Abstract

The light extraction efficiency of top-emitting organic light-emitting diodes (OLEDs) was improved by insertion of a two-dimensional (2D) diffraction layer. The 2D diffraction layer was fabricated by our original nanofabrication technique, the embedded particle monolayer method, which could form a self-assembled particle monolayer. As a result, the electroluminescence intensity of the device with the 2D diffraction layer was improved by 1.67 times (in total luminous flux) and 2.07 times (in peak wavelength). High luminance top-emitting OLEDs were fabricated using the potentially low-cost self-assembling technique.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. W. Tang and S. A. Van Slike, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51, 913-915 (1987).
    [CrossRef]
  2. J. N. Bardsley, “International OLED technology roadmap,” IEEE Sel. Top. Quantum Electron. 10, 3-9 (2004).
    [CrossRef]
  3. C. F. Madigan, M. H. Lu, and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett. 76, 1650-1652 (2000).
    [CrossRef]
  4. S. Moller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91, 3324-3327 (2002).
    [CrossRef]
  5. T. Yamasaki, K. Sumioka, and T. Tsutsui, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett. 76, 1243-1245 (2000).
    [CrossRef]
  6. M. Agrawal, Y. Sun, and S. R. Forrest, “Enhanced outcoupling from organic light-emitting diodes using aperiodic dielectric mirrors,” Appl. Phys. Lett. 90, 241112 (2007).
    [CrossRef]
  7. Y.-J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y.-C. Kim, and Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett. 82, 3779-3781 (2003).
    [CrossRef]
  8. M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure,” Appl. Phys. Lett. 85, 5769-5771 (2004).
    [CrossRef]
  9. M. Kitamura, S. Iwamoto, and Y. Arakawa, “Enhanced luminance efficiency of organic light-emitting diodes with two-dimensional photonic crystals,” Jpn. J. Appl. Phys. 44, 2844-2848 (2005).
    [CrossRef]
  10. Y.-C. Kim, S.-H. Cho, Y.-W. Song, Y.-J. Lee, Y.-H. Lee, and Y. R. Do, “Planarized SiNx/spin-on-glass photonic crystal organic light-emitting diodes,” Appl. Phys. Lett. 89, 173502(2006).
    [CrossRef]
  11. S. Jeon, J.-W. Kang, H.-D. Park, J.-J. Kim, J. R. Youn, J. Shim, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, S.-H. Kim, and Y.-H. Lee, “Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application,” Appl. Phys. Lett. 92, 223307 (2008).
    [CrossRef]
  12. T. Nakanishi, T. Hiraoka, A. Fujimoto, S. Saito, and K. Asakawa, “Nano-patterning using an embedded particle monolayer as an etch mask,” Microeletron. Eng. 83, 1503-1508 (2006).
    [CrossRef]
  13. K. Asakawa and A. Fujimoto, “Fabrication of subwavelength structure for improvement in light-extraction efficiency of light-emitting devices using a self-assembled pattern of block copolymer,” Appl. Opt. 44, 7475-7482 (2005).
    [CrossRef] [PubMed]
  14. C. D. Dushkin, H. Yoshimura, and K. Nagayama, “Nucleation and growth of two-dimensional colloidal crystals,” Chem. Phys. Lett. 204, 455-460 (1993).
    [CrossRef]
  15. M. Holgado, F. Garcia-Santamarıa, A. Blanco, M. Ibisate, A. Cintas, H. Miguez, C. J. Serna, C. Molpeceres, J. Requena, A. Mifsud, F. Meseguer, and C. Lopez, “Electrophoretic deposition to control artificial opal growth,” Langmuir 15, 4701-4704 (1999).
    [CrossRef]
  16. M. Bardosova, P. Hodge, L. Pach, M. E. Pemble, V. Smatko, R. H. Tredgold, and D. Whitehead, “Synthetic opals made by the Langmuir-Blodgett method,” Thin Solid Films 437, 276-279 (2003).
    [CrossRef]
  17. E. D. Palik, Handbook of Optical Constants (HOC) Vol. II(Academic, 1985).

