Abstract

We propose using cross-correlation frequency-resolved optical gating for dispersion characterization of optical elements with high dispersion, such as ultrashort pulse stretchers and compressors. The technique is based on spectrally resolved second-order cross correlation (sum frequency generation) of a stretched pulse with a reference short pulse. Dispersion of optical elements with a high pulse stretching ratio can be completely characterized using this method, even with moderate resolution of spectral measurements of the cross-correlation signal. The proposed technique is used to measure dispersion of a chirped Bragg grating recorded in photo-thermo-refractive glass. It was found that dispersion of these gratings is almost linear with wavelength and has approximately the same slope with opposite signs for two orientations of the grating with opposite faces of the grating used as the input face. Analysis of higher-order dispersion of the grating shows some variations of dispersion across the aperture of the grating, mostly in the amount of third-order dispersion contribution.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219 (1985).
    [CrossRef]
  2. E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5, 454-458 (1969).
    [CrossRef]
  3. L. Glebov, E. Flecher, V. Smirnov, A. Galvanauskas, and K.-H. Liao, “Stretching and compression of laser pulses by means of high efficiency volume diffractive gratings with variable periods in photo-thermo-refractive glass,” U.S. patent 7,424,185 B2 (9 September 2008).
  4. O. Efimov, L. Glebov, L. Glebova, and V. Smirnov, “Process for production of high efficiency volume diffractive elements in photo-thermo-refractive glass,” U.S. patent 6,586,141 (1 July 2003).
  5. O. Andrusyak, I. Ciapurin, V. Smirnov, G. Venus, N. Vorobiev, and L. Glebov, “External and common-cavity high spectral density beam combining of high power fiber lasers,” Proc. SPIE 6873, 687314 (2008).
  6. O. Andrusyak, V. Smirnov, G. Venus, and L. Glebov, “Beam combining of lasers with high spectral density using volume Bragg gratings,” Opt. Commun. 282, 2560-2563 (2009).
    [CrossRef]
  7. O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15, 344-353 (2009).
    [CrossRef]
  8. G. Venus, L. Glebov, V. Rotar, V. Smirnov, P. Crump, and J. Farmer, “Volume Bragg semiconductor lasers with near diffraction limited divergence,” Proc. SPIE 6216, 621602(2006).
  9. A. Gourevitch, G. Venus, V. Smirnov, D. A. Hostutler, and L. Glebov, “Continuous wave, 30 W laser-diode bar with 10 GHz linewidth for Rb laser pumping,” Opt. Lett. 33, 702-704 (2008).
    [CrossRef]
  10. T. Chung, A. Rapaport, V. Smirnov, L. Glebov, M. Richardson, and M. Bass, “Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror,” Opt. Lett. 31, 229-231 (2006).
    [CrossRef]
  11. B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Single-longitudinal-mode Nd-laser with a Bragg-grating Fabry-Perot cavity,” Opt. Express 14, 9284-9292 (2006).
    [CrossRef]
  12. A. Okishev, C. Dorrer, V. Smirnov, L. Glebov, and J. Zuegel, “Spectral filtering in a diode-pumped Nd:YLF regenerative amplifier using a volume Bragg grating,” Opt. Express 15, 8197-8202 (2007).
    [CrossRef]
  13. L. Glebov, V. Smirnov, C. Stickley, and I. Ciapurin, “New approach to robust optics for HEL systems,” Proc. SPIE 4724, 101-109 (2002).
  14. L. Glebov, L. Glebova, V. Smirnov, M. Dubinskii, L. Merkle, S. Papernov, and A. Schmid, “Laser damage resistance of photo-thermo-refractive glass Bragg gratings,” in Proceedings of Solid State and Diode Lasers Technical Review (Directed Energy Professional Society, 2004), paper P-4.
  15. W. Koechner, “Damage threshold of optical materials,” in Solid-State Laser Engineering (Springer, 2006), pp. 684-698.
  16. K.-H. Liao, M.-Y. Cheng, E. Flecher, V. Smirnov, L. Glebov, and A. Galvanauskas, “Large-aperture chirped volume Bragg grating based fiber CPA system,” Opt. Express 15, 4876-4882(2007).
    [CrossRef]
  17. G. Chang, C.-H. Liu, K.-H. Liao, V. Smirnov, L. Glebov, and A. Galvanauskas, “50 W chirped-volume-Bragg-grating based fiber CPA at 1055 nm,” in Proceedings of Solid State and Diode Lasers Technical Review (Directed Energy Professional Society, 2007), paper FW1-11.
  18. G. Chang, M. Rever, V. Smirnov, L. Glebov, and A. Galvanauskas, “32 W femtosecond Yb-fiber CPA system based on chirped-volume-Bragg-gratings,” Conference on Lasers and Electro-Optics and Conference on Quantum Electronics and Laser Science, CLEO/QELS 2008 (OSA, 2008), paper CThB3.
  19. M. Rever, S. Huang, C. Yahus, V. Smirnov, E. Rotari, I. Cohanoshi, S. Mokhov, L. Glebov, and A. Galvanauskas, “200 fs, 50 W fiber-CPA system based on chirped-volume-Bragg-gratings,” in Conference on Lasers and Electro-Optics and International Quantum Electronics Conference, CLEO/IQEC 2009 (OSA, 2009), paper CMBB2.
  20. L. Lepetit, G. Cheriaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467(1995).
    [CrossRef]
  21. R. Trebino and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. A 10, 1101-1111(1993).
  22. S. Linden, H. Giessen, and J. Kuhl, “XFROG--a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B 206, 119-124 (1998).
    [CrossRef]
  23. N. Nishizawa and T. Goto, “Experimental analysis of ultrashort pulse propagation in optical fibers around zero dispersion region using cross-correlation frequency resolved optical gating,” Opt. Express 8, 328-334 (2001).
    [CrossRef]
  24. J. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, R. Trebino, S. Coen, and R. Windeler, “Cross-correlation frequency-resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments,” Opt. Express 10, 1215-1221 (2002).
  25. A. Efimov and A. J. Taylor, “Cross-correlation frequency-resolved optical gating for studying ultrashort-pulse nonlinear dynamics in arbitrary fibers,” Appl. Opt. 44, 4408-4411(2005).
    [CrossRef]
  26. O. Andrusyak, L. Canioni, I. Cohanoschi, M. Delaigue, E. Rotari, V. Smirnov, G. Venus, and L. Glebov are preparing a manuscript called “Stretching and compression of near-infrared ultrashort pulses by chirped volume Bragg gratings” for submission to Opt. Lett.

