Abstract

The contribution of integrating sphere speckle pattern on the instrument line shape of a Fourier- transform hyperspectral imager is investigated. A new measurement technique that minimizes the speckle effect is presented. This technique consists of agitating the sphere while integrating with the instrument camera. Experimental results are presented that show the speckle effect on the instrument line shape and how it can be removed. This work is motivated by the constant goal of better identification and correction of the instrument line shape.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Connes, “Recherches sur la spectroscopie par la transformation de Fourier,” Rev. Opt. Théor. Instrum. 40, 45-48, 116-140, 171-190, 231-265 (1961).
  2. J. W. Brault, “Fourier transform spectrometry,” in High Resolution in Astronomy: Proceedings of the 15th Advanced Course of the Swiss Society of Astronomy and Astrophysics, A. O. Benz, M. C. E. Huber, and M. Mayor, eds. (Swiss Society of Astronomy and Astrophysics, 1985), pp. 1-61.
  3. J. Genest and P. Tremblay, “Instrument line shape of Fourier-transform spectrometers: analytic solutions for nonuniformly illuminated off-axis detectors,” Appl. Opt. 38, 5438-5446(1999).
    [CrossRef]
  4. K. Shiomi, S. Kawakami, T. Kina, D. Sakaizawa, and M. Mukai, “GOSAT On-orbit and Vicarious Calibration Plan,” EOS Trans. AGU 89(53), Fall meeting supplement (2008), abstract A41D-0129.
  5. A. Kuze, M. Suzuki, K. Nakamura, J. Tanii, and Y. Sasano, “Design and performance of the ILAS-II echelle grating spectrometer for CIONO2 measurement,” Proc. SPIE 3437, 240-248 (1998).
    [CrossRef]
  6. S. A. Roy, S. Potvin, and J. Genest, “Fast line shape correction procedure for imaging Fourier-transform spectrometers,” Appl. Opt. 46, 4674-4679 (2007).
    [CrossRef] [PubMed]
  7. S. A. Roy, “Data processing pipelines tailored for imaging Fourier-transform spectrometers,” Ph.D. dissertation (Laval University, 2008).
  8. R. J. Bell and R. N. Bracewell, Introductory Fourier Transform Spectroscopy (Academic, 1972).
  9. A. S. Zachor and S. M. Aaronson, “Delay compensation: its effect in reducing sampling errors in Fourier spectroscopy,” Appl. Opt. 18, 68-75 (1979).
    [CrossRef] [PubMed]
  10. S. A. Roy, S. Potvin, and J. Genest, “Software field widening of a Fourier-transform spectrometer using a large focal plane array,” Appl. Opt. 47, 6470-6476 (2008).
    [CrossRef] [PubMed]

2008 (1)

2007 (1)

1999 (1)

1998 (1)

A. Kuze, M. Suzuki, K. Nakamura, J. Tanii, and Y. Sasano, “Design and performance of the ILAS-II echelle grating spectrometer for CIONO2 measurement,” Proc. SPIE 3437, 240-248 (1998).
[CrossRef]

1979 (1)

1961 (1)

J. Connes, “Recherches sur la spectroscopie par la transformation de Fourier,” Rev. Opt. Théor. Instrum. 40, 45-48, 116-140, 171-190, 231-265 (1961).

Aaronson, S. M.

Bell, R. J.

R. J. Bell and R. N. Bracewell, Introductory Fourier Transform Spectroscopy (Academic, 1972).

Bracewell, R. N.

R. J. Bell and R. N. Bracewell, Introductory Fourier Transform Spectroscopy (Academic, 1972).

Brault, J. W.

J. W. Brault, “Fourier transform spectrometry,” in High Resolution in Astronomy: Proceedings of the 15th Advanced Course of the Swiss Society of Astronomy and Astrophysics, A. O. Benz, M. C. E. Huber, and M. Mayor, eds. (Swiss Society of Astronomy and Astrophysics, 1985), pp. 1-61.

Connes, J.

J. Connes, “Recherches sur la spectroscopie par la transformation de Fourier,” Rev. Opt. Théor. Instrum. 40, 45-48, 116-140, 171-190, 231-265 (1961).

Genest, J.

Kawakami, S.

K. Shiomi, S. Kawakami, T. Kina, D. Sakaizawa, and M. Mukai, “GOSAT On-orbit and Vicarious Calibration Plan,” EOS Trans. AGU 89(53), Fall meeting supplement (2008), abstract A41D-0129.

Kina, T.

K. Shiomi, S. Kawakami, T. Kina, D. Sakaizawa, and M. Mukai, “GOSAT On-orbit and Vicarious Calibration Plan,” EOS Trans. AGU 89(53), Fall meeting supplement (2008), abstract A41D-0129.

Kuze, A.

A. Kuze, M. Suzuki, K. Nakamura, J. Tanii, and Y. Sasano, “Design and performance of the ILAS-II echelle grating spectrometer for CIONO2 measurement,” Proc. SPIE 3437, 240-248 (1998).
[CrossRef]

Mukai, M.