2008 (1)

S. Jeon, J.-W. Kang, H.-D. Park, J.-J. Kim, J. R. Youn, J. Shim, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, S.-H. Kim, and Y.-H. Lee, “Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application,” Appl. Phys. Lett. 92, 223307 (2008).
[CrossRef]

2007 (1)

M. Agrawal, Y. Sun, and S. R. Forrest, “Enhanced outcoupling from organic light-emitting diodes using aperiodic dielectric mirrors,” Appl. Phys. Lett. 90, 241112 (2007).
[CrossRef]

2006 (2)

T. Nakanishi, T. Hiraoka, A. Fujimoto, S. Saito, and K. Asakawa, “Nano-patterning using an embedded particle monolayer as an etch mask,” Microeletron. Eng. 83, 1503-1508 (2006).
[CrossRef]

Y.-C. Kim, S.-H. Cho, Y.-W. Song, Y.-J. Lee, Y.-H. Lee, and Y. R. Do, “Planarized SiNx/spin-on-glass photonic crystal organic light-emitting diodes,” Appl. Phys. Lett. 89, 173502(2006).
[CrossRef]

2005 (2)

M. Kitamura, S. Iwamoto, and Y. Arakawa, “Enhanced luminance efficiency of organic light-emitting diodes with two-dimensional photonic crystals,” Jpn. J. Appl. Phys. 44, 2844-2848 (2005).
[CrossRef]

K. Asakawa and A. Fujimoto, “Fabrication of subwavelength structure for improvement in light-extraction efficiency of light-emitting devices using a self-assembled pattern of block copolymer,” Appl. Opt. 44, 7475-7482 (2005).
[CrossRef] [PubMed]

2004 (2)

M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure,” Appl. Phys. Lett. 85, 5769-5771 (2004).
[CrossRef]

J. N. Bardsley, “International OLED technology roadmap,” IEEE Sel. Top. Quantum Electron. 10, 3-9 (2004).
[CrossRef]

2003 (2)

Y.-J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y.-C. Kim, and Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett. 82, 3779-3781 (2003).
[CrossRef]

M. Bardosova, P. Hodge, L. Pach, M. E. Pemble, V. Smatko, R. H. Tredgold, and D. Whitehead, “Synthetic opals made by the Langmuir-Blodgett method,” Thin Solid Films 437, 276-279 (2003).
[CrossRef]

2002 (1)

S. Moller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91, 3324-3327 (2002).
[CrossRef]

2000 (2)

T. Yamasaki, K. Sumioka, and T. Tsutsui, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett. 76, 1243-1245 (2000).
[CrossRef]

C. F. Madigan, M. H. Lu, and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett. 76, 1650-1652 (2000).
[CrossRef]

1999 (1)

M. Holgado, F. Garcia-Santamarıa, A. Blanco, M. Ibisate, A. Cintas, H. Miguez, C. J. Serna, C. Molpeceres, J. Requena, A. Mifsud, F. Meseguer, and C. Lopez, “Electrophoretic deposition to control artificial opal growth,” Langmuir 15, 4701-4704 (1999).
[CrossRef]

1993 (1)

C. D. Dushkin, H. Yoshimura, and K. Nagayama, “Nucleation and growth of two-dimensional colloidal crystals,” Chem. Phys. Lett. 204, 455-460 (1993).
[CrossRef]

1987 (1)

C. W. Tang and S. A. Van Slike, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51, 913-915 (1987).
[CrossRef]

1985 (1)

E. D. Palik, Handbook of Optical Constants (HOC) Vol. II(Academic, 1985).

Agrawal, M.

M. Agrawal, Y. Sun, and S. R. Forrest, “Enhanced outcoupling from organic light-emitting diodes using aperiodic dielectric mirrors,” Appl. Phys. Lett. 90, 241112 (2007).
[CrossRef]

Altun, A. O.

S. Jeon, J.-W. Kang, H.-D. Park, J.-J. Kim, J. R. Youn, J. Shim, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, S.-H. Kim, and Y.-H. Lee, “Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application,” Appl. Phys. Lett. 92, 223307 (2008).
[CrossRef]

Arakawa, Y.

M. Kitamura, S. Iwamoto, and Y. Arakawa, “Enhanced luminance efficiency of organic light-emitting diodes with two-dimensional photonic crystals,” Jpn. J. Appl. Phys. 44, 2844-2848 (2005).
[CrossRef]

Asakawa, K.

