Abstract

The peculiarities of resonant optical field excitation inside a water microdroplet under illumination by a spatially bounded Gaussian beam with a temporal regime of a single chirped ultrashort laser pulse and a chirped pulse train are considered. It is established that the coupling efficiency of incident radiation to a selected high-Q whispering-gallery mode significantly depends on the interpulse interval in the train and chirping parameter of pumped laser radiation. The influence of the geometry of particle illumination by a laser beam and of the number of pulses in the train on the whispering-gallery mode buildup and its peak intensity is investigated.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486-488 (1986).
    [CrossRef]
  2. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997).
    [CrossRef]
  3. R. Symes, R. M. Sayer, and J. P. Reid, “Cavity enhanced droplet spectroscopy: principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6, 474-487 (2004).
    [CrossRef]
  4. J. Fu, S. He, and S. Xiao, “Analysis of channel-dropping tunneling processes in photonic crystals with multiple vertical multi-mode cavities,” J. Phys. A 33, 7761-7771 (2000).
  5. D. V. Apeksimov, Yu. E. Geints, and A. A. Zemlyanov, “Frequency-pulsed regime of a spherical microcavity excitation by ultrashort chirped laser radiation,” Atmos. Oceanic Opt. 20, 997-1000 (2007).
  6. N. Dubreuil, J. C. Knight, D. K. Leventhal, V. Sandoghdar, J. Hare, and V. Lefevre, “Eroded monomode optical fiber for whispering-gallery mode excitation in fused-silica microspheres,” Opt. Lett. 20, 813-815 (1995).
    [CrossRef]
  7. K. Kieu and M. Mansuripur, “Active Q switching of a fiber laser with a microsphere resonator,” Opt. Lett. 31, 3568-3570 (2006).
    [CrossRef]
  8. M. Hossein-Zadeh and K. J. Vahala, “Fiber-taper coupling to Whispering-Gallery modes of fluidic resonators embedded in a liquid medium,” Opt. Express 14, 10800-10810(2006).
    [CrossRef]
  9. Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4, 145-158 (2008).
  10. P. W. Barber and R. K. Chang, Optical Effects Associated with Small Particles (World Scientific , 1988).
  11. R. K. Chang and A. J. Campillo, Optical Processes in Microcavities, Advanced Series in Applied Physics (World Scientific, 1996).
  12. H. Azzouz, L. Alkhafadiji, S. Balslev, J. Johansson, N. A. Mortensen, A. Nilsson, and A. Kristensen, “Levitated droplet dye laser,” Opt. Express 14, 4374-4379 (2006).
    [CrossRef]
  13. A. Kiraz, A. Kurt, and M. A. Dündar, “Simple largely tunable optical microcavity,” Appl. Phys. Lett. 89, 081118 (2006).
    [CrossRef]
  14. M. Saito, H. Shimatani, and H. Naruhashi, “Tunable whispering gallery mode emission from a microdroplet in elastomer,” Opt. Express 16, 11915-11919 (2008).
    [CrossRef]
  15. Y.-S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nature Phys. 5, 489-403 (2009).
    [CrossRef]
  16. D. Q. Chowdhury, S. C. Hill, and P. W. Barber, “Time dependence of internal intensity of a dielectric sphere on and near resonance,” J. Opt. Soc. Am. A 9, 1364-1373 (1992).
    [CrossRef]
  17. A. A. Zemlyanov and Yu. E. Geints, “Resonance excitation of light field in weakly absorbing spherical particles by femtosecond laser pulse: peculiarities of nonlinear optical interactions,” Atmos. Oceanic Opt. 14, 316-325 (2001).
  18. E. E. Khaled, S. C. Hill, and P. W. Barber, “Internal electric energy in a spherical particle illuminated with a plane wave or off-axis Gaussian beam,” Appl. Opt. 33, 524-532(1994).
    [CrossRef]
  19. G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427-1443(1988).
    [CrossRef]
  20. K. S. Shifrin and I. G. Zolotov, “Nonstationary scattering of electromagnetic pulses by spherical particles,” Appl. Opt. 34, 552-558 (1995).
    [CrossRef]
  21. C. F. Boren and P. R. Hafmen, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  22. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (American Institute of Physics, 1992).
  23. Y. R. Shen, Principles of Nonlinear Optics (Wiley, 1984).
  24. A. A. Zemlyanov and Yu. E. Geints, “Efficiency of excitation of the spatial resonant configurations of the internal optical field of spherical microparticles by focused laser beams,” Atmos. Oceanic Opt. 13,412-422 (2000).
  25. V. S. Ilchenko and M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004-1009 (1992).
  26. T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742-4750 (2004).
    [CrossRef]

2009 (1)

Y.-S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nature Phys. 5, 489-403 (2009).
[CrossRef]

2008 (2)

2007 (1)

D. V. Apeksimov, Yu. E. Geints, and A. A. Zemlyanov, “Frequency-pulsed regime of a spherical microcavity excitation by ultrashort chirped laser radiation,” Atmos. Oceanic Opt. 20, 997-1000 (2007).