2009

O. Andrusyak, V. Smirnov, G. Venus, and L. Glebov, “Beam combining of lasers with high spectral density using volume Bragg gratings,” Opt. Commun. 282, 2560-2563 (2009).
[CrossRef]

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15, 344-353 (2009).
[CrossRef]

2008

A. Gourevitch, G. Venus, V. Smirnov, D. A. Hostutler, and L. Glebov, “Continuous wave, 30 W laser-diode bar with 10 GHz linewidth for Rb laser pumping,” Opt. Lett. 33, 702-704 (2008).
[CrossRef]

O. Andrusyak, I. Ciapurin, V. Smirnov, G. Venus, N. Vorobiev, and L. Glebov, “External and common-cavity high spectral density beam combining of high power fiber lasers,” Proc. SPIE 6873, 687314 (2008).

2007

2006

2005

2002

2001

1998

S. Linden, H. Giessen, and J. Kuhl, “XFROG--a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B 206, 119-124 (1998).
[CrossRef]

1995

1993

1985

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219 (1985).
[CrossRef]

1969

E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5, 454-458 (1969).
[CrossRef]

Andrusyak, O.

O. Andrusyak, V. Smirnov, G. Venus, and L. Glebov, “Beam combining of lasers with high spectral density using volume Bragg gratings,” Opt. Commun. 282, 2560-2563 (2009).
[CrossRef]

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15, 344-353 (2009).
[CrossRef]

O. Andrusyak, I. Ciapurin, V. Smirnov, G. Venus, N. Vorobiev, and L. Glebov, “External and common-cavity high spectral density beam combining of high power fiber lasers,” Proc. SPIE 6873, 687314 (2008).

O. Andrusyak, L. Canioni, I. Cohanoschi, M. Delaigue, E. Rotari, V. Smirnov, G. Venus, and L. Glebov are preparing a manuscript called “Stretching and compression of near-infrared ultrashort pulses by chirped volume Bragg gratings” for submission to Opt. Lett.

Bass, M.

Canioni, L.

O. Andrusyak, L. Canioni, I. Cohanoschi, M. Delaigue, E. Rotari, V. Smirnov, G. Venus, and L. Glebov are preparing a manuscript called “Stretching and compression of near-infrared ultrashort pulses by chirped volume Bragg gratings” for submission to Opt. Lett.

Chang, G.

G. Chang, M. Rever, V. Smirnov, L. Glebov, and A. Galvanauskas, “32 W femtosecond Yb-fiber CPA system based on chirped-volume-Bragg-gratings,” Conference on Lasers and Electro-Optics and Conference on Quantum Electronics and Laser Science, CLEO/QELS 2008 (OSA, 2008), paper CThB3.

