J. M.

Soufli, R.

Tarrio, C.

Van Speybroeck, L. P.

Watts, R. N.

Yun, W.

J. C. Bremer and W. Yun, “Concept for an extreme ultraviolet sensor with a Fresnel zone plate for the GOES-R Solar Imaging Suite,” Proc. SPIE 5901, 59010P (2005).
[CrossRef]

Zukowski, T.

J. Seely, G. Holland, J. Bremer, T. Zukowski, M. Feser, Y. Feng, B. Kjornrattanawanich, and L. Goray, “Measurement of zone plate efficiencies in the extreme ultraviolet and applications to radiation monitors for absolute spectral emission,” Proc. SPIE 6317, 63170N (2006).
[CrossRef]

Appl. Opt. (5)

Proc. SPIE (2)

J. C. Bremer and W. Yun, “Concept for an extreme ultraviolet sensor with a Fresnel zone plate for the GOES-R Solar Imaging Suite,” Proc. SPIE 5901, 59010P (2005).
[CrossRef]

J. Seely, G. Holland, J. Bremer, T. Zukowski, M. Feser, Y. Feng, B. Kjornrattanawanich, and L. Goray, “Measurement of zone plate efficiencies in the extreme ultraviolet and applications to radiation monitors for absolute spectral emission,” Proc. SPIE 6317, 63170N (2006).
[CrossRef]

Other (2)

Center for X-Ray Optics, http://www-cxro.lbl.gov/.

David Attwood, Soft X-Rays and Extreme Ultraviolet Radiation (Cambridge Univ. Press, 2000), pp. 337-349.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Diffraction orders of a ZP showing the converging + m orders and the diverging m orders, the focal lengths, and the path differences m n λ / 2 from the zones with numbers n. Adapted from [1]. (b) Schematic of the zones (Z) with 4 mm outermost diameter, central occulter (O) with 2 mm diameter, converging + 1 order, diverging 1 order, and undeflected zero order. The horizontal axis is in units of the first-order focal length f.

Fig. 2
Fig. 2

(a) Measured reflectances of four Mo/Y and two Mo/Si multilayer mirrors, and (b) measured (data points) and calculated (curve) reflectances of the broadband Mo/Si multilayer mirror.

Fig. 3
Fig. 3

Images of size 9 mm of (a) the 15.6 nm radiation beam reflected from the broadband multilayer mirror, (b) the beam through the surrogate, and (c) the ZP diffraction pattern where the + 1 , 1 , and zero orders are identified.

Fig. 4
Fig. 4

Variations in the 17 nm beam intensity in the horizontal and vertical directions.

Fig. 5
Fig. 5

Scans of the 0.15 mm apertured photodiode through the 17 nm focus of the + 1 -order focus in the (a) x direction, (b) y direction, and (c) z direction.

Fig. 6
Fig. 6

Focal image recorded by the CCD imager having 5.2 μm pixel size.

Fig. 7
Fig. 7

Measured + 1 -order focal distances (data points) and the focal curve corresponding to f 1 = Δ r N D / λ , where Δ r N D = 402.1 ± 2.6 nm mm .

Fig. 8
Fig. 8

+ 1 -order efficiencies measured by passing the radiation beam through one ZP quadrant (data points), and the efficiency curves measured by fixing the position of the 0.15 mm apertured photodiode in the focus of a selected wavelength and scanning about that wavelength.

Fig. 9
Fig. 9

(a)  + 1 -order efficiencies measured by passing the radiation beam through one ZP quadrant (square data points) or by filling the 4 mm ZP aperture (triangular data points), and the efficiency curves calculated for 60 and 70 nm thick Mo zones. (b) Calculated transmittance of the 100 nm thick Si 3 N 4 membrane.

Fig. 10
Fig. 10

(a)  + 1 - and zero-order efficiencies calculated as functions of Mo zone thickness and for 14 nm wavelength. The phase shift of the radiation passing through the zones is indicated. (b)  + 1 - and zero-order efficiencies calculated as functions of wavelength and for 60 and 70 nm thick Mo zones.

Fig. 11
Fig. 11

+ 1 -order efficiency of 15.6 nm radiation measured as functions of tip angle and yaw angle (data points). The curves represent the decrease in efficiency caused by occultation of the radiation in the open zones having 60 and 70 nm thickness.

Metrics