T. Nakanishi, T. Hiraoka, A. Fujimoto, S. Saito, and K. Asakawa, “Nano-patterning using an embedded particle monolayer as an etch mask,” Microeletron. Eng. 83, 1503-1508 (2006).
[CrossRef]

K. Asakawa and A. Fujimoto, “Fabrication of subwavelength structure for improvement in light-extraction efficiency of light-emitting devices using a self-assembled pattern of block copolymer,” Appl. Opt. 44, 7475-7482 (2005).
[CrossRef] [PubMed]

Asano, T.

M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure,” Appl. Phys. Lett. 85, 5769-5771 (2004).
[CrossRef]

Bardosova, M.

M. Bardosova, P. Hodge, L. Pach, M. E. Pemble, V. Smatko, R. H. Tredgold, and D. Whitehead, “Synthetic opals made by the Langmuir-Blodgett method,” Thin Solid Films 437, 276-279 (2003).
[CrossRef]

Bardsley, J. N.

J. N. Bardsley, “International OLED technology roadmap,” IEEE Sel. Top. Quantum Electron. 10, 3-9 (2004).
[CrossRef]

Blanco, A.

M. Holgado, F. Garcia-Santamarıa, A. Blanco, M. Ibisate, A. Cintas, H. Miguez, C. J. Serna, C. Molpeceres, J. Requena, A. Mifsud, F. Meseguer, and C. Lopez, “Electrophoretic deposition to control artificial opal growth,” Langmuir 15, 4701-4704 (1999).
[CrossRef]

Cho, S.-H.

Y.-C. Kim, S.-H. Cho, Y.-W. Song, Y.-J. Lee, Y.-H. Lee, and Y. R. Do, “Planarized SiNx/spin-on-glass photonic crystal organic light-emitting diodes,” Appl. Phys. Lett. 89, 173502(2006).
[CrossRef]

Y.-J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y.-C. Kim, and Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett. 82, 3779-3781 (2003).
[CrossRef]

Choi, D.-G.

S. Jeon, J.-W. Kang, H.-D. Park, J.-J. Kim, J. R. Youn, J. Shim, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, S.-H. Kim, and Y.-H. Lee, “Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application,” Appl. Phys. Lett. 92, 223307 (2008).
[CrossRef]

Cintas, A.

M. Holgado, F. Garcia-Santamarıa, A. Blanco, M. Ibisate, A. Cintas, H. Miguez, C. J. Serna, C. Molpeceres, J. Requena, A. Mifsud, F. Meseguer, and C. Lopez, “Electrophoretic deposition to control artificial opal growth,” Langmuir 15, 4701-4704 (1999).
[CrossRef]

Do, Y. R.

Y.-C. Kim, S.-H. Cho, Y.-W. Song, Y.-J. Lee, Y.-H. Lee, and Y. R. Do, “Planarized SiNx/spin-on-glass photonic crystal organic light-emitting diodes,” Appl. Phys. Lett. 89, 173502(2006).
[CrossRef]

Y.-J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y.-C. Kim, and Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett. 82, 3779-3781 (2003).
[CrossRef]

Dushkin, C. D.

C. D. Dushkin, H. Yoshimura, and K. Nagayama, “Nucleation and growth of two-dimensional colloidal crystals,” Chem. Phys. Lett. 204, 455-460 (1993).
[CrossRef]

Forrest, S. R.

M. Agrawal, Y. Sun, and S. R. Forrest, “Enhanced outcoupling from organic light-emitting diodes using aperiodic dielectric mirrors,” Appl. Phys. Lett. 90, 241112 (2007).
[CrossRef]

S. Moller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91, 3324-3327 (2002).
[CrossRef]

Fujimoto, A.

T. Nakanishi, T. Hiraoka, A. Fujimoto, S. Saito, and K. Asakawa, “Nano-patterning using an embedded particle monolayer as an etch mask,” Microeletron. Eng. 83, 1503-1508 (2006).
[CrossRef]

K. Asakawa and A. Fujimoto, “Fabrication of subwavelength structure for improvement in light-extraction efficiency of light-emitting devices using a self-assembled pattern of block copolymer,” Appl. Opt. 44, 7475-7482 (2005).
[CrossRef] [PubMed]

Fujita, M.

M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure,” Appl. Phys. Lett. 85, 5769-5771 (2004).
[CrossRef]

Garcia-Santamaria, F.