G. Chang, C.-H. Liu, K.-H. Liao, V. Smirnov, L. Glebov, and A. Galvanauskas, “50 W chirped-volume-Bragg-grating based fiber CPA at 1055 nm,” in Proceedings of Solid State and Diode Lasers Technical Review (Directed Energy Professional Society, 2007), paper FW1-11.

Cheng, M.-Y.

Cheriaux, G.

Chung, T.

Ciapurin, I.

O. Andrusyak, I. Ciapurin, V. Smirnov, G. Venus, N. Vorobiev, and L. Glebov, “External and common-cavity high spectral density beam combining of high power fiber lasers,” Proc. SPIE 6873, 687314 (2008).

L. Glebov, V. Smirnov, C. Stickley, and I. Ciapurin, “New approach to robust optics for HEL systems,” Proc. SPIE 4724, 101-109 (2002).

Coen, S.

Cohanoschi, I.

O. Andrusyak, L. Canioni, I. Cohanoschi, M. Delaigue, E. Rotari, V. Smirnov, G. Venus, and L. Glebov are preparing a manuscript called “Stretching and compression of near-infrared ultrashort pulses by chirped volume Bragg gratings” for submission to Opt. Lett.

Cohanoshi, I.

M. Rever, S. Huang, C. Yahus, V. Smirnov, E. Rotari, I. Cohanoshi, S. Mokhov, L. Glebov, and A. Galvanauskas, “200 fs, 50 W fiber-CPA system based on chirped-volume-Bragg-gratings,” in Conference on Lasers and Electro-Optics and International Quantum Electronics Conference, CLEO/IQEC 2009 (OSA, 2009), paper CMBB2.

Crump, P.

G. Venus, L. Glebov, V. Rotar, V. Smirnov, P. Crump, and J. Farmer, “Volume Bragg semiconductor lasers with near diffraction limited divergence,” Proc. SPIE 6216, 621602(2006).

Delaigue, M.

O. Andrusyak, L. Canioni, I. Cohanoschi, M. Delaigue, E. Rotari, V. Smirnov, G. Venus, and L. Glebov are preparing a manuscript called “Stretching and compression of near-infrared ultrashort pulses by chirped volume Bragg gratings” for submission to Opt. Lett.

Dorrer, C.

Dubinskii, M.

L. Glebov, L. Glebova, V. Smirnov, M. Dubinskii, L. Merkle, S. Papernov, and A. Schmid, “Laser damage resistance of photo-thermo-refractive glass Bragg gratings,” in Proceedings of Solid State and Diode Lasers Technical Review (Directed Energy Professional Society, 2004), paper P-4.

Dudley, J.

Efimov, A.

Efimov, O.

O. Efimov, L. Glebov, L. Glebova, and V. Smirnov, “Process for production of high efficiency volume diffractive elements in photo-thermo-refractive glass,” U.S. patent 6,586,141 (1 July 2003).

Farmer, J.

G. Venus, L. Glebov, V. Rotar, V. Smirnov, P. Crump, and J. Farmer, “Volume Bragg semiconductor lasers with near diffraction limited divergence,” Proc. SPIE 6216, 621602(2006).

Flecher, E.

K.-H. Liao, M.-Y. Cheng, E. Flecher, V. Smirnov, L. Glebov, and A. Galvanauskas, “Large-aperture chirped volume Bragg grating based fiber CPA system,” Opt. Express 15, 4876-4882(2007).
[CrossRef]

L. Glebov, E. Flecher, V. Smirnov, A. Galvanauskas, and K.-H. Liao, “Stretching and compression of laser pulses by means of high efficiency volume diffractive gratings with variable periods in photo-thermo-refractive glass,” U.S. patent 7,424,185 B2 (9 September 2008).

Galvanauskas, A.

K.-H. Liao, M.-Y. Cheng, E. Flecher, V. Smirnov, L. Glebov, and A. Galvanauskas, “Large-aperture chirped volume Bragg grating based fiber CPA system,” Opt. Express 15, 4876-4882(2007).
[CrossRef]

L. Glebov, E. Flecher, V. Smirnov, A. Galvanauskas, and K.-H. Liao, “Stretching and compression of laser pulses by means of high efficiency volume diffractive gratings with variable periods in photo-thermo-refractive glass,” U.S. patent 7,424,185 B2 (9 September 2008).

M. Rever, S. Huang, C. Yahus, V. Smirnov, E. Rotari, I. Cohanoshi, S. Mokhov, L. Glebov, and A. Galvanauskas, “200 fs, 50 W fiber-CPA system based on chirped-volume-Bragg-gratings,” in Conference on Lasers and Electro-Optics and International Quantum Electronics Conference, CLEO/IQEC 2009 (OSA, 2009), paper CMBB2.