2006 (4)

2004 (2)

R. Symes, R. M. Sayer, and J. P. Reid, “Cavity enhanced droplet spectroscopy: principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6, 474-487 (2004).
[CrossRef]

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742-4750 (2004).
[CrossRef]

2001 (1)

A. A. Zemlyanov and Yu. E. Geints, “Resonance excitation of light field in weakly absorbing spherical particles by femtosecond laser pulse: peculiarities of nonlinear optical interactions,” Atmos. Oceanic Opt. 14, 316-325 (2001).

2000 (2)

J. Fu, S. He, and S. Xiao, “Analysis of channel-dropping tunneling processes in photonic crystals with multiple vertical multi-mode cavities,” J. Phys. A 33, 7761-7771 (2000).

A. A. Zemlyanov and Yu. E. Geints, “Efficiency of excitation of the spatial resonant configurations of the internal optical field of spherical microparticles by focused laser beams,” Atmos. Oceanic Opt. 13,412-422 (2000).

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

1995 (2)

1994 (1)

1992 (2)

D. Q. Chowdhury, S. C. Hill, and P. W. Barber, “Time dependence of internal intensity of a dielectric sphere on and near resonance,” J. Opt. Soc. Am. A 9, 1364-1373 (1992).
[CrossRef]

V. S. Ilchenko and M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004-1009 (1992).

1988 (1)

1986 (1)

S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486-488 (1986).
[CrossRef]

Akhmanov, S. A.

S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (American Institute of Physics, 1992).

Alkhafadiji, L.

Apeksimov, D. V.

D. V. Apeksimov, Yu. E. Geints, and A. A. Zemlyanov, “Frequency-pulsed regime of a spherical microcavity excitation by ultrashort chirped laser radiation,” Atmos. Oceanic Opt. 20, 997-1000 (2007).

Azzouz, H.

Balslev, S.

Barber, P. W.

Boren, C. F.

C. F. Boren and P. R. Hafmen, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Carmon, T.

Chang, R. K.

S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486-488 (1986).
[CrossRef]

Chirkin, A. S.

S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (American Institute of Physics, 1992).

Chowdhury, D. Q.

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Dubreuil, N.

Dündar, M. A.

A. Kiraz, A. Kurt, and M. A. Dündar, “Simple largely tunable optical microcavity,” Appl. Phys. Lett. 89, 081118 (2006).
[CrossRef]

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Fu, J.

J. Fu, S. He, and S. Xiao, “Analysis of channel-dropping tunneling processes in photonic crystals with multiple vertical multi-mode cavities,” J. Phys. A 33, 7761-7771 (2000).

Geints, Yu. E.

D. V. Apeksimov, Yu. E. Geints, and A. A. Zemlyanov, “Frequency-pulsed regime of a spherical microcavity excitation by ultrashort chirped laser radiation,” Atmos. Oceanic Opt. 20, 997-1000 (2007).

A. A. Zemlyanov and Yu. E. Geints, “Resonance excitation of light field in weakly absorbing spherical particles by femtosecond laser pulse: peculiarities of nonlinear optical interactions,” Atmos. Oceanic Opt. 14, 316-325 (2001).

A. A. Zemlyanov and Yu. E. Geints, “Efficiency of excitation of the spatial resonant configurations of the internal optical field of spherical microparticles by focused laser beams,” Atmos. Oceanic Opt. 13,412-422 (2000).

Gorodetskii, M. L.

V. S. Ilchenko and M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004-1009 (1992).

Gouesbet, G.

Gréhan, G.

Hafmen, P. R.

C. F. Boren and P. R. Hafmen, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Hare, J.

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

He, S.

J. Fu, S. He, and S. Xiao, “Analysis of channel-dropping tunneling processes in photonic crystals with multiple vertical multi-mode cavities,” J. Phys. A 33, 7761-7771 (2000).

Hill, S. C.

Hossein-Zadeh, M.

Ilchenko, V. S.

