Abstract

Resonant features in the response of finite arrays of rectangular grooves ruled on a metallic plate have been reported in connection with the excitation of phase resonances. These anomalies are generated by a particular arrangement of the magnetic field phases inside the subwavelength grooves when the structure is illuminated by a p-polarized electromagnetic wave. We show that this kind of resonance is also present for grooves of circular cross section and appear as sharp peaks in the specular response, the number of which increases with the number of grooves in the structure. A significant intensification of the field within the grooves is also found for these particular phase configurations. The dependence of the response on the geometrical parameters of the structure is analyzed in detail, in order to consider these structures for potential applications such as frequency selectors and polarizers.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Goulielmakis, G. Nersisyan, N. Papadogiannis, D. Charalambidis, G. Tsakiris, and K. Witte, “A dispersionless Michelson interferometer for the characterization of attosecond pulses,” Appl. Phys. B 74, 197-206 (2002).
  2. J. J. Wang, F. Liu, X. Deng, X. Liu, L. Chen, P. Sciortino, and R. Varghese, “Monolithically integrated circular polarizers with two-layer nano-gratings fabricated by imprint lithography,” J. Vac. Sci. Technol. B 23, 3164-3167 (2005).
    [CrossRef]
  3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
  4. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779-6782(1998).
  5. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845-2848 (1999).
    [CrossRef]
  6. F. J. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructures metals,” Phys. Rev. B 66, 155412 (2002).
  7. D. C. Skigin, V. V. Veremey, and R. Mittra, “Superdirective radiation from finite gratings of rectangular grooves,” IEEE Trans. Antennas Propag. 47, 376-383 (1999).
    [CrossRef]
  8. A. N. Fantino, S. I. Grosz, and D. C. Skigin, “Resonant effect in periodic gratings comprising a finite number of grooves in each period,” Phys. Rev. E 64, 016605 (2001).
    [CrossRef]
  9. S. I. Grosz, D. C. Skigin, and A. N. Fantino, “Resonant effects in compound diffraction gratings: influence of the geometrical parameters of the surface,” Phys. Rev. E 65, 056619 (2002).
    [CrossRef]
  10. D. C. Skigin, A. N. Fantino, and S. I. Grosz, “Phase resonances in compound metallic gratings,” J. Opt. A Pure Appl. Opt. 5, S129-S135 (2003).
    [CrossRef]
  11. J. Le Perchec, P. Quemerais, A. Barbara, and T. Lopez-Rios, “Controlling strong electromagnetic fields at subwavelength scales,” Phys. Rev. Lett. 97, 036405 (2006).
    [CrossRef]
  12. D. C. Skigin and R. A. Depine, “Transmission resonances on metallic compound gratings with subwavelength slits,” Phys. Rev. Lett. 95, 217402 (2005).
    [CrossRef]
  13. D. C. Skigin and R. A. Depine, “Resonances on metallic compound transmission gratings with subwavelength wires and slits,” Opt. Commun. 262, 270-275 (2006).
    [CrossRef]
  14. D. C. Skigin and R. A. Depine, “Narrow gaps for transmission through metallic structured gratings with subwavelength slits,” Phys. Rev. E 74, 046606 (2006).
    [CrossRef]
  15. A. P. HibbinsI. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96, 257402 (2006).
    [CrossRef]
  16. D. C. Skigin, H. Loui, Z. Popovic, and E. Kuester, “Bandwidth control of forbidden transmission gaps in compound structures with subwavelength slits,” Phys. Rev. E 76, 016604(2007).
    [CrossRef]
  17. Y. G. Ma, X. S. Rao, G. F. Zhang, and C. K. Ong, “Microwave transmission modes in compound metallic gratings,” Phys. Rev. B 76, 085413 (2007).
    [CrossRef]
  18. A. Barbara, J. Le Perchec, S. Collin, C. Sauvan, J.-L. Pelouard, T. López-Ríos, and P. Quémerais, “Generation and control of hot spots on commensurate metallic gratings,” Opt. Express 16, 19127-19135 (2008).
    [CrossRef]
  19. M. Navarro-Cía, D. C. Skigin, M. Beruete, and M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94, 091107 (2009).
    [CrossRef]
  20. V. V. Veremey and R. Mittra, “Scattering from structures formed by resonant elements,” IEEE Trans. Antennas Propag. 46, 494-501 (1998).
    [CrossRef]
  21. A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez, “Enhanced backscattering of light from a random grating,” Ann. Phys. (N.Y.) 203, 255-307 (1990).
    [CrossRef]
  22. C. I. Valencia and R. A. Depine, “Resonant scattering of light by an open cylindrical cavity ruled on a highly conducting flat surfaces,” Opt. Commun. 159, 254-265 (1999).
    [CrossRef]
  23. C. I. Valencia, E. R. Méndez, and B. S. Mendoza, “Second harmonic generation in the scattering of light by two dimensional particles,” J. Opt. Soc. Am. B 20, 2150-2161 (2003).
    [CrossRef]
  24. R. Goloskie, T. Thio, and L. R. Ram-Mohan, “Boundary elements and surface plasmons,” Comput. Phys. 10, 477-495(1996).
    [CrossRef]
  25. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1970), p. 364.
  26. D. Colak, A. I. Nosich, and A. Altintas, “Radar cross-section study of cylindrical cavity-backed apertures with outer or inner material coating: the case of H-polarization,” IEEE Trans. Antennas Propag. 43, 440-447 (1995).
    [CrossRef]
  27. R. W. Ziolkowski and J. B. Grant, “Scattering from cavity-backed apertures: the generalized dual series solution of the concentrically loaded E-pol slit cylinder problem,” IEEE Trans. Antennas Propag. 35, 504-528 (1987).
    [CrossRef]
  28. P. M. Goggans and T. H. Shumpert, “Backscatter RCS for TE and TM excitations of dielectric-filled cavity-backed apertures in two-dimensional bodies,” IEEE Trans. Antennas Propag. 39, 1224-1227 (1991).
    [CrossRef]
  29. D. C. Skigin and R. A. Depine, “Resonant enhancement of the field within a single ground-plane cavity: comparison of different rectangular shapes,” Phys. Rev. E 59, 3661-3668 (1999).
    [CrossRef]
  30. D. C. Skigin and R. A. Depine, “Resonant modes of a bottle-shaped cavity and their effects in the response of finite and infinite gratings,” Phys. Rev. E 61, 4479-4490 (2000).
    [CrossRef]