G. Chang, M. Rever, V. Smirnov, L. Glebov, and A. Galvanauskas, “32 W femtosecond Yb-fiber CPA system based on chirped-volume-Bragg-gratings,” Conference on Lasers and Electro-Optics and Conference on Quantum Electronics and Laser Science, CLEO/QELS 2008 (OSA, 2008), paper CThB3.

G. Chang, C.-H. Liu, K.-H. Liao, V. Smirnov, L. Glebov, and A. Galvanauskas, “50 W chirped-volume-Bragg-grating based fiber CPA at 1055 nm,” in Proceedings of Solid State and Diode Lasers Technical Review (Directed Energy Professional Society, 2007), paper FW1-11.

Giessen, H.

S. Linden, H. Giessen, and J. Kuhl, “XFROG--a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B 206, 119-124 (1998).
[CrossRef]

Glebov, L.

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15, 344-353 (2009).
[CrossRef]

O. Andrusyak, V. Smirnov, G. Venus, and L. Glebov, “Beam combining of lasers with high spectral density using volume Bragg gratings,” Opt. Commun. 282, 2560-2563 (2009).
[CrossRef]

O. Andrusyak, I. Ciapurin, V. Smirnov, G. Venus, N. Vorobiev, and L. Glebov, “External and common-cavity high spectral density beam combining of high power fiber lasers,” Proc. SPIE 6873, 687314 (2008).

A. Gourevitch, G. Venus, V. Smirnov, D. A. Hostutler, and L. Glebov, “Continuous wave, 30 W laser-diode bar with 10 GHz linewidth for Rb laser pumping,” Opt. Lett. 33, 702-704 (2008).
[CrossRef]

A. Okishev, C. Dorrer, V. Smirnov, L. Glebov, and J. Zuegel, “Spectral filtering in a diode-pumped Nd:YLF regenerative amplifier using a volume Bragg grating,” Opt. Express 15, 8197-8202 (2007).
[CrossRef]

K.-H. Liao, M.-Y. Cheng, E. Flecher, V. Smirnov, L. Glebov, and A. Galvanauskas, “Large-aperture chirped volume Bragg grating based fiber CPA system,” Opt. Express 15, 4876-4882(2007).
[CrossRef]

T. Chung, A. Rapaport, V. Smirnov, L. Glebov, M. Richardson, and M. Bass, “Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror,” Opt. Lett. 31, 229-231 (2006).
[CrossRef]

G. Venus, L. Glebov, V. Rotar, V. Smirnov, P. Crump, and J. Farmer, “Volume Bragg semiconductor lasers with near diffraction limited divergence,” Proc. SPIE 6216, 621602(2006).

L. Glebov, V. Smirnov, C. Stickley, and I. Ciapurin, “New approach to robust optics for HEL systems,” Proc. SPIE 4724, 101-109 (2002).

L. Glebov, L. Glebova, V. Smirnov, M. Dubinskii, L. Merkle, S. Papernov, and A. Schmid, “Laser damage resistance of photo-thermo-refractive glass Bragg gratings,” in Proceedings of Solid State and Diode Lasers Technical Review (Directed Energy Professional Society, 2004), paper P-4.

L. Glebov, E. Flecher, V. Smirnov, A. Galvanauskas, and K.-H. Liao, “Stretching and compression of laser pulses by means of high efficiency volume diffractive gratings with variable periods in photo-thermo-refractive glass,” U.S. patent 7,424,185 B2 (9 September 2008).

O. Efimov, L. Glebov, L. Glebova, and V. Smirnov, “Process for production of high efficiency volume diffractive elements in photo-thermo-refractive glass,” U.S. patent 6,586,141 (1 July 2003).

G. Chang, C.-H. Liu, K.-H. Liao, V. Smirnov, L. Glebov, and A. Galvanauskas, “50 W chirped-volume-Bragg-grating based fiber CPA at 1055 nm,” in Proceedings of Solid State and Diode Lasers Technical Review (Directed Energy Professional Society, 2007), paper FW1-11.

M. Rever, S. Huang, C. Yahus, V. Smirnov, E. Rotari, I. Cohanoshi, S. Mokhov, L. Glebov, and A. Galvanauskas, “200 fs, 50 W fiber-CPA system based on chirped-volume-Bragg-gratings,” in Conference on Lasers and Electro-Optics and International Quantum Electronics Conference, CLEO/IQEC 2009 (OSA, 2009), paper CMBB2.

G. Chang, M. Rever, V. Smirnov, L. Glebov, and A. Galvanauskas, “32 W femtosecond Yb-fiber CPA system based on chirped-volume-Bragg-gratings,” Conference on Lasers and Electro-Optics and Conference on Quantum Electronics and Laser Science, CLEO/QELS 2008 (OSA, 2008), paper CThB3.