M. Holgado, F. Garcia-Santamarıa, A. Blanco, M. Ibisate, A. Cintas, H. Miguez, C. J. Serna, C. Molpeceres, J. Requena, A. Mifsud, F. Meseguer, and C. Lopez, “Electrophoretic deposition to control artificial opal growth,” Langmuir 15, 4701-4704 (1999).
[CrossRef]

Hiraoka, T.

T. Nakanishi, T. Hiraoka, A. Fujimoto, S. Saito, and K. Asakawa, “Nano-patterning using an embedded particle monolayer as an etch mask,” Microeletron. Eng. 83, 1503-1508 (2006).
[CrossRef]

Hodge, P.

M. Bardosova, P. Hodge, L. Pach, M. E. Pemble, V. Smatko, R. H. Tredgold, and D. Whitehead, “Synthetic opals made by the Langmuir-Blodgett method,” Thin Solid Films 437, 276-279 (2003).
[CrossRef]

Holgado, M.

M. Holgado, F. Garcia-Santamarıa, A. Blanco, M. Ibisate, A. Cintas, H. Miguez, C. J. Serna, C. Molpeceres, J. Requena, A. Mifsud, F. Meseguer, and C. Lopez, “Electrophoretic deposition to control artificial opal growth,” Langmuir 15, 4701-4704 (1999).
[CrossRef]

Huh, J.

Y.-J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y.-C. Kim, and Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett. 82, 3779-3781 (2003).
[CrossRef]

Ibisate, M.

M. Holgado, F. Garcia-Santamarıa, A. Blanco, M. Ibisate, A. Cintas, H. Miguez, C. J. Serna, C. Molpeceres, J. Requena, A. Mifsud, F. Meseguer, and C. Lopez, “Electrophoretic deposition to control artificial opal growth,” Langmuir 15, 4701-4704 (1999).
[CrossRef]

Ishihara, K.

M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure,” Appl. Phys. Lett. 85, 5769-5771 (2004).
[CrossRef]

Iwamoto, S.

M. Kitamura, S. Iwamoto, and Y. Arakawa, “Enhanced luminance efficiency of organic light-emitting diodes with two-dimensional photonic crystals,” Jpn. J. Appl. Phys. 44, 2844-2848 (2005).
[CrossRef]

Jeon, S.

S. Jeon, J.-W. Kang, H.-D. Park, J.-J. Kim, J. R. Youn, J. Shim, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, S.-H. Kim, and Y.-H. Lee, “Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application,” Appl. Phys. Lett. 92, 223307 (2008).
[CrossRef]

Jeong, J.-H.

S. Jeon, J.-W. Kang, H.-D. Park, J.-J. Kim, J. R. Youn, J. Shim, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, S.-H. Kim, and Y.-H. Lee, “Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application,” Appl. Phys. Lett. 92, 223307 (2008).
[CrossRef]

Kang, J.-W.

S. Jeon, J.-W. Kang, H.-D. Park, J.-J. Kim, J. R. Youn, J. Shim, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, S.-H. Kim, and Y.-H. Lee, “Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application,” Appl. Phys. Lett. 92, 223307 (2008).
[CrossRef]

Kim, G.-H.

Y.-J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y.-C. Kim, and Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett. 82, 3779-3781 (2003).
[CrossRef]

Kim, J.-J.

S. Jeon, J.-W. Kang, H.-D. Park, J.-J. Kim, J. R. Youn, J. Shim, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, S.-H. Kim, and Y.-H. Lee, “Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application,” Appl. Phys. Lett. 92, 223307 (2008).
[CrossRef]

Kim, K.-D.

S. Jeon, J.-W. Kang, H.-D. Park, J.-J. Kim, J. R. Youn, J. Shim, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, S.-H. Kim, and Y.-H. Lee, “Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application,” Appl. Phys. Lett. 92, 223307 (2008).
[CrossRef]

Kim, S.-H.

S. Jeon, J.-W. Kang, H.-D. Park, J.-J. Kim, J. R. Youn, J. Shim, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, S.-H. Kim, and Y.-H. Lee, “Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application,” Appl. Phys. Lett. 92, 223307 (2008).
[CrossRef]

Y.-J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y.-C. Kim, and Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett. 82, 3779-3781 (2003).
[CrossRef]

Kim, Y.-C.

