Abstract

In recent years, several distributed sensor systems based on stimulated Brillouin scattering in optical fibers have been proposed [ J. Intell. Mater. Syst. Struct. 10, 340 (1999) ; Proc. SPIE 5855, 555 (2005) ]. We propose a simpler scheme based on fiber-end reflection and Brillouin gain spectrum analysis. In this setup, only one optical source is necessary to provide both the pump and the probe wave; the latter is provided by the modulated pulse base. First, the physical mechanisms for two different Brillouin scattering processes in our sensor system are analyzed and an approximate theory model is proposed. In addition, it is demonstrated that the simple system configuration allows simultaneous acquisition of the time-domain and the frequency-domain information. It is experimentally demonstrated that this configuration is effective for strain measurements and could as well be applied to temperature monitoring.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kurashima , T. Horiguchi , and M. Tateda , “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett.  15, 1038–1040 (1990).
    [CrossRef] [PubMed]
  2. A. W. Brown , J. P. Smith , and X. Bao , “Brillouin scattering based distributed sensors for structural applications,” J. Intell. Mater. Syst. Struct.  10, 340–349 (1999).
    [CrossRef]
  3. S. Texier , S. Pumukcu , and J. Toulouse , “Advances in subsurface water-content measurement with a distributed Brillouin scattering fibre-optic sensor,” Proc. SPIE  5855, 555–558 (2005).
    [CrossRef]
  4. S. Anastasio , S. Pamukcu , and M. Pervizpour , “Chemical Selective BOTDR Sensing for Corrosion Detection on Structural Systems,” in Proceedings of the Seventh International Workshop on Structural Health Monitoring (International Workshop on Structural Health Monitoring, 2007), pp. 1701–1708.
  5. T. Kurashima , T. Horiguchi , and M. Tateda , “Thermal effects of Brillouin gain spectra in single-mode fibers,” IEEE Photonics Technol. Lett.  2, 718–720 (1990).
    [CrossRef]
  6. T. Kurashima , T. Horiguchi , H. Izumita , S. Furukawa , and Y. Koyamada , “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun.  E76-B, 382–390 (1993).
  7. M. Niklès , L. Thevenaz , and P. Robert , “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett.  21, 758–760 (1996).
    [CrossRef] [PubMed]
  8. A. Fellay , L. Thevenaz , M. Facchini , M. Niklès , and P. Robert , “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Optical Fiber Sensors, Vol.  16 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), paper OWD3.
  9. T. Horiguchi and M. Tateda , “BOTDA—nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol.  7, 1170–1176 (1989).
    [CrossRef]
  10. K. Kishida , CH. Li , and K. Nishiguchi , “Pulse pre-pump method for cm-order spatial resolution of BOTDA,” Proc. SPIE  5855, 559–562 (2005).
    [CrossRef]
  11. R. W. Boyd , Nonlinear Optics, 2nd ed. (Academic, 2003).
  12. R. Chu , M. Kanefsky , and J. Falk , “Numerical study of transient stimulated Brillouin scattering,” J. Appl. Phys.  71, 4653–4658 (1992).
    [CrossRef]
  13. X. Bao , A. Brown , M. DeMerchant , and J. Smith , “Characterization of the Brillouin-loss spectrum of single-mode fiber by use of very short (<10 ns) pulses,” Opt. Lett.  24, 510–512(1999).
    [CrossRef]

2005 (2)

S. Texier , S. Pumukcu , and J. Toulouse , “Advances in subsurface water-content measurement with a distributed Brillouin scattering fibre-optic sensor,” Proc. SPIE  5855, 555–558 (2005).
[CrossRef]

K. Kishida , CH. Li , and K. Nishiguchi , “Pulse pre-pump method for cm-order spatial resolution of BOTDA,” Proc. SPIE  5855, 559–562 (2005).
[CrossRef]

1999 (2)

X. Bao , A. Brown , M. DeMerchant , and J. Smith , “Characterization of the Brillouin-loss spectrum of single-mode fiber by use of very short (<10 ns) pulses,” Opt. Lett.  24, 510–512(1999).
[CrossRef]

A. W. Brown , J. P. Smith , and X. Bao , “Brillouin scattering based distributed sensors for structural applications,” J. Intell. Mater. Syst. Struct.  10, 340–349 (1999).
[CrossRef]

1996 (1)

1993 (1)

T. Kurashima , T. Horiguchi , H. Izumita , S. Furukawa , and Y. Koyamada , “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun.  E76-B, 382–390 (1993).