O. Andrusyak, L. Canioni, I. Cohanoschi, M. Delaigue, E. Rotari, V. Smirnov, G. Venus, and L. Glebov are preparing a manuscript called “Stretching and compression of near-infrared ultrashort pulses by chirped volume Bragg gratings” for submission to Opt. Lett.

Glebova, L.

O. Efimov, L. Glebov, L. Glebova, and V. Smirnov, “Process for production of high efficiency volume diffractive elements in photo-thermo-refractive glass,” U.S. patent 6,586,141 (1 July 2003).

L. Glebov, L. Glebova, V. Smirnov, M. Dubinskii, L. Merkle, S. Papernov, and A. Schmid, “Laser damage resistance of photo-thermo-refractive glass Bragg gratings,” in Proceedings of Solid State and Diode Lasers Technical Review (Directed Energy Professional Society, 2004), paper P-4.

Goto, T.

Gourevitch, A.

Gu, X.

Hostutler, D. A.

Huang, S.

M. Rever, S. Huang, C. Yahus, V. Smirnov, E. Rotari, I. Cohanoshi, S. Mokhov, L. Glebov, and A. Galvanauskas, “200 fs, 50 W fiber-CPA system based on chirped-volume-Bragg-gratings,” in Conference on Lasers and Electro-Optics and International Quantum Electronics Conference, CLEO/IQEC 2009 (OSA, 2009), paper CMBB2.

Jacobsson, B.

Joffre, M.

Kane, D. J.

Kimmel, M.

Koechner, W.

W. Koechner, “Damage threshold of optical materials,” in Solid-State Laser Engineering (Springer, 2006), pp. 684-698.

Kuhl, J.

S. Linden, H. Giessen, and J. Kuhl, “XFROG--a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B 206, 119-124 (1998).
[CrossRef]

Laurell, F.

Lepetit, L.

Liao, K.-H.

K.-H. Liao, M.-Y. Cheng, E. Flecher, V. Smirnov, L. Glebov, and A. Galvanauskas, “Large-aperture chirped volume Bragg grating based fiber CPA system,” Opt. Express 15, 4876-4882(2007).
[CrossRef]

L. Glebov, E. Flecher, V. Smirnov, A. Galvanauskas, and K.-H. Liao, “Stretching and compression of laser pulses by means of high efficiency volume diffractive gratings with variable periods in photo-thermo-refractive glass,” U.S. patent 7,424,185 B2 (9 September 2008).

G. Chang, C.-H. Liu, K.-H. Liao, V. Smirnov, L. Glebov, and A. Galvanauskas, “50 W chirped-volume-Bragg-grating based fiber CPA at 1055 nm,” in Proceedings of Solid State and Diode Lasers Technical Review (Directed Energy Professional Society, 2007), paper FW1-11.

Linden, S.

S. Linden, H. Giessen, and J. Kuhl, “XFROG--a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B 206, 119-124 (1998).
[CrossRef]

Liu, C.-H.

G. Chang, C.-H. Liu, K.-H. Liao, V. Smirnov, L. Glebov, and A. Galvanauskas, “50 W chirped-volume-Bragg-grating based fiber CPA at 1055 nm,” in Proceedings of Solid State and Diode Lasers Technical Review (Directed Energy Professional Society, 2007), paper FW1-11.

Merkle, L.

L. Glebov, L. Glebova, V. Smirnov, M. Dubinskii, L. Merkle, S. Papernov, and A. Schmid, “Laser damage resistance of photo-thermo-refractive glass Bragg gratings,” in Proceedings of Solid State and Diode Lasers Technical Review (Directed Energy Professional Society, 2004), paper P-4.

Mokhov, S.

M. Rever, S. Huang, C. Yahus, V. Smirnov, E. Rotari, I. Cohanoshi, S. Mokhov, L. Glebov, and A. Galvanauskas, “200 fs, 50 W fiber-CPA system based on chirped-volume-Bragg-gratings,” in Conference on Lasers and Electro-Optics and International Quantum Electronics Conference, CLEO/IQEC 2009 (OSA, 2009), paper CMBB2.

Mourou, G.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219 (1985).
[CrossRef]

Nishizawa, N.

Okishev, A.

O'Shea, P.

Papernov, S.

L. Glebov, L. Glebova, V. Smirnov, M. Dubinskii, L. Merkle, S. Papernov, and A. Schmid, “Laser damage resistance of photo-thermo-refractive glass Bragg gratings,” in Proceedings of Solid State and Diode Lasers Technical Review (Directed Energy Professional Society, 2004), paper P-4.