2009 (1)

M. Navarro-Cía, D. C. Skigin, M. Beruete, and M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94, 091107 (2009).
[CrossRef]

2008 (1)

2007 (2)

D. C. Skigin, H. Loui, Z. Popovic, and E. Kuester, “Bandwidth control of forbidden transmission gaps in compound structures with subwavelength slits,” Phys. Rev. E 76, 016604(2007).
[CrossRef]

Y. G. Ma, X. S. Rao, G. F. Zhang, and C. K. Ong, “Microwave transmission modes in compound metallic gratings,” Phys. Rev. B 76, 085413 (2007).
[CrossRef]

2006 (4)

J. Le Perchec, P. Quemerais, A. Barbara, and T. Lopez-Rios, “Controlling strong electromagnetic fields at subwavelength scales,” Phys. Rev. Lett. 97, 036405 (2006).
[CrossRef]

D. C. Skigin and R. A. Depine, “Resonances on metallic compound transmission gratings with subwavelength wires and slits,” Opt. Commun. 262, 270-275 (2006).
[CrossRef]

D. C. Skigin and R. A. Depine, “Narrow gaps for transmission through metallic structured gratings with subwavelength slits,” Phys. Rev. E 74, 046606 (2006).
[CrossRef]

A. P. HibbinsI. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96, 257402 (2006).
[CrossRef]

2005 (2)

D. C. Skigin and R. A. Depine, “Transmission resonances on metallic compound gratings with subwavelength slits,” Phys. Rev. Lett. 95, 217402 (2005).
[CrossRef]

J. J. Wang, F. Liu, X. Deng, X. Liu, L. Chen, P. Sciortino, and R. Varghese, “Monolithically integrated circular polarizers with two-layer nano-gratings fabricated by imprint lithography,” J. Vac. Sci. Technol. B 23, 3164-3167 (2005).
[CrossRef]

2003 (2)

D. C. Skigin, A. N. Fantino, and S. I. Grosz, “Phase resonances in compound metallic gratings,” J. Opt. A Pure Appl. Opt. 5, S129-S135 (2003).
[CrossRef]

C. I. Valencia, E. R. Méndez, and B. S. Mendoza, “Second harmonic generation in the scattering of light by two dimensional particles,” J. Opt. Soc. Am. B 20, 2150-2161 (2003).
[CrossRef]

2002 (3)

E. Goulielmakis, G. Nersisyan, N. Papadogiannis, D. Charalambidis, G. Tsakiris, and K. Witte, “A dispersionless Michelson interferometer for the characterization of attosecond pulses,” Appl. Phys. B 74, 197-206 (2002).

F. J. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructures metals,” Phys. Rev. B 66, 155412 (2002).

S. I. Grosz, D. C. Skigin, and A. N. Fantino, “Resonant effects in compound diffraction gratings: influence of the geometrical parameters of the surface,” Phys. Rev. E 65, 056619 (2002).
[CrossRef]

2001 (1)

A. N. Fantino, S. I. Grosz, and D. C. Skigin, “Resonant effect in periodic gratings comprising a finite number of grooves in each period,” Phys. Rev. E 64, 016605 (2001).
[CrossRef]

2000 (1)

D. C. Skigin and R. A. Depine, “Resonant modes of a bottle-shaped cavity and their effects in the response of finite and infinite gratings,” Phys. Rev. E 61, 4479-4490 (2000).
[CrossRef]

1999 (4)

D. C. Skigin and R. A. Depine, “Resonant enhancement of the field within a single ground-plane cavity: comparison of different rectangular shapes,” Phys. Rev. E 59, 3661-3668 (1999).
[CrossRef]

C. I. Valencia and R. A. Depine, “Resonant scattering of light by an open cylindrical cavity ruled on a highly conducting flat surfaces,” Opt. Commun. 159, 254-265 (1999).
[CrossRef]

D. C. Skigin, V. V. Veremey, and R. Mittra, “Superdirective radiation from finite gratings of rectangular grooves,” IEEE Trans. Antennas Propag. 47, 376-383 (1999).
[CrossRef]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

1998 (3)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779-6782(1998).