Y.-C. Kim, S.-H. Cho, Y.-W. Song, Y.-J. Lee, Y.-H. Lee, and Y. R. Do, “Planarized SiNx/spin-on-glass photonic crystal organic light-emitting diodes,” Appl. Phys. Lett. 89, 173502(2006).
[CrossRef]

Y.-J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y.-C. Kim, and Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett. 82, 3779-3781 (2003).
[CrossRef]

Kitamura, M.

M. Kitamura, S. Iwamoto, and Y. Arakawa, “Enhanced luminance efficiency of organic light-emitting diodes with two-dimensional photonic crystals,” Jpn. J. Appl. Phys. 44, 2844-2848 (2005).
[CrossRef]

Lee, Y.-H.

S. Jeon, J.-W. Kang, H.-D. Park, J.-J. Kim, J. R. Youn, J. Shim, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, S.-H. Kim, and Y.-H. Lee, “Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application,” Appl. Phys. Lett. 92, 223307 (2008).
[CrossRef]

Y.-C. Kim, S.-H. Cho, Y.-W. Song, Y.-J. Lee, Y.-H. Lee, and Y. R. Do, “Planarized SiNx/spin-on-glass photonic crystal organic light-emitting diodes,” Appl. Phys. Lett. 89, 173502(2006).
[CrossRef]

Y.-J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y.-C. Kim, and Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett. 82, 3779-3781 (2003).
[CrossRef]

Lee, Y.-J.

Y.-C. Kim, S.-H. Cho, Y.-W. Song, Y.-J. Lee, Y.-H. Lee, and Y. R. Do, “Planarized SiNx/spin-on-glass photonic crystal organic light-emitting diodes,” Appl. Phys. Lett. 89, 173502(2006).
[CrossRef]

Y.-J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y.-C. Kim, and Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett. 82, 3779-3781 (2003).
[CrossRef]

Lopez, C.

M. Holgado, F. Garcia-Santamarıa, A. Blanco, M. Ibisate, A. Cintas, H. Miguez, C. J. Serna, C. Molpeceres, J. Requena, A. Mifsud, F. Meseguer, and C. Lopez, “Electrophoretic deposition to control artificial opal growth,” Langmuir 15, 4701-4704 (1999).
[CrossRef]

Lu, M. H.

C. F. Madigan, M. H. Lu, and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett. 76, 1650-1652 (2000).
[CrossRef]

Madigan, C. F.

C. F. Madigan, M. H. Lu, and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett. 76, 1650-1652 (2000).
[CrossRef]

Meseguer, F.

M. Holgado, F. Garcia-Santamarıa, A. Blanco, M. Ibisate, A. Cintas, H. Miguez, C. J. Serna, C. Molpeceres, J. Requena, A. Mifsud, F. Meseguer, and C. Lopez, “Electrophoretic deposition to control artificial opal growth,” Langmuir 15, 4701-4704 (1999).
[CrossRef]

Mifsud, A.

M. Holgado, F. Garcia-Santamarıa, A. Blanco, M. Ibisate, A. Cintas, H. Miguez, C. J. Serna, C. Molpeceres, J. Requena, A. Mifsud, F. Meseguer, and C. Lopez, “Electrophoretic deposition to control artificial opal growth,” Langmuir 15, 4701-4704 (1999).
[CrossRef]

Miguez, H.

M. Holgado, F. Garcia-Santamarıa, A. Blanco, M. Ibisate, A. Cintas, H. Miguez, C. J. Serna, C. Molpeceres, J. Requena, A. Mifsud, F. Meseguer, and C. Lopez, “Electrophoretic deposition to control artificial opal growth,” Langmuir 15, 4701-4704 (1999).
[CrossRef]

Moller, S.

S. Moller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91, 3324-3327 (2002).
[CrossRef]

Molpeceres, C.

M. Holgado, F. Garcia-Santamarıa, A. Blanco, M. Ibisate, A. Cintas, H. Miguez, C. J. Serna, C. Molpeceres, J. Requena, A. Mifsud, F. Meseguer, and C. Lopez, “Electrophoretic deposition to control artificial opal growth,” Langmuir 15, 4701-4704 (1999).
[CrossRef]

Nagayama, K.