K. Shiomi, S. Kawakami, T. Kina, D. Sakaizawa, and M. Mukai, “GOSAT On-orbit and Vicarious Calibration Plan,” EOS Trans. AGU 89(53), Fall meeting supplement (2008), abstract A41D-0129.

Nakamura, K.

A. Kuze, M. Suzuki, K. Nakamura, J. Tanii, and Y. Sasano, “Design and performance of the ILAS-II echelle grating spectrometer for CIONO2 measurement,” Proc. SPIE 3437, 240-248 (1998).
[CrossRef]

Potvin, S.

Roy, S. A.

Sakaizawa, D.

K. Shiomi, S. Kawakami, T. Kina, D. Sakaizawa, and M. Mukai, “GOSAT On-orbit and Vicarious Calibration Plan,” EOS Trans. AGU 89(53), Fall meeting supplement (2008), abstract A41D-0129.

Sasano, Y.

A. Kuze, M. Suzuki, K. Nakamura, J. Tanii, and Y. Sasano, “Design and performance of the ILAS-II echelle grating spectrometer for CIONO2 measurement,” Proc. SPIE 3437, 240-248 (1998).
[CrossRef]

Shiomi, K.

K. Shiomi, S. Kawakami, T. Kina, D. Sakaizawa, and M. Mukai, “GOSAT On-orbit and Vicarious Calibration Plan,” EOS Trans. AGU 89(53), Fall meeting supplement (2008), abstract A41D-0129.

Suzuki, M.

A. Kuze, M. Suzuki, K. Nakamura, J. Tanii, and Y. Sasano, “Design and performance of the ILAS-II echelle grating spectrometer for CIONO2 measurement,” Proc. SPIE 3437, 240-248 (1998).
[CrossRef]

Tanii, J.

A. Kuze, M. Suzuki, K. Nakamura, J. Tanii, and Y. Sasano, “Design and performance of the ILAS-II echelle grating spectrometer for CIONO2 measurement,” Proc. SPIE 3437, 240-248 (1998).
[CrossRef]

Tremblay, P.

Zachor, A. S.

Appl. Opt. (4)

EOS Trans. AGU (1)

K. Shiomi, S. Kawakami, T. Kina, D. Sakaizawa, and M. Mukai, “GOSAT On-orbit and Vicarious Calibration Plan,” EOS Trans. AGU 89(53), Fall meeting supplement (2008), abstract A41D-0129.

Proc. SPIE (1)

A. Kuze, M. Suzuki, K. Nakamura, J. Tanii, and Y. Sasano, “Design and performance of the ILAS-II echelle grating spectrometer for CIONO2 measurement,” Proc. SPIE 3437, 240-248 (1998).
[CrossRef]

Rev. Opt. Théor. Instrum. (1)

J. Connes, “Recherches sur la spectroscopie par la transformation de Fourier,” Rev. Opt. Théor. Instrum. 40, 45-48, 116-140, 171-190, 231-265 (1961).

Other (3)

J. W. Brault, “Fourier transform spectrometry,” in High Resolution in Astronomy: Proceedings of the 15th Advanced Course of the Swiss Society of Astronomy and Astrophysics, A. O. Benz, M. C. E. Huber, and M. Mayor, eds. (Swiss Society of Astronomy and Astrophysics, 1985), pp. 1-61.

S. A. Roy, “Data processing pipelines tailored for imaging Fourier-transform spectrometers,” Ph.D. dissertation (Laval University, 2008).

R. J. Bell and R. N. Bracewell, Introductory Fourier Transform Spectroscopy (Academic, 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup to characterize the ILS of a Fourier-transform hyperspectral imager.

Fig. 2
Fig. 2

Image at MPD from a single sweep acquisition data cube showing the granular speckle effect.

Fig. 3
Fig. 3

One pixel interferogram and the ILS of eight neighboring pixels from a single sweep acquisition data cube showing the speckle effect.

Fig. 4
Fig. 4

Image at MPD for a four sweep coadd data cube showing the granular speckle effect.

Fig. 5
Fig. 5

One pixel interferogram and the ILS of eight neighboring pixels from a four sweep coadd data cube showing the speckle effect.

Fig. 6
Fig. 6

Image at MPD from a single sweep acquisition data cube with an active piezo under the integrating sphere.

Fig. 7
Fig. 7

One pixel interferogram and the ILS of eight neighboring pixels from a single sweep acquisition data cube with an active piezo under the integrating sphere.

Fig. 8
Fig. 8

Image at MPD for a four sweep coadd data cube with an active piezo under the integrating sphere.

Fig. 9
Fig. 9

One pixel interferogram and the ILS of eight neighbor pixels from a four sweep coadd data cube with an active piezo under the integrating sphere.

Tables (1)

Tables Icon

Table 1 Instrument Parameters and Measurements Characteristics

Metrics