1992 (1)

R. Chu , M. Kanefsky , and J. Falk , “Numerical study of transient stimulated Brillouin scattering,” J. Appl. Phys.  71, 4653–4658 (1992).
[CrossRef]

1990 (2)

T. Kurashima , T. Horiguchi , and M. Tateda , “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett.  15, 1038–1040 (1990).
[CrossRef] [PubMed]

T. Kurashima , T. Horiguchi , and M. Tateda , “Thermal effects of Brillouin gain spectra in single-mode fibers,” IEEE Photonics Technol. Lett.  2, 718–720 (1990).
[CrossRef]

1989 (1)

T. Horiguchi and M. Tateda , “BOTDA—nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol.  7, 1170–1176 (1989).
[CrossRef]

Anastasio, S.

S. Anastasio , S. Pamukcu , and M. Pervizpour , “Chemical Selective BOTDR Sensing for Corrosion Detection on Structural Systems,” in Proceedings of the Seventh International Workshop on Structural Health Monitoring (International Workshop on Structural Health Monitoring, 2007), pp. 1701–1708.

Bao, X.

A. W. Brown , J. P. Smith , and X. Bao , “Brillouin scattering based distributed sensors for structural applications,” J. Intell. Mater. Syst. Struct.  10, 340–349 (1999).
[CrossRef]

X. Bao , A. Brown , M. DeMerchant , and J. Smith , “Characterization of the Brillouin-loss spectrum of single-mode fiber by use of very short (<10 ns) pulses,” Opt. Lett.  24, 510–512(1999).
[CrossRef]

Boyd, R. W.

R. W. Boyd , Nonlinear Optics, 2nd ed. (Academic, 2003).

Brown, A.

Brown, A. W.

A. W. Brown , J. P. Smith , and X. Bao , “Brillouin scattering based distributed sensors for structural applications,” J. Intell. Mater. Syst. Struct.  10, 340–349 (1999).
[CrossRef]

Chu, R.

R. Chu , M. Kanefsky , and J. Falk , “Numerical study of transient stimulated Brillouin scattering,” J. Appl. Phys.  71, 4653–4658 (1992).
[CrossRef]

DeMerchant, M.

Facchini, M.

A. Fellay , L. Thevenaz , M. Facchini , M. Niklès , and P. Robert , “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Optical Fiber Sensors, Vol.  16 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), paper OWD3.

Falk, J.

R. Chu , M. Kanefsky , and J. Falk , “Numerical study of transient stimulated Brillouin scattering,” J. Appl. Phys.  71, 4653–4658 (1992).
[CrossRef]

Fellay, A.

A. Fellay , L. Thevenaz , M. Facchini , M. Niklès , and P. Robert , “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Optical Fiber Sensors, Vol.  16 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), paper OWD3.

Furukawa, S.

T. Kurashima , T. Horiguchi , H. Izumita , S. Furukawa , and Y. Koyamada , “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun.  E76-B, 382–390 (1993).

Horiguchi, T.

T. Kurashima , T. Horiguchi , H. Izumita , S. Furukawa , and Y. Koyamada , “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun.  E76-B, 382–390 (1993).

T. Kurashima , T. Horiguchi , and M. Tateda , “Thermal effects of Brillouin gain spectra in single-mode fibers,” IEEE Photonics Technol. Lett.  2, 718–720 (1990).
[CrossRef]

T. Kurashima , T. Horiguchi , and M. Tateda , “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett.  15, 1038–1040 (1990).
[CrossRef] [PubMed]

T. Horiguchi and M. Tateda , “BOTDA—nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol.  7, 1170–1176 (1989).
[CrossRef]

Izumita, H.

T. Kurashima , T. Horiguchi , H. Izumita , S. Furukawa , and Y. Koyamada , “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun.  E76-B, 382–390 (1993).

Kanefsky, M.

R. Chu , M. Kanefsky , and J. Falk , “Numerical study of transient stimulated Brillouin scattering,” J. Appl. Phys.  71, 4653–4658 (1992).
[CrossRef]

Kishida, K.