V. V. Veremey and R. Mittra, “Scattering from structures formed by resonant elements,” IEEE Trans. Antennas Propag. 46, 494-501 (1998).
[CrossRef]

1996 (1)

R. Goloskie, T. Thio, and L. R. Ram-Mohan, “Boundary elements and surface plasmons,” Comput. Phys. 10, 477-495(1996).
[CrossRef]

1995 (1)

D. Colak, A. I. Nosich, and A. Altintas, “Radar cross-section study of cylindrical cavity-backed apertures with outer or inner material coating: the case of H-polarization,” IEEE Trans. Antennas Propag. 43, 440-447 (1995).
[CrossRef]

1991 (1)

P. M. Goggans and T. H. Shumpert, “Backscatter RCS for TE and TM excitations of dielectric-filled cavity-backed apertures in two-dimensional bodies,” IEEE Trans. Antennas Propag. 39, 1224-1227 (1991).
[CrossRef]

1990 (1)

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez, “Enhanced backscattering of light from a random grating,” Ann. Phys. (N.Y.) 203, 255-307 (1990).
[CrossRef]

1987 (1)

R. W. Ziolkowski and J. B. Grant, “Scattering from cavity-backed apertures: the generalized dual series solution of the concentrically loaded E-pol slit cylinder problem,” IEEE Trans. Antennas Propag. 35, 504-528 (1987).
[CrossRef]

Abramowitz, M.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1970), p. 364.

Altintas, A.

D. Colak, A. I. Nosich, and A. Altintas, “Radar cross-section study of cylindrical cavity-backed apertures with outer or inner material coating: the case of H-polarization,” IEEE Trans. Antennas Propag. 43, 440-447 (1995).
[CrossRef]

Barbara, A.

A. Barbara, J. Le Perchec, S. Collin, C. Sauvan, J.-L. Pelouard, T. López-Ríos, and P. Quémerais, “Generation and control of hot spots on commensurate metallic gratings,” Opt. Express 16, 19127-19135 (2008).
[CrossRef]

J. Le Perchec, P. Quemerais, A. Barbara, and T. Lopez-Rios, “Controlling strong electromagnetic fields at subwavelength scales,” Phys. Rev. Lett. 97, 036405 (2006).
[CrossRef]

Beruete, M.

M. Navarro-Cía, D. C. Skigin, M. Beruete, and M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94, 091107 (2009).
[CrossRef]

Charalambidis, D.

E. Goulielmakis, G. Nersisyan, N. Papadogiannis, D. Charalambidis, G. Tsakiris, and K. Witte, “A dispersionless Michelson interferometer for the characterization of attosecond pulses,” Appl. Phys. B 74, 197-206 (2002).

Chen, L.

J. J. Wang, F. Liu, X. Deng, X. Liu, L. Chen, P. Sciortino, and R. Varghese, “Monolithically integrated circular polarizers with two-layer nano-gratings fabricated by imprint lithography,” J. Vac. Sci. Technol. B 23, 3164-3167 (2005).
[CrossRef]

Colak, D.

D. Colak, A. I. Nosich, and A. Altintas, “Radar cross-section study of cylindrical cavity-backed apertures with outer or inner material coating: the case of H-polarization,” IEEE Trans. Antennas Propag. 43, 440-447 (1995).
[CrossRef]

Collin, S.

Deng, X.

J. J. Wang, F. Liu, X. Deng, X. Liu, L. Chen, P. Sciortino, and R. Varghese, “Monolithically integrated circular polarizers with two-layer nano-gratings fabricated by imprint lithography,” J. Vac. Sci. Technol. B 23, 3164-3167 (2005).
[CrossRef]

Depine, R. A.

D. C. Skigin and R. A. Depine, “Narrow gaps for transmission through metallic structured gratings with subwavelength slits,” Phys. Rev. E 74, 046606 (2006).
[CrossRef]

D. C. Skigin and R. A. Depine, “Resonances on metallic compound transmission gratings with subwavelength wires and slits,” Opt. Commun. 262, 270-275 (2006).
[CrossRef]

D. C. Skigin and R. A. Depine, “Transmission resonances on metallic compound gratings with subwavelength slits,” Phys. Rev. Lett. 95, 217402 (2005).
[CrossRef]

D. C. Skigin and R. A. Depine, “Resonant modes of a bottle-shaped cavity and their effects in the response of finite and infinite gratings,” Phys. Rev. E 61, 4479-4490 (2000).
[CrossRef]

D. C. Skigin and R. A. Depine, “Resonant enhancement of the field within a single ground-plane cavity: comparison of different rectangular shapes,” Phys. Rev. E 59, 3661-3668 (1999).
[CrossRef]

C. I. Valencia and R. A. Depine, “Resonant scattering of light by an open cylindrical cavity ruled on a highly conducting flat surfaces,” Opt. Commun. 159, 254-265 (1999).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779-6782(1998).