C. D. Dushkin, H. Yoshimura, and K. Nagayama, “Nucleation and growth of two-dimensional colloidal crystals,” Chem. Phys. Lett. 204, 455-460 (1993).
[CrossRef]

Nakada, H.

M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure,” Appl. Phys. Lett. 85, 5769-5771 (2004).
[CrossRef]

Nakanishi, T.

T. Nakanishi, T. Hiraoka, A. Fujimoto, S. Saito, and K. Asakawa, “Nano-patterning using an embedded particle monolayer as an etch mask,” Microeletron. Eng. 83, 1503-1508 (2006).
[CrossRef]

Noda, S.

M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure,” Appl. Phys. Lett. 85, 5769-5771 (2004).
[CrossRef]

Ohata, H.

M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure,” Appl. Phys. Lett. 85, 5769-5771 (2004).
[CrossRef]

Pach, L.

M. Bardosova, P. Hodge, L. Pach, M. E. Pemble, V. Smatko, R. H. Tredgold, and D. Whitehead, “Synthetic opals made by the Langmuir-Blodgett method,” Thin Solid Films 437, 276-279 (2003).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants (HOC) Vol. II(Academic, 1985).

Park, H.-D.

S. Jeon, J.-W. Kang, H.-D. Park, J.-J. Kim, J. R. Youn, J. Shim, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, S.-H. Kim, and Y.-H. Lee, “Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application,” Appl. Phys. Lett. 92, 223307 (2008).
[CrossRef]

Pemble, M. E.

M. Bardosova, P. Hodge, L. Pach, M. E. Pemble, V. Smatko, R. H. Tredgold, and D. Whitehead, “Synthetic opals made by the Langmuir-Blodgett method,” Thin Solid Films 437, 276-279 (2003).
[CrossRef]

Requena, J.

M. Holgado, F. Garcia-Santamarıa, A. Blanco, M. Ibisate, A. Cintas, H. Miguez, C. J. Serna, C. Molpeceres, J. Requena, A. Mifsud, F. Meseguer, and C. Lopez, “Electrophoretic deposition to control artificial opal growth,” Langmuir 15, 4701-4704 (1999).
[CrossRef]

Saito, S.

T. Nakanishi, T. Hiraoka, A. Fujimoto, S. Saito, and K. Asakawa, “Nano-patterning using an embedded particle monolayer as an etch mask,” Microeletron. Eng. 83, 1503-1508 (2006).
[CrossRef]

Serna, C. J.

M. Holgado, F. Garcia-Santamarıa, A. Blanco, M. Ibisate, A. Cintas, H. Miguez, C. J. Serna, C. Molpeceres, J. Requena, A. Mifsud, F. Meseguer, and C. Lopez, “Electrophoretic deposition to control artificial opal growth,” Langmuir 15, 4701-4704 (1999).
[CrossRef]

Shim, J.

S. Jeon, J.-W. Kang, H.-D. Park, J.-J. Kim, J. R. Youn, J. Shim, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, S.-H. Kim, and Y.-H. Lee, “Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application,” Appl. Phys. Lett. 92, 223307 (2008).
[CrossRef]

Shimoji, N.

M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure,” Appl. Phys. Lett. 85, 5769-5771 (2004).
[CrossRef]

Smatko, V.

M. Bardosova, P. Hodge, L. Pach, M. E. Pemble, V. Smatko, R. H. Tredgold, and D. Whitehead, “Synthetic opals made by the Langmuir-Blodgett method,” Thin Solid Films 437, 276-279 (2003).
[CrossRef]

Song, Y.-W.

Y.-C. Kim, S.-H. Cho, Y.-W. Song, Y.-J. Lee, Y.-H. Lee, and Y. R. Do, “Planarized SiNx/spin-on-glass photonic crystal organic light-emitting diodes,” Appl. Phys. Lett. 89, 173502(2006).
[CrossRef]

Sturm, J. C.

C. F. Madigan, M. H. Lu, and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett. 76, 1650-1652 (2000).
[CrossRef]

Sumioka, K.

T. Yamasaki, K. Sumioka, and T. Tsutsui, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett. 76, 1243-1245 (2000).
[CrossRef]

Sun, Y.

M. Agrawal, Y. Sun, and S. R. Forrest, “Enhanced outcoupling from organic light-emitting diodes using aperiodic dielectric mirrors,” Appl. Phys. Lett. 90, 241112 (2007).
[CrossRef]

Tang, C. W.