Pasiskevicius, V.

Rapaport, A.

Rever, M.

M. Rever, S. Huang, C. Yahus, V. Smirnov, E. Rotari, I. Cohanoshi, S. Mokhov, L. Glebov, and A. Galvanauskas, “200 fs, 50 W fiber-CPA system based on chirped-volume-Bragg-gratings,” in Conference on Lasers and Electro-Optics and International Quantum Electronics Conference, CLEO/IQEC 2009 (OSA, 2009), paper CMBB2.

G. Chang, M. Rever, V. Smirnov, L. Glebov, and A. Galvanauskas, “32 W femtosecond Yb-fiber CPA system based on chirped-volume-Bragg-gratings,” Conference on Lasers and Electro-Optics and Conference on Quantum Electronics and Laser Science, CLEO/QELS 2008 (OSA, 2008), paper CThB3.

Richardson, M.

Rotar, V.

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15, 344-353 (2009).
[CrossRef]

G. Venus, L. Glebov, V. Rotar, V. Smirnov, P. Crump, and J. Farmer, “Volume Bragg semiconductor lasers with near diffraction limited divergence,” Proc. SPIE 6216, 621602(2006).

Rotari, E.

M. Rever, S. Huang, C. Yahus, V. Smirnov, E. Rotari, I. Cohanoshi, S. Mokhov, L. Glebov, and A. Galvanauskas, “200 fs, 50 W fiber-CPA system based on chirped-volume-Bragg-gratings,” in Conference on Lasers and Electro-Optics and International Quantum Electronics Conference, CLEO/IQEC 2009 (OSA, 2009), paper CMBB2.

O. Andrusyak, L. Canioni, I. Cohanoschi, M. Delaigue, E. Rotari, V. Smirnov, G. Venus, and L. Glebov are preparing a manuscript called “Stretching and compression of near-infrared ultrashort pulses by chirped volume Bragg gratings” for submission to Opt. Lett.

Schmid, A.

L. Glebov, L. Glebova, V. Smirnov, M. Dubinskii, L. Merkle, S. Papernov, and A. Schmid, “Laser damage resistance of photo-thermo-refractive glass Bragg gratings,” in Proceedings of Solid State and Diode Lasers Technical Review (Directed Energy Professional Society, 2004), paper P-4.

Smirnov, V.

O. Andrusyak, V. Smirnov, G. Venus, and L. Glebov, “Beam combining of lasers with high spectral density using volume Bragg gratings,” Opt. Commun. 282, 2560-2563 (2009).
[CrossRef]

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15, 344-353 (2009).
[CrossRef]

A. Gourevitch, G. Venus, V. Smirnov, D. A. Hostutler, and L. Glebov, “Continuous wave, 30 W laser-diode bar with 10 GHz linewidth for Rb laser pumping,” Opt. Lett. 33, 702-704 (2008).
[CrossRef]

O. Andrusyak, I. Ciapurin, V. Smirnov, G. Venus, N. Vorobiev, and L. Glebov, “External and common-cavity high spectral density beam combining of high power fiber lasers,” Proc. SPIE 6873, 687314 (2008).

K.-H. Liao, M.-Y. Cheng, E. Flecher, V. Smirnov, L. Glebov, and A. Galvanauskas, “Large-aperture chirped volume Bragg grating based fiber CPA system,” Opt. Express 15, 4876-4882(2007).
[CrossRef]

A. Okishev, C. Dorrer, V. Smirnov, L. Glebov, and J. Zuegel, “Spectral filtering in a diode-pumped Nd:YLF regenerative amplifier using a volume Bragg grating,” Opt. Express 15, 8197-8202 (2007).
[CrossRef]

T. Chung, A. Rapaport, V. Smirnov, L. Glebov, M. Richardson, and M. Bass, “Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror,” Opt. Lett. 31, 229-231 (2006).
[CrossRef]

G. Venus, L. Glebov, V. Rotar, V. Smirnov, P. Crump, and J. Farmer, “Volume Bragg semiconductor lasers with near diffraction limited divergence,” Proc. SPIE 6216, 621602(2006).

L. Glebov, V. Smirnov, C. Stickley, and I. Ciapurin, “New approach to robust optics for HEL systems,” Proc. SPIE 4724, 101-109 (2002).

L. Glebov, L. Glebova, V. Smirnov, M. Dubinskii, L. Merkle, S. Papernov, and A. Schmid, “Laser damage resistance of photo-thermo-refractive glass Bragg gratings,” in Proceedings of Solid State and Diode Lasers Technical Review (Directed Energy Professional Society, 2004), paper P-4.