Fantino, A. N.

D. C. Skigin, A. N. Fantino, and S. I. Grosz, “Phase resonances in compound metallic gratings,” J. Opt. A Pure Appl. Opt. 5, S129-S135 (2003).
[CrossRef]

S. I. Grosz, D. C. Skigin, and A. N. Fantino, “Resonant effects in compound diffraction gratings: influence of the geometrical parameters of the surface,” Phys. Rev. E 65, 056619 (2002).
[CrossRef]

A. N. Fantino, S. I. Grosz, and D. C. Skigin, “Resonant effect in periodic gratings comprising a finite number of grooves in each period,” Phys. Rev. E 64, 016605 (2001).
[CrossRef]

García-Vidal, F. J.

F. J. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructures metals,” Phys. Rev. B 66, 155412 (2002).

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779-6782(1998).

Goggans, P. M.

P. M. Goggans and T. H. Shumpert, “Backscatter RCS for TE and TM excitations of dielectric-filled cavity-backed apertures in two-dimensional bodies,” IEEE Trans. Antennas Propag. 39, 1224-1227 (1991).
[CrossRef]

Goloskie, R.

R. Goloskie, T. Thio, and L. R. Ram-Mohan, “Boundary elements and surface plasmons,” Comput. Phys. 10, 477-495(1996).
[CrossRef]

Goulielmakis, E.

E. Goulielmakis, G. Nersisyan, N. Papadogiannis, D. Charalambidis, G. Tsakiris, and K. Witte, “A dispersionless Michelson interferometer for the characterization of attosecond pulses,” Appl. Phys. B 74, 197-206 (2002).

Grant, J. B.

R. W. Ziolkowski and J. B. Grant, “Scattering from cavity-backed apertures: the generalized dual series solution of the concentrically loaded E-pol slit cylinder problem,” IEEE Trans. Antennas Propag. 35, 504-528 (1987).
[CrossRef]

Grosz, S. I.

D. C. Skigin, A. N. Fantino, and S. I. Grosz, “Phase resonances in compound metallic gratings,” J. Opt. A Pure Appl. Opt. 5, S129-S135 (2003).
[CrossRef]

S. I. Grosz, D. C. Skigin, and A. N. Fantino, “Resonant effects in compound diffraction gratings: influence of the geometrical parameters of the surface,” Phys. Rev. E 65, 056619 (2002).
[CrossRef]

A. N. Fantino, S. I. Grosz, and D. C. Skigin, “Resonant effect in periodic gratings comprising a finite number of grooves in each period,” Phys. Rev. E 64, 016605 (2001).
[CrossRef]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779-6782(1998).

Hibbins, A. P.

A. P. HibbinsI. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96, 257402 (2006).
[CrossRef]

Kuester, E.

D. C. Skigin, H. Loui, Z. Popovic, and E. Kuester, “Bandwidth control of forbidden transmission gaps in compound structures with subwavelength slits,” Phys. Rev. E 76, 016604(2007).
[CrossRef]

Le Perchec, J.

A. Barbara, J. Le Perchec, S. Collin, C. Sauvan, J.-L. Pelouard, T. López-Ríos, and P. Quémerais, “Generation and control of hot spots on commensurate metallic gratings,” Opt. Express 16, 19127-19135 (2008).
[CrossRef]

J. Le Perchec, P. Quemerais, A. Barbara, and T. Lopez-Rios, “Controlling strong electromagnetic fields at subwavelength scales,” Phys. Rev. Lett. 97, 036405 (2006).
[CrossRef]

Lezec, H. J.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779-6782(1998).

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).

Liu, F.

J. J. Wang, F. Liu, X. Deng, X. Liu, L. Chen, P. Sciortino, and R. Varghese, “Monolithically integrated circular polarizers with two-layer nano-gratings fabricated by imprint lithography,” J. Vac. Sci. Technol. B 23, 3164-3167 (2005).
[CrossRef]

Liu, X.

J. J. Wang, F. Liu, X. Deng, X. Liu, L. Chen, P. Sciortino, and R. Varghese, “Monolithically integrated circular polarizers with two-layer nano-gratings fabricated by imprint lithography,” J. Vac. Sci. Technol. B 23, 3164-3167 (2005).
[CrossRef]

Lockyear, M. J.

A. P. HibbinsI. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96, 257402 (2006).
[CrossRef]

Lopez-Rios, T.

J. Le Perchec, P. Quemerais, A. Barbara, and T. Lopez-Rios, “Controlling strong electromagnetic fields at subwavelength scales,” Phys. Rev. Lett. 97, 036405 (2006).
[CrossRef]

López-Ríos, T.