C. W. Tang and S. A. Van Slike, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51, 913-915 (1987).
[CrossRef]

Tredgold, R. H.

M. Bardosova, P. Hodge, L. Pach, M. E. Pemble, V. Smatko, R. H. Tredgold, and D. Whitehead, “Synthetic opals made by the Langmuir-Blodgett method,” Thin Solid Films 437, 276-279 (2003).
[CrossRef]

Tsuji, T.

M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure,” Appl. Phys. Lett. 85, 5769-5771 (2004).
[CrossRef]

Tsutsui, T.

T. Yamasaki, K. Sumioka, and T. Tsutsui, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett. 76, 1243-1245 (2000).
[CrossRef]

Ueno, T.

M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure,” Appl. Phys. Lett. 85, 5769-5771 (2004).
[CrossRef]

Van Slike, S. A.

C. W. Tang and S. A. Van Slike, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51, 913-915 (1987).
[CrossRef]

Whitehead, D.

M. Bardosova, P. Hodge, L. Pach, M. E. Pemble, V. Smatko, R. H. Tredgold, and D. Whitehead, “Synthetic opals made by the Langmuir-Blodgett method,” Thin Solid Films 437, 276-279 (2003).
[CrossRef]

Yamasaki, T.

T. Yamasaki, K. Sumioka, and T. Tsutsui, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett. 76, 1243-1245 (2000).
[CrossRef]

Yoshimura, H.

C. D. Dushkin, H. Yoshimura, and K. Nagayama, “Nucleation and growth of two-dimensional colloidal crystals,” Chem. Phys. Lett. 204, 455-460 (1993).
[CrossRef]

Youn, J. R.

S. Jeon, J.-W. Kang, H.-D. Park, J.-J. Kim, J. R. Youn, J. Shim, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, S.-H. Kim, and Y.-H. Lee, “Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application,” Appl. Phys. Lett. 92, 223307 (2008).
[CrossRef]

Appl. Opt. (1)

K. Asakawa and A. Fujimoto, “Fabrication of subwavelength structure for improvement in light-extraction efficiency of light-emitting devices using a self-assembled pattern of block copolymer,” Appl. Opt. 44, 7475-7482 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (8)

Y.-C. Kim, S.-H. Cho, Y.-W. Song, Y.-J. Lee, Y.-H. Lee, and Y. R. Do, “Planarized SiNx/spin-on-glass photonic crystal organic light-emitting diodes,” Appl. Phys. Lett. 89, 173502(2006).
[CrossRef]

S. Jeon, J.-W. Kang, H.-D. Park, J.-J. Kim, J. R. Youn, J. Shim, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A. O. Altun, S.-H. Kim, and Y.-H. Lee, “Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application,” Appl. Phys. Lett. 92, 223307 (2008).
[CrossRef]

C. W. Tang and S. A. Van Slike, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51, 913-915 (1987).
[CrossRef]

C. F. Madigan, M. H. Lu, and J. C. Sturm, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett. 76, 1650-1652 (2000).
[CrossRef]

T. Yamasaki, K. Sumioka, and T. Tsutsui, “Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification,” Appl. Phys. Lett. 76, 1243-1245 (2000).
[CrossRef]

M. Agrawal, Y. Sun, and S. R. Forrest, “Enhanced outcoupling from organic light-emitting diodes using aperiodic dielectric mirrors,” Appl. Phys. Lett. 90, 241112 (2007).
[CrossRef]

Y.-J. Lee, S.-H. Kim, J. Huh, G.-H. Kim, Y.-H. Lee, S.-H. Cho, Y.-C. Kim, and Y. R. Do, “A high-extraction-efficiency nanopatterned organic light-emitting diode,” Appl. Phys. Lett. 82, 3779-3781 (2003).
[CrossRef]

M. Fujita, T. Ueno, K. Ishihara, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, “Reduction of operating voltage in organic light-emitting diode by corrugated photonic crystal structure,” Appl. Phys. Lett. 85, 5769-5771 (2004).
[CrossRef]

Chem. Phys. Lett. (1)

C. D. Dushkin, H. Yoshimura, and K. Nagayama, “Nucleation and growth of two-dimensional colloidal crystals,” Chem. Phys. Lett. 204, 455-460 (1993).
[CrossRef]