V. S. Ilchenko and M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004-1009 (1992).

Johansson, J.

Khaled, E. E.

Kieu, K.

Kiraz, A.

A. Kiraz, A. Kurt, and M. A. Dündar, “Simple largely tunable optical microcavity,” Appl. Phys. Lett. 89, 081118 (2006).
[CrossRef]

Knight, J. C.

Kristensen, A.

Kurt, A.

A. Kiraz, A. Kurt, and M. A. Dündar, “Simple largely tunable optical microcavity,” Appl. Phys. Lett. 89, 081118 (2006).
[CrossRef]

Laine, J.-P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Lefevre, V.

Leventhal, D. K.

Li, Z.

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4, 145-158 (2008).

Little, B. E.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Maheu, B.

Mansuripur, M.

Mortensen, N. A.

Naruhashi, H.

Nilsson, A.

Park, Y.-S.

Y.-S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nature Phys. 5, 489-403 (2009).
[CrossRef]

Psaltis, D.

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4, 145-158 (2008).

Qian, S. X.

S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486-488 (1986).
[CrossRef]

Reid, J. P.

R. Symes, R. M. Sayer, and J. P. Reid, “Cavity enhanced droplet spectroscopy: principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6, 474-487 (2004).
[CrossRef]

Saito, M.

Sandoghdar, V.

Sayer, R. M.

R. Symes, R. M. Sayer, and J. P. Reid, “Cavity enhanced droplet spectroscopy: principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6, 474-487 (2004).
[CrossRef]

Shen, Y. R.

Y. R. Shen, Principles of Nonlinear Optics (Wiley, 1984).

Shifrin, K. S.

Shimatani, H.

Snow, J. B.

S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486-488 (1986).
[CrossRef]

Symes, R.

R. Symes, R. M. Sayer, and J. P. Reid, “Cavity enhanced droplet spectroscopy: principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6, 474-487 (2004).
[CrossRef]

Tzeng, H. M.

S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486-488 (1986).
[CrossRef]

Vahala, K. J.

Vysloukh, V. A.

S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (American Institute of Physics, 1992).

Wang, H.

Y.-S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nature Phys. 5, 489-403 (2009).
[CrossRef]

Xiao, S.

J. Fu, S. He, and S. Xiao, “Analysis of channel-dropping tunneling processes in photonic crystals with multiple vertical multi-mode cavities,” J. Phys. A 33, 7761-7771 (2000).

Yang, L.

Zemlyanov, A. A.

D. V. Apeksimov, Yu. E. Geints, and A. A. Zemlyanov, “Frequency-pulsed regime of a spherical microcavity excitation by ultrashort chirped laser radiation,” Atmos. Oceanic Opt. 20, 997-1000 (2007).

A. A. Zemlyanov and Yu. E. Geints, “Resonance excitation of light field in weakly absorbing spherical particles by femtosecond laser pulse: peculiarities of nonlinear optical interactions,” Atmos. Oceanic Opt. 14, 316-325 (2001).

A. A. Zemlyanov and Yu. E. Geints, “Efficiency of excitation of the spatial resonant configurations of the internal optical field of spherical microparticles by focused laser beams,” Atmos. Oceanic Opt. 13,412-422 (2000).

Zolotov, I. G.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

A. Kiraz, A. Kurt, and M. A. Dündar, “Simple largely tunable optical microcavity,” Appl. Phys. Lett. 89, 081118 (2006).
[CrossRef]

Atmos. Oceanic Opt. (3)

A. A. Zemlyanov and Yu. E. Geints, “Efficiency of excitation of the spatial resonant configurations of the internal optical field of spherical microparticles by focused laser beams,” Atmos. Oceanic Opt. 13,412-422 (2000).

A. A. Zemlyanov and Yu. E. Geints, “Resonance excitation of light field in weakly absorbing spherical particles by femtosecond laser pulse: peculiarities of nonlinear optical interactions,” Atmos. Oceanic Opt. 14, 316-325 (2001).

D. V. Apeksimov, Yu. E. Geints, and A. A. Zemlyanov, “Frequency-pulsed regime of a spherical microcavity excitation by ultrashort chirped laser radiation,” Atmos. Oceanic Opt. 20, 997-1000 (2007).

J. Lightwave Technol. (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Phys. A (1)

J. Fu, S. He, and S. Xiao, “Analysis of channel-dropping tunneling processes in photonic crystals with multiple vertical multi-mode cavities,” J. Phys. A 33, 7761-7771 (2000).