K. Kishida , CH. Li , and K. Nishiguchi , “Pulse pre-pump method for cm-order spatial resolution of BOTDA,” Proc. SPIE  5855, 559–562 (2005).
[CrossRef]

Koyamada, Y.

T. Kurashima , T. Horiguchi , H. Izumita , S. Furukawa , and Y. Koyamada , “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun.  E76-B, 382–390 (1993).

Kurashima, T.

T. Kurashima , T. Horiguchi , H. Izumita , S. Furukawa , and Y. Koyamada , “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun.  E76-B, 382–390 (1993).

T. Kurashima , T. Horiguchi , and M. Tateda , “Thermal effects of Brillouin gain spectra in single-mode fibers,” IEEE Photonics Technol. Lett.  2, 718–720 (1990).
[CrossRef]

T. Kurashima , T. Horiguchi , and M. Tateda , “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett.  15, 1038–1040 (1990).
[CrossRef] [PubMed]

Li, CH.

K. Kishida , CH. Li , and K. Nishiguchi , “Pulse pre-pump method for cm-order spatial resolution of BOTDA,” Proc. SPIE  5855, 559–562 (2005).
[CrossRef]

Niklès, M.

M. Niklès , L. Thevenaz , and P. Robert , “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett.  21, 758–760 (1996).
[CrossRef] [PubMed]

A. Fellay , L. Thevenaz , M. Facchini , M. Niklès , and P. Robert , “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Optical Fiber Sensors, Vol.  16 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), paper OWD3.

Nishiguchi, K.

K. Kishida , CH. Li , and K. Nishiguchi , “Pulse pre-pump method for cm-order spatial resolution of BOTDA,” Proc. SPIE  5855, 559–562 (2005).
[CrossRef]

Pamukcu, S.

S. Anastasio , S. Pamukcu , and M. Pervizpour , “Chemical Selective BOTDR Sensing for Corrosion Detection on Structural Systems,” in Proceedings of the Seventh International Workshop on Structural Health Monitoring (International Workshop on Structural Health Monitoring, 2007), pp. 1701–1708.

Pervizpour, M.

S. Anastasio , S. Pamukcu , and M. Pervizpour , “Chemical Selective BOTDR Sensing for Corrosion Detection on Structural Systems,” in Proceedings of the Seventh International Workshop on Structural Health Monitoring (International Workshop on Structural Health Monitoring, 2007), pp. 1701–1708.

Pumukcu, S.

S. Texier , S. Pumukcu , and J. Toulouse , “Advances in subsurface water-content measurement with a distributed Brillouin scattering fibre-optic sensor,” Proc. SPIE  5855, 555–558 (2005).
[CrossRef]

Robert, P.

M. Niklès , L. Thevenaz , and P. Robert , “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett.  21, 758–760 (1996).
[CrossRef] [PubMed]

A. Fellay , L. Thevenaz , M. Facchini , M. Niklès , and P. Robert , “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Optical Fiber Sensors, Vol.  16 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), paper OWD3.

Smith, J.

Smith, J. P.

A. W. Brown , J. P. Smith , and X. Bao , “Brillouin scattering based distributed sensors for structural applications,” J. Intell. Mater. Syst. Struct.  10, 340–349 (1999).
[CrossRef]

Tateda, M.

T. Kurashima , T. Horiguchi , and M. Tateda , “Thermal effects of Brillouin gain spectra in single-mode fibers,” IEEE Photonics Technol. Lett.  2, 718–720 (1990).
[CrossRef]

T. Kurashima , T. Horiguchi , and M. Tateda , “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett.  15, 1038–1040 (1990).
[CrossRef] [PubMed]

T. Horiguchi and M. Tateda , “BOTDA—nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol.  7, 1170–1176 (1989).
[CrossRef]

Texier, S.

S. Texier , S. Pumukcu , and J. Toulouse , “Advances in subsurface water-content measurement with a distributed Brillouin scattering fibre-optic sensor,” Proc. SPIE  5855, 555–558 (2005).
[CrossRef]

Thevenaz, L.