Loui, H.

D. C. Skigin, H. Loui, Z. Popovic, and E. Kuester, “Bandwidth control of forbidden transmission gaps in compound structures with subwavelength slits,” Phys. Rev. E 76, 016604(2007).
[CrossRef]

Ma, Y. G.

Y. G. Ma, X. S. Rao, G. F. Zhang, and C. K. Ong, “Microwave transmission modes in compound metallic gratings,” Phys. Rev. B 76, 085413 (2007).
[CrossRef]

Maradudin, A. A.

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez, “Enhanced backscattering of light from a random grating,” Ann. Phys. (N.Y.) 203, 255-307 (1990).
[CrossRef]

Martín-Moreno, L.

F. J. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructures metals,” Phys. Rev. B 66, 155412 (2002).

McGurn, A. R.

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez, “Enhanced backscattering of light from a random grating,” Ann. Phys. (N.Y.) 203, 255-307 (1990).
[CrossRef]

Méndez, E. R.

C. I. Valencia, E. R. Méndez, and B. S. Mendoza, “Second harmonic generation in the scattering of light by two dimensional particles,” J. Opt. Soc. Am. B 20, 2150-2161 (2003).
[CrossRef]

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez, “Enhanced backscattering of light from a random grating,” Ann. Phys. (N.Y.) 203, 255-307 (1990).
[CrossRef]

Mendoza, B. S.

Michel, T.

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez, “Enhanced backscattering of light from a random grating,” Ann. Phys. (N.Y.) 203, 255-307 (1990).
[CrossRef]

Mittra, R.

D. C. Skigin, V. V. Veremey, and R. Mittra, “Superdirective radiation from finite gratings of rectangular grooves,” IEEE Trans. Antennas Propag. 47, 376-383 (1999).
[CrossRef]

V. V. Veremey and R. Mittra, “Scattering from structures formed by resonant elements,” IEEE Trans. Antennas Propag. 46, 494-501 (1998).
[CrossRef]

Navarro-Cía, M.

M. Navarro-Cía, D. C. Skigin, M. Beruete, and M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94, 091107 (2009).
[CrossRef]

Nersisyan, G.

E. Goulielmakis, G. Nersisyan, N. Papadogiannis, D. Charalambidis, G. Tsakiris, and K. Witte, “A dispersionless Michelson interferometer for the characterization of attosecond pulses,” Appl. Phys. B 74, 197-206 (2002).

Nosich, A. I.

D. Colak, A. I. Nosich, and A. Altintas, “Radar cross-section study of cylindrical cavity-backed apertures with outer or inner material coating: the case of H-polarization,” IEEE Trans. Antennas Propag. 43, 440-447 (1995).
[CrossRef]

Ong, C. K.

Y. G. Ma, X. S. Rao, G. F. Zhang, and C. K. Ong, “Microwave transmission modes in compound metallic gratings,” Phys. Rev. B 76, 085413 (2007).
[CrossRef]

Papadogiannis, N.

E. Goulielmakis, G. Nersisyan, N. Papadogiannis, D. Charalambidis, G. Tsakiris, and K. Witte, “A dispersionless Michelson interferometer for the characterization of attosecond pulses,” Appl. Phys. B 74, 197-206 (2002).

Pelouard, J.-L.

Pendry, J. B.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

Popovic, Z.

D. C. Skigin, H. Loui, Z. Popovic, and E. Kuester, “Bandwidth control of forbidden transmission gaps in compound structures with subwavelength slits,” Phys. Rev. E 76, 016604(2007).
[CrossRef]

Porto, J. A.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

Quemerais, P.

J. Le Perchec, P. Quemerais, A. Barbara, and T. Lopez-Rios, “Controlling strong electromagnetic fields at subwavelength scales,” Phys. Rev. Lett. 97, 036405 (2006).
[CrossRef]

Quémerais, P.

Ram-Mohan, L. R.

R. Goloskie, T. Thio, and L. R. Ram-Mohan, “Boundary elements and surface plasmons,” Comput. Phys. 10, 477-495(1996).
[CrossRef]

Rao, X. S.

Y. G. Ma, X. S. Rao, G. F. Zhang, and C. K. Ong, “Microwave transmission modes in compound metallic gratings,” Phys. Rev. B 76, 085413 (2007).
[CrossRef]

Sambles, J. R.

A. P. HibbinsI. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96, 257402 (2006).
[CrossRef]

Sauvan, C.

Sciortino, P.

J. J. Wang, F. Liu, X. Deng, X. Liu, L. Chen, P. Sciortino, and R. Varghese, “Monolithically integrated circular polarizers with two-layer nano-gratings fabricated by imprint lithography,” J. Vac. Sci. Technol. B 23, 3164-3167 (2005).
[CrossRef]

Shumpert, T. H.