Laser Phys. (1)

V. S. Ilchenko and M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004-1009 (1992).

Microfluid. Nanofluid. (1)

Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid. 4, 145-158 (2008).

Nature Phys. (1)

Y.-S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nature Phys. 5, 489-403 (2009).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Chem. Chem. Phys. (1)

R. Symes, R. M. Sayer, and J. P. Reid, “Cavity enhanced droplet spectroscopy: principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6, 474-487 (2004).
[CrossRef]

Science (1)

S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486-488 (1986).
[CrossRef]

Other (5)

P. W. Barber and R. K. Chang, Optical Effects Associated with Small Particles (World Scientific , 1988).

R. K. Chang and A. J. Campillo, Optical Processes in Microcavities, Advanced Series in Applied Physics (World Scientific, 1996).

C. F. Boren and P. R. Hafmen, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (American Institute of Physics, 1992).

Y. R. Shen, Principles of Nonlinear Optics (Wiley, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Normalized intensity contours | G ω | 2 / ( 2 π t p ) 2 of incident laser radiation ( t p = 1 ps ) versus relative frequency detuning δ ω ¯ = ( ω ω 0 ) / ω 0 from laser carrier frequency ω 0 for different operational regimes: unchirped Gaussian monopulse (dashed curve) train of ten unchirped pulses with interpulse intervals of (a) s p = 5 and (b) s p = 10 ; (c) train of ten chirped pulses with s p = 5 and b = 6 .

Fig. 2
Fig. 2

Squared modulus of spectral response function | S ( r m ) | 2 of a 10 μm water droplet versus relative frequency detuning δ ω ¯ = ( ω ω 0 ) / ω 0 for different laser beam impact parameters: (a) ξ 0 = 0 , (b) 0.5, and (c) 1.

Fig. 3
Fig. 3

Temporal dependence of relative internal optical field intensity B ( r m ) of (a) water droplet and its spectral response | S ( r m ) | 2 versus (b) relative frequency detuning δ ω ¯ after exposure to the femtosecond pulse train with parameters s p = 5.25 and b = 0 . The dotted curve represents (in arbitrary units) the spectral intensity profile of incident radiation.

Fig. 4
Fig. 4

Maximal achievable value of the field inhomogeneity factor B m inside the water droplet illuminated by the laser pulse train with s p = 5.25 versus number of pulses N p for (a) b = 0 and (b) b = 3 .

Fig. 5
Fig. 5

Maximum achievable value of field inhomogeneity factor B m inside a water droplet under irradiation by a train of laser pulses with N p = 15 and s p = 5.25 versus linear chirping depth b.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E i ( r ; t ) = E i ( r ) f ( t ) e i ω 0 t ,
E ω i ( r , ω ) = I [ E i ( r , t ) ] = E i ( r ) G ( ω ω 0 ) ,
E ω ( r ; ω ) = E 0 G ( ω ω 0 ) E δ ( r ; ω ) .
E δ ( r ; ω ) = n = 1 m = n n R n ( C nm ( n a x a ) M nm ( 1 ) ( n a k r , θ , φ ) i D nm ( n a x a ) N nm ( 1 ) ( n a k r , θ , φ ) ) ,
E ( r ; t ) = E 0 I 1 [ G ( ω ω 0 ) E δ ( r ; ω ) ] .
f ( t ) = j = 1 N p f j ( t ) = j = 1 N p e ( t t j ) 2 2 t p 2 ( 1 i b ) e i ω 0 t , j = 1 N p .
G ω ( ω ) = f ( t ) e i ω t d t = G ω 0 ( ω ω 0 ) · j = 1 N p e i ( ω ω 0 ) t j ,
G ω 0 ( ω - ω 0 ) = f 0 ( t ) e i ω t d t = ( 2 π ) 3 / 2 1 + i b Δ ω p e 4 π 2 ( ω ω 0 ) 2 2 ( Δ ω p ) 2
| G ω ( ω ) | 2 = | G ω 0 ( ω ω 0 ) | 2 · sin 2 ( N p K / 2 ) sin 2 ( K / 2 ) ,
δ ω ¯ j = | ( ω j ω 0 ) | ω 0 = 2 π j s p t p ω 0 , ( j = 0 , 1 , 2 ) .
B ω ( ω j ) = | G ( ω j ω 0 ) | 2 | G ( 0 ) | 2 = 1 1 + b 2 e t p 2 ( ω j ω 0 ) 2 ( 1 + b 2 ) .
b j = | 2 ( ω j ω 0 ) 2 t p 2 1 | .

Metrics