O. Efimov, L. Glebov, L. Glebova, and V. Smirnov, “Process for production of high efficiency volume diffractive elements in photo-thermo-refractive glass,” U.S. patent 6,586,141 (1 July 2003).

L. Glebov, E. Flecher, V. Smirnov, A. Galvanauskas, and K.-H. Liao, “Stretching and compression of laser pulses by means of high efficiency volume diffractive gratings with variable periods in photo-thermo-refractive glass,” U.S. patent 7,424,185 B2 (9 September 2008).

O. Andrusyak, L. Canioni, I. Cohanoschi, M. Delaigue, E. Rotari, V. Smirnov, G. Venus, and L. Glebov are preparing a manuscript called “Stretching and compression of near-infrared ultrashort pulses by chirped volume Bragg gratings” for submission to Opt. Lett.

M. Rever, S. Huang, C. Yahus, V. Smirnov, E. Rotari, I. Cohanoshi, S. Mokhov, L. Glebov, and A. Galvanauskas, “200 fs, 50 W fiber-CPA system based on chirped-volume-Bragg-gratings,” in Conference on Lasers and Electro-Optics and International Quantum Electronics Conference, CLEO/IQEC 2009 (OSA, 2009), paper CMBB2.

G. Chang, M. Rever, V. Smirnov, L. Glebov, and A. Galvanauskas, “32 W femtosecond Yb-fiber CPA system based on chirped-volume-Bragg-gratings,” Conference on Lasers and Electro-Optics and Conference on Quantum Electronics and Laser Science, CLEO/QELS 2008 (OSA, 2008), paper CThB3.

G. Chang, C.-H. Liu, K.-H. Liao, V. Smirnov, L. Glebov, and A. Galvanauskas, “50 W chirped-volume-Bragg-grating based fiber CPA at 1055 nm,” in Proceedings of Solid State and Diode Lasers Technical Review (Directed Energy Professional Society, 2007), paper FW1-11.

Stickley, C.

L. Glebov, V. Smirnov, C. Stickley, and I. Ciapurin, “New approach to robust optics for HEL systems,” Proc. SPIE 4724, 101-109 (2002).

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219 (1985).
[CrossRef]

Taylor, A. J.

Treacy, E.

E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5, 454-458 (1969).
[CrossRef]

Trebino, R.

Venus, G.

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15, 344-353 (2009).
[CrossRef]

O. Andrusyak, V. Smirnov, G. Venus, and L. Glebov, “Beam combining of lasers with high spectral density using volume Bragg gratings,” Opt. Commun. 282, 2560-2563 (2009).
[CrossRef]

A. Gourevitch, G. Venus, V. Smirnov, D. A. Hostutler, and L. Glebov, “Continuous wave, 30 W laser-diode bar with 10 GHz linewidth for Rb laser pumping,” Opt. Lett. 33, 702-704 (2008).
[CrossRef]

O. Andrusyak, I. Ciapurin, V. Smirnov, G. Venus, N. Vorobiev, and L. Glebov, “External and common-cavity high spectral density beam combining of high power fiber lasers,” Proc. SPIE 6873, 687314 (2008).

G. Venus, L. Glebov, V. Rotar, V. Smirnov, P. Crump, and J. Farmer, “Volume Bragg semiconductor lasers with near diffraction limited divergence,” Proc. SPIE 6216, 621602(2006).

O. Andrusyak, L. Canioni, I. Cohanoschi, M. Delaigue, E. Rotari, V. Smirnov, G. Venus, and L. Glebov are preparing a manuscript called “Stretching and compression of near-infrared ultrashort pulses by chirped volume Bragg gratings” for submission to Opt. Lett.

Vorobiev, N.

O. Andrusyak, I. Ciapurin, V. Smirnov, G. Venus, N. Vorobiev, and L. Glebov, “External and common-cavity high spectral density beam combining of high power fiber lasers,” Proc. SPIE 6873, 687314 (2008).

Windeler, R.

Xu, L.

Yahus, C.

M. Rever, S. Huang, C. Yahus, V. Smirnov, E. Rotari, I. Cohanoshi, S. Mokhov, L. Glebov, and A. Galvanauskas, “200 fs, 50 W fiber-CPA system based on chirped-volume-Bragg-gratings,” in Conference on Lasers and Electro-Optics and International Quantum Electronics Conference, CLEO/IQEC 2009 (OSA, 2009), paper CMBB2.

Zeek, E.

Zuegel, J.

Appl. Opt.

IEEE J. Quantum Electron.

E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5, 454-458 (1969).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15, 344-353 (2009).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Commun.