P. M. Goggans and T. H. Shumpert, “Backscatter RCS for TE and TM excitations of dielectric-filled cavity-backed apertures in two-dimensional bodies,” IEEE Trans. Antennas Propag. 39, 1224-1227 (1991).
[CrossRef]

Skigin, D. C.

M. Navarro-Cía, D. C. Skigin, M. Beruete, and M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94, 091107 (2009).
[CrossRef]

D. C. Skigin, H. Loui, Z. Popovic, and E. Kuester, “Bandwidth control of forbidden transmission gaps in compound structures with subwavelength slits,” Phys. Rev. E 76, 016604(2007).
[CrossRef]

D. C. Skigin and R. A. Depine, “Narrow gaps for transmission through metallic structured gratings with subwavelength slits,” Phys. Rev. E 74, 046606 (2006).
[CrossRef]

D. C. Skigin and R. A. Depine, “Resonances on metallic compound transmission gratings with subwavelength wires and slits,” Opt. Commun. 262, 270-275 (2006).
[CrossRef]

D. C. Skigin and R. A. Depine, “Transmission resonances on metallic compound gratings with subwavelength slits,” Phys. Rev. Lett. 95, 217402 (2005).
[CrossRef]

D. C. Skigin, A. N. Fantino, and S. I. Grosz, “Phase resonances in compound metallic gratings,” J. Opt. A Pure Appl. Opt. 5, S129-S135 (2003).
[CrossRef]

S. I. Grosz, D. C. Skigin, and A. N. Fantino, “Resonant effects in compound diffraction gratings: influence of the geometrical parameters of the surface,” Phys. Rev. E 65, 056619 (2002).
[CrossRef]

A. N. Fantino, S. I. Grosz, and D. C. Skigin, “Resonant effect in periodic gratings comprising a finite number of grooves in each period,” Phys. Rev. E 64, 016605 (2001).
[CrossRef]

D. C. Skigin and R. A. Depine, “Resonant modes of a bottle-shaped cavity and their effects in the response of finite and infinite gratings,” Phys. Rev. E 61, 4479-4490 (2000).
[CrossRef]

D. C. Skigin and R. A. Depine, “Resonant enhancement of the field within a single ground-plane cavity: comparison of different rectangular shapes,” Phys. Rev. E 59, 3661-3668 (1999).
[CrossRef]

D. C. Skigin, V. V. Veremey, and R. Mittra, “Superdirective radiation from finite gratings of rectangular grooves,” IEEE Trans. Antennas Propag. 47, 376-383 (1999).
[CrossRef]

Sorolla, M.

M. Navarro-Cía, D. C. Skigin, M. Beruete, and M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94, 091107 (2009).
[CrossRef]

Stegun, I. A.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1970), p. 364.

Thio, T.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779-6782(1998).

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).

R. Goloskie, T. Thio, and L. R. Ram-Mohan, “Boundary elements and surface plasmons,” Comput. Phys. 10, 477-495(1996).
[CrossRef]

Tsakiris, G.

E. Goulielmakis, G. Nersisyan, N. Papadogiannis, D. Charalambidis, G. Tsakiris, and K. Witte, “A dispersionless Michelson interferometer for the characterization of attosecond pulses,” Appl. Phys. B 74, 197-206 (2002).

Valencia, C. I.

C. I. Valencia, E. R. Méndez, and B. S. Mendoza, “Second harmonic generation in the scattering of light by two dimensional particles,” J. Opt. Soc. Am. B 20, 2150-2161 (2003).
[CrossRef]

C. I. Valencia and R. A. Depine, “Resonant scattering of light by an open cylindrical cavity ruled on a highly conducting flat surfaces,” Opt. Commun. 159, 254-265 (1999).
[CrossRef]

Varghese, R.

J. J. Wang, F. Liu, X. Deng, X. Liu, L. Chen, P. Sciortino, and R. Varghese, “Monolithically integrated circular polarizers with two-layer nano-gratings fabricated by imprint lithography,” J. Vac. Sci. Technol. B 23, 3164-3167 (2005).
[CrossRef]

Veremey, V. V.

D. C. Skigin, V. V. Veremey, and R. Mittra, “Superdirective radiation from finite gratings of rectangular grooves,” IEEE Trans. Antennas Propag. 47, 376-383 (1999).
[CrossRef]

V. V. Veremey and R. Mittra, “Scattering from structures formed by resonant elements,” IEEE Trans. Antennas Propag. 46, 494-501 (1998).
[CrossRef]

Wang, J. J.

J. J. Wang, F. Liu, X. Deng, X. Liu, L. Chen, P. Sciortino, and R. Varghese, “Monolithically integrated circular polarizers with two-layer nano-gratings fabricated by imprint lithography,” J. Vac. Sci. Technol. B 23, 3164-3167 (2005).
[CrossRef]

Witte, K.

E. Goulielmakis, G. Nersisyan, N. Papadogiannis, D. Charalambidis, G. Tsakiris, and K. Witte, “A dispersionless Michelson interferometer for the characterization of attosecond pulses,” Appl. Phys. B 74, 197-206 (2002).

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).