M. Niklès , L. Thevenaz , and P. Robert , “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett.  21, 758–760 (1996).
[CrossRef] [PubMed]

A. Fellay , L. Thevenaz , M. Facchini , M. Niklès , and P. Robert , “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Optical Fiber Sensors, Vol.  16 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), paper OWD3.

Toulouse, J.

S. Texier , S. Pumukcu , and J. Toulouse , “Advances in subsurface water-content measurement with a distributed Brillouin scattering fibre-optic sensor,” Proc. SPIE  5855, 555–558 (2005).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

T. Kurashima , T. Horiguchi , and M. Tateda , “Thermal effects of Brillouin gain spectra in single-mode fibers,” IEEE Photonics Technol. Lett.  2, 718–720 (1990).
[CrossRef]

IEICE Trans. Commun. (1)

T. Kurashima , T. Horiguchi , H. Izumita , S. Furukawa , and Y. Koyamada , “Brillouin optical-fiber time domain reflectometry,” IEICE Trans. Commun.  E76-B, 382–390 (1993).

J. Appl. Phys. (1)

R. Chu , M. Kanefsky , and J. Falk , “Numerical study of transient stimulated Brillouin scattering,” J. Appl. Phys.  71, 4653–4658 (1992).
[CrossRef]

J. Intell. Mater. Syst. Struct. (1)

A. W. Brown , J. P. Smith , and X. Bao , “Brillouin scattering based distributed sensors for structural applications,” J. Intell. Mater. Syst. Struct.  10, 340–349 (1999).
[CrossRef]

J. Lightwave Technol. (1)

T. Horiguchi and M. Tateda , “BOTDA—nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol.  7, 1170–1176 (1989).
[CrossRef]

Opt. Lett. (3)

Proc. SPIE (2)

S. Texier , S. Pumukcu , and J. Toulouse , “Advances in subsurface water-content measurement with a distributed Brillouin scattering fibre-optic sensor,” Proc. SPIE  5855, 555–558 (2005).
[CrossRef]

K. Kishida , CH. Li , and K. Nishiguchi , “Pulse pre-pump method for cm-order spatial resolution of BOTDA,” Proc. SPIE  5855, 559–562 (2005).
[CrossRef]

Other (3)

R. W. Boyd , Nonlinear Optics, 2nd ed. (Academic, 2003).

S. Anastasio , S. Pamukcu , and M. Pervizpour , “Chemical Selective BOTDR Sensing for Corrosion Detection on Structural Systems,” in Proceedings of the Seventh International Workshop on Structural Health Monitoring (International Workshop on Structural Health Monitoring, 2007), pp. 1701–1708.

A. Fellay , L. Thevenaz , M. Facchini , M. Niklès , and P. Robert , “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in Optical Fiber Sensors, Vol.  16 of 1997 OSA Technical Digest Series (Optical Society of America, 1997), paper OWD3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Diagram of the distributed fiber sensor system tested.

Fig. 2
Fig. 2

EOM structure and transfer function: (a) balanced push–pull EOM structure and (b) optical modulation transfer function.

Fig. 3
Fig. 3

Energy transfer mechanism between pump-and-probe light.

Fig. 4
Fig. 4

Energy transfer mechanism simulation between pump-and-probe light: (a) Brillouin gain spectrum and (b) time-domain signal output power.

Fig. 5
Fig. 5

Spectrum detection for pump-and-probe signal from optical spectrum analyzer: (a) pulse high level spectrum, (b) pulse low level spectrum.

Fig. 6
Fig. 6

Brillouin frequency shift /strain dependence for standard SMF-28 fiber: (a) Brillouin spectrum for two positions (with and without stress) and (b) time-domain signal output power (modulation frequency, 11 , 016 MHz ; weight, 540.4 g ).

Fig. 7
Fig. 7

Weight strain and Brillouin frequency shift relation results.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ ( t ) = Δ ϕ bias ( t ) + Δ ϕ RF ( t ) .
( z n c t 1 2 α ) E p 0 = i g 1 Q E s 2 ,
( z + n c t + 1 2 α ) E s 2 = i g 1 Q * E p 0 ,
( t + Γ ) Q = i g 2 E p 0 E s 2 * .
Γ 1 = 1 2 τ ph ,
Γ 2 = 2 π ( ν ν B ) .
Δ v B ( GHz ) = 2.615 × 10 4 × Weight ( g ) .

Metrics