IEEE Sel. Top. Quantum Electron. (1)

J. N. Bardsley, “International OLED technology roadmap,” IEEE Sel. Top. Quantum Electron. 10, 3-9 (2004).
[CrossRef]

J. Appl. Phys. (1)

S. Moller and S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91, 3324-3327 (2002).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Kitamura, S. Iwamoto, and Y. Arakawa, “Enhanced luminance efficiency of organic light-emitting diodes with two-dimensional photonic crystals,” Jpn. J. Appl. Phys. 44, 2844-2848 (2005).
[CrossRef]

Langmuir (1)

M. Holgado, F. Garcia-Santamarıa, A. Blanco, M. Ibisate, A. Cintas, H. Miguez, C. J. Serna, C. Molpeceres, J. Requena, A. Mifsud, F. Meseguer, and C. Lopez, “Electrophoretic deposition to control artificial opal growth,” Langmuir 15, 4701-4704 (1999).
[CrossRef]

Microeletron. Eng. (1)

T. Nakanishi, T. Hiraoka, A. Fujimoto, S. Saito, and K. Asakawa, “Nano-patterning using an embedded particle monolayer as an etch mask,” Microeletron. Eng. 83, 1503-1508 (2006).
[CrossRef]

Thin Solid Films (1)

M. Bardosova, P. Hodge, L. Pach, M. E. Pemble, V. Smatko, R. H. Tredgold, and D. Whitehead, “Synthetic opals made by the Langmuir-Blodgett method,” Thin Solid Films 437, 276-279 (2003).
[CrossRef]

Other (1)

E. D. Palik, Handbook of Optical Constants (HOC) Vol. II(Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Process flow of the embedded particle monolayer (EPM) method: (a) Forming the trapping layer on the substrate. (b) Coating the dispersion liquid of the particles. (c) Formation of the particle multilayer on the entire surface of the substrate. (d) Trapping the bottom layer of the particle multilayer by heating the substrate. (e) Removing excess particles.

Fig. 2
Fig. 2

Device structures of top-emitting OLEDs. (a) Conventional top-emitting OLEDs, (b) top-emitting OLEDs with the light extraction layer.

Fig. 3
Fig. 3

Process flow of the reflective diffraction structure using the EPM method: (a) Formation of the Al reflector, Si O 2 film, and the pattern transfer layer. (b) Formation of the silica particle monolayer on the substrate using the EPM method. (c) Slimming the silica particle monolayer by reactive ion etching (RIE) using C F 4 gas. (d) Pattern transfer into the pattern transfer layer by O 2 RIE. (d) Etching Si O 2 film. (f) Removal of the mask.

Fig. 4
Fig. 4

(a) SEM image of the fabricated silica particle monolayer with a diameter of 700 nm using the EPM method. (b) SEM image of the fabricated 2D diffraction structure having a dot pitch of 700 nm and a dot height of 300 nm in SiO 2 film.

Fig. 5
Fig. 5

(a) Fourier transformed image of the fabricated diffraction structure. Inset, SEM image before Fourier transformation. (b) Scattering intensity results of the fabricated reflective diffraction layer when it was illuminated with 550 nm wavelength light at normal incidence.

Fig. 6
Fig. 6

Relation between the λ / Λ (wavelength/grating pitch) and the first-order diffraction angle in the OLEDs with the reflective diffraction layer. The calculation was performed when the light was illuminated in the emission layer with the refractive index of 2.00 at the incident angle of 0, 20, 40, 60, and 80 ° .

Fig. 7
Fig. 7

(a) Optical equipment to measure the PL intensity. (b) Spectra of the excitation light (dotted line) and PL spectra (solid line).

Fig. 8
Fig. 8

(a) Relation between the PL intensity normalized by the reference and the dot pitch. (b) Relation between the PL intensity normalized by the reference and the dot height.

Fig. 9
Fig. 9

SEM images of the fabricated top-emitting OLEDs with the diffraction layer.

Fig. 10
Fig. 10

Current density and the voltage characteristics of the fabricated OLEDs.

Fig. 11
Fig. 11

EL spectra of the fabricated OLEDs operated at 10 mA / cm 2 .

Tables (1)

Tables Icon

Table 1 Fabricated OLEDs Structures in This Study

Metrics