Zhang, G. F.

Y. G. Ma, X. S. Rao, G. F. Zhang, and C. K. Ong, “Microwave transmission modes in compound metallic gratings,” Phys. Rev. B 76, 085413 (2007).
[CrossRef]

Ziolkowski, R. W.

R. W. Ziolkowski and J. B. Grant, “Scattering from cavity-backed apertures: the generalized dual series solution of the concentrically loaded E-pol slit cylinder problem,” IEEE Trans. Antennas Propag. 35, 504-528 (1987).
[CrossRef]

Ann. Phys. (N.Y.) (1)

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez, “Enhanced backscattering of light from a random grating,” Ann. Phys. (N.Y.) 203, 255-307 (1990).
[CrossRef]

Appl. Phys. B (1)

E. Goulielmakis, G. Nersisyan, N. Papadogiannis, D. Charalambidis, G. Tsakiris, and K. Witte, “A dispersionless Michelson interferometer for the characterization of attosecond pulses,” Appl. Phys. B 74, 197-206 (2002).

Appl. Phys. Lett. (1)

M. Navarro-Cía, D. C. Skigin, M. Beruete, and M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94, 091107 (2009).
[CrossRef]

Comput. Phys. (1)

R. Goloskie, T. Thio, and L. R. Ram-Mohan, “Boundary elements and surface plasmons,” Comput. Phys. 10, 477-495(1996).
[CrossRef]

IEEE Trans. Antennas Propag. (5)

D. Colak, A. I. Nosich, and A. Altintas, “Radar cross-section study of cylindrical cavity-backed apertures with outer or inner material coating: the case of H-polarization,” IEEE Trans. Antennas Propag. 43, 440-447 (1995).
[CrossRef]

R. W. Ziolkowski and J. B. Grant, “Scattering from cavity-backed apertures: the generalized dual series solution of the concentrically loaded E-pol slit cylinder problem,” IEEE Trans. Antennas Propag. 35, 504-528 (1987).
[CrossRef]

P. M. Goggans and T. H. Shumpert, “Backscatter RCS for TE and TM excitations of dielectric-filled cavity-backed apertures in two-dimensional bodies,” IEEE Trans. Antennas Propag. 39, 1224-1227 (1991).
[CrossRef]

V. V. Veremey and R. Mittra, “Scattering from structures formed by resonant elements,” IEEE Trans. Antennas Propag. 46, 494-501 (1998).
[CrossRef]

D. C. Skigin, V. V. Veremey, and R. Mittra, “Superdirective radiation from finite gratings of rectangular grooves,” IEEE Trans. Antennas Propag. 47, 376-383 (1999).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

D. C. Skigin, A. N. Fantino, and S. I. Grosz, “Phase resonances in compound metallic gratings,” J. Opt. A Pure Appl. Opt. 5, S129-S135 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (1)

J. J. Wang, F. Liu, X. Deng, X. Liu, L. Chen, P. Sciortino, and R. Varghese, “Monolithically integrated circular polarizers with two-layer nano-gratings fabricated by imprint lithography,” J. Vac. Sci. Technol. B 23, 3164-3167 (2005).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).

Opt. Commun. (2)

D. C. Skigin and R. A. Depine, “Resonances on metallic compound transmission gratings with subwavelength wires and slits,” Opt. Commun. 262, 270-275 (2006).
[CrossRef]

C. I. Valencia and R. A. Depine, “Resonant scattering of light by an open cylindrical cavity ruled on a highly conducting flat surfaces,” Opt. Commun. 159, 254-265 (1999).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (3)

Y. G. Ma, X. S. Rao, G. F. Zhang, and C. K. Ong, “Microwave transmission modes in compound metallic gratings,” Phys. Rev. B 76, 085413 (2007).
[CrossRef]

F. J. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructures metals,” Phys. Rev. B 66, 155412 (2002).

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779-6782(1998).

Phys. Rev. E (6)

A. N. Fantino, S. I. Grosz, and D. C. Skigin, “Resonant effect in periodic gratings comprising a finite number of grooves in each period,” Phys. Rev. E 64, 016605 (2001).
[CrossRef]

S. I. Grosz, D. C. Skigin, and A. N. Fantino, “Resonant effects in compound diffraction gratings: influence of the geometrical parameters of the surface,” Phys. Rev. E 65, 056619 (2002).
[CrossRef]

D. C. Skigin, H. Loui, Z. Popovic, and E. Kuester, “Bandwidth control of forbidden transmission gaps in compound structures with subwavelength slits,” Phys. Rev. E 76, 016604(2007).
[CrossRef]

D. C. Skigin and R. A. Depine, “Narrow gaps for transmission through metallic structured gratings with subwavelength slits,” Phys. Rev. E 74, 046606 (2006).
[CrossRef]

D. C. Skigin and R. A. Depine, “Resonant enhancement of the field within a single ground-plane cavity: comparison of different rectangular shapes,” Phys. Rev. E 59, 3661-3668 (1999).
[CrossRef]