O. Andrusyak, V. Smirnov, G. Venus, and L. Glebov, “Beam combining of lasers with high spectral density using volume Bragg gratings,” Opt. Commun. 282, 2560-2563 (2009).
[CrossRef]

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219 (1985).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Status Solidi B

S. Linden, H. Giessen, and J. Kuhl, “XFROG--a new method for amplitude and phase characterization of weak ultrashort pulses,” Phys. Status Solidi B 206, 119-124 (1998).
[CrossRef]

Proc. SPIE

G. Venus, L. Glebov, V. Rotar, V. Smirnov, P. Crump, and J. Farmer, “Volume Bragg semiconductor lasers with near diffraction limited divergence,” Proc. SPIE 6216, 621602(2006).

O. Andrusyak, I. Ciapurin, V. Smirnov, G. Venus, N. Vorobiev, and L. Glebov, “External and common-cavity high spectral density beam combining of high power fiber lasers,” Proc. SPIE 6873, 687314 (2008).

L. Glebov, V. Smirnov, C. Stickley, and I. Ciapurin, “New approach to robust optics for HEL systems,” Proc. SPIE 4724, 101-109 (2002).

Other

L. Glebov, L. Glebova, V. Smirnov, M. Dubinskii, L. Merkle, S. Papernov, and A. Schmid, “Laser damage resistance of photo-thermo-refractive glass Bragg gratings,” in Proceedings of Solid State and Diode Lasers Technical Review (Directed Energy Professional Society, 2004), paper P-4.

W. Koechner, “Damage threshold of optical materials,” in Solid-State Laser Engineering (Springer, 2006), pp. 684-698.

G. Chang, C.-H. Liu, K.-H. Liao, V. Smirnov, L. Glebov, and A. Galvanauskas, “50 W chirped-volume-Bragg-grating based fiber CPA at 1055 nm,” in Proceedings of Solid State and Diode Lasers Technical Review (Directed Energy Professional Society, 2007), paper FW1-11.

G. Chang, M. Rever, V. Smirnov, L. Glebov, and A. Galvanauskas, “32 W femtosecond Yb-fiber CPA system based on chirped-volume-Bragg-gratings,” Conference on Lasers and Electro-Optics and Conference on Quantum Electronics and Laser Science, CLEO/QELS 2008 (OSA, 2008), paper CThB3.

M. Rever, S. Huang, C. Yahus, V. Smirnov, E. Rotari, I. Cohanoshi, S. Mokhov, L. Glebov, and A. Galvanauskas, “200 fs, 50 W fiber-CPA system based on chirped-volume-Bragg-gratings,” in Conference on Lasers and Electro-Optics and International Quantum Electronics Conference, CLEO/IQEC 2009 (OSA, 2009), paper CMBB2.

L. Glebov, E. Flecher, V. Smirnov, A. Galvanauskas, and K.-H. Liao, “Stretching and compression of laser pulses by means of high efficiency volume diffractive gratings with variable periods in photo-thermo-refractive glass,” U.S. patent 7,424,185 B2 (9 September 2008).

O. Efimov, L. Glebov, L. Glebova, and V. Smirnov, “Process for production of high efficiency volume diffractive elements in photo-thermo-refractive glass,” U.S. patent 6,586,141 (1 July 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Volume Bragg grating with variable period along the beam propagation (z direction): volume longitudinal chirped Bragg grating (CBG). Grating period and thickness are not to scale; thickness is usually tens of thousand times larger than the period.

Fig. 2
Fig. 2

Optical scheme for dispersion characterization of CBGs. BS, beam splitter; M1–M5, mirrors; BBO, nonlinear crystal; CBG, chirped volume Bragg grating.

Fig. 3
Fig. 3

Spectral dependence of relative diffraction efficiency of a tested CBG.

Fig. 4
Fig. 4

Sample of collected SFG spectrum.

Fig. 5
Fig. 5

SFG spectra as functions of delay τ for opposite orientations of the grating.

Fig. 6
Fig. 6

Spectral dependence of time delay in a stretched pulse for two opposite orientations of the grating (points, experimental data; lines, linear fit).

Fig. 7
Fig. 7

Analysis of dispersion properties of a chirped Bragg grating for the two opposite orientations of the grating (points, experimental data; lines, polynomial fits and their derivatives).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ω UV = ω IR + ω CBG ( τ ) ,
S ( ω UV , τ ) = S ( ω IR ) = S ( ω UV ω CBG ( τ ) ) .
φ ( ω ) = φ 0 + φ ω | ω = ω 0 ( ω ω 0 ) + 1 2 2 φ ω 2 | ω = ω 0 ( ω ω 0 ) 2 + 1 6 3 φ ω 3 | ω = ω 0 ( ω ω 0 ) 3 + .

Metrics