D. C. Skigin and R. A. Depine, “Resonant modes of a bottle-shaped cavity and their effects in the response of finite and infinite gratings,” Phys. Rev. E 61, 4479-4490 (2000).
[CrossRef]

Phys. Rev. Lett. (4)

A. P. HibbinsI. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96, 257402 (2006).
[CrossRef]

J. Le Perchec, P. Quemerais, A. Barbara, and T. Lopez-Rios, “Controlling strong electromagnetic fields at subwavelength scales,” Phys. Rev. Lett. 97, 036405 (2006).
[CrossRef]

D. C. Skigin and R. A. Depine, “Transmission resonances on metallic compound gratings with subwavelength slits,” Phys. Rev. Lett. 95, 217402 (2005).
[CrossRef]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

Other (1)

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1970), p. 364.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Configuration of the scattering problem by a finite structure with grooves of circular cross section.

Fig. 2
Fig. 2

Reflected intensity as a function of k R for a p-polarized Gaussian beam of width W = 20 R normally incident on a finite grating with an aperture a / R = 0.02826 ; the distance between adjacent grooves is d = 2.1 R . (a)  N = 1 , (b)  N = 2 , (c)  N = 3 , (d)  N = 5 , (e)  N = 6 , (f)  N = 7 .

Fig. 3
Fig. 3

Magnetic field at the center of each groove as a function of k R for the three-groove case considered in Fig. 2c. (a)  | H | 2 , (b) phase difference between the external and the central grooves.

Fig. 4
Fig. 4

Magnetic field at the center of each groove as a function of k R for the five-groove case considered in Fig. 2d. (a)  | H | 2 in the leftmost groove, (b)  | H | 2 in the second groove, (c)  | H | 2 in the central groove, (d) phase difference between the leftmost and the central groove, (e) phase difference between the second and the central groove.

Fig. 5
Fig. 5

(a) Reflected intensity as a function of kR for a p-polarized Gaussian beam of width W = 20 R , incident with an angle θ 0 = 40 ° , on a two-groove grating with an aperture a / R = 0.02826 and distance between grooves of d = 2.1 R ; (b) phase difference between the magnetic field at the center of each groove in the same case; (c)  | H | 2 at the center of the left groove; (d)  | H | 2 at the center of the right groove.

Fig. 6
Fig. 6

Dependence of the resonant k R value on the aperture size for the three-groove case considered in the previous figures. (a) Reflected intensity as a function of k R for several values of the aperture; (b) resonant k R as a function of the normalized aperture size.

Fig. 7
Fig. 7

Reflected intensity as a function of kR for a p-polarized Gaussian beam of width W = 20 R , normally incident on a structure comprising six grooves, forming two subsets of three grooves of aperture a / R = 0.02826 and d = 2.1 R each, separated a distance D = d + Δ . The different curves correspond to different ratios Δ / R .

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

H ( r ) = [ ψ inc ( r ) + ψ s c ( r ) ] z ^ ,
ψ inc ( r ) = 1 2 π ω / c ω / c A ( α | α 0 ) exp [ i ( α x β y ) ] d α ,
A ( α | α 0 ) = ψ 0 2 π σ exp [ ( α α 0 ) 2 / ( 2 σ 2 ) ] ,
r s = [ ξ ( t ) , η ( t ) ] ,
ψ ( r ) = ψ inc ( r ) + 1 4 π Γ G [ r | r ] N | r = r s ( t ) × ψ ( r s ) d l ,
ψ ( t ) = ψ ( t ) inc + 1 4 π lim τ 0 Γ G [ r s + | r ] N | r = r s ( t ) × ψ ( t ) d t ,
ψ s c ( r ) = i 4 Γ ( 2 π / λ ) N · u ^ ( t ) H 1 ( 1 ) [ ( 2 π / λ ) | u ( t ) | ] × ψ ( t ) d t ,
ψ s c ( r , θ ) = exp ( i π / 4 ) exp [ i ( 2 π / λ ) r ] [ 16 π 2 r / λ ] 1 / 2 R ( θ ) ,
R ( θ ) = i Γ ( 2 π / λ ) [ η ( t ) cos θ ξ ( t ) sin θ ] ψ ( t ) exp { i ( 2 π / λ ) [ ξ ( t ) cos θ + η ( t ) sin θ ] } d t .
( S s c ) r = ( c / ( 8 π ) [ E s c × H s c * ] ) r = c λ ( 16 π 2 ) { i ψ s c ( ψ s c r ) * } ,
Intensity ( S s c ) r .
ψ ( t m ) = ψ inc ( t m ) + n = 1 n = N H m n ψ ( t n ) .
H m n = { i π Δ t n 2 λ { η n u m n + ξ n w m n } H 1 ( 1 ) ( 2 π λ { u m n 2 + w m n 2 } 1 / 2 ) { u m n 2 + w m n 2 } 1 / 2 , m n , 1 2 + Δ t m 4 π ϕ 2 ( t m ) [ ξ m η m ξ m η m ] , m = n ,

Metrics