Abstract

We present a degree of polarization imaging system based on a Wollaston prism and a single CCD camera. This architecture eliminates technical inaccuracies and noise sources that are present in experimental setups containing a polarization switching element. After the acquisition of two images corresponding to two orthogonal states of polarization, one can compute the orthogonal state contrast image (OSCI), which is an estimate of the local degree of polarization of the backscattered light when the observed materials are purely depolarizing. The instrument design coupled to an efficient calibration enables the estimation of the OSCI from a single image acquisition and significant reduction of technical noise present in other polarization imaging systems. The setup was tested in realistic conditions where it represents a real asset.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Laude-Boulesteix, A. Nazac, G. L. Naour, C. Genestie, L. Schwartz, B. Drevillon, and A. D. Martino, “Polarized images of the cervix,” Proc. SPIE 5312, 243-246 (2004).
    [CrossRef]
  2. J. M. Bueno, J. Hunter, C. Cookson, M. Kisilak, and M. Campbell, “Improved scanning laser fundus imaging using polarimetry,” J. Opt. Soc. Am. A 24, 1337-1348 (2007).
    [CrossRef]
  3. M. Alouini, F. Goudail, P. Réfrégier, A. Grisard, E. Lallier, and D. Dolfi, “Multispectral polarimetric imaging with coherent illumination: towards higher image contrast,” Proc. SPIE 5432, 133-144 (2004).
    [CrossRef]
  4. S. Breugnot and P. Clémenceau, “Modeling and performances of a polarization active imager at λ=806 nm,” Opt. Eng. 39, 2681-2688 (2000).
    [CrossRef]
  5. O. Emile, F. Bretenaker, and A. L. Floch, “Rotating polarization imaging in turbid media,” Opt. Lett. 21, 1706-1708(1996).
    [CrossRef] [PubMed]
  6. J. S. Tyo, M. P. Rowe, E. N. Pugh, and N. Engheta, “Target detection in optical scattering media by polarization-difference imaging,” Appl. Opt. 35, 1855-1870 (1996).
    [CrossRef] [PubMed]
  7. Y. Y. Schechner, S. G. Narasimhan, and S. K. Nayar, “Polarization-based vision through haze,” Appl. Opt. 42, 511-525(2003).
    [CrossRef] [PubMed]
  8. S. Mujumdar and H. Ramachandran, “Imaging through turbid media using polarization modulation: dependence on scattering anisotropy,” Opt. Commun. 241, 1-9 (2004).
    [CrossRef]
  9. F. Goudail and P. Réfrégier, “Statistical techniques for target detection in polarization diversity images,” Opt. Lett. 26, 644-646 (2001).
    [CrossRef]
  10. O. Matoba and B. Javidi, “Three-dimensional polarimetric integral imaging,” Opt. Lett. 29, 2375-2377 (2004).
    [CrossRef] [PubMed]
  11. B. Laude-Boulesteix, A. De Martino, B. Drévillon, and L. Schwartz, “Mueller polarimetric imaging system with liquid crystals,” Appl. Opt. 43, 2824-2832 (2004).
    [CrossRef] [PubMed]
  12. F. Goudail, P. Terrier, Y. Takakura, L. Bigué, F. Galland, and V. Devlaminck, “Target detection with a liquid crystal-based passive Stokes polarimeter,” Appl. Opt. 43, 274-282 (2004).
    [CrossRef] [PubMed]
  13. A. Jaulin, L. Bigue, and P. Ambs, “Implementation of a high-speed imaging polarimeter using a liquid crystal ferroelectric modulator,” Proc. SPIE 6189, 618912 (2006).
    [CrossRef]
  14. M. Alouini, F. Goudail, A. Grisard, J. Bourderionnet, D. Dolfi, I. Baarstad, T. Løke, P. Kaspersen, and X. Normandin, “Active polarimetric and multispectral laboratory demonstrator: contrast enhancement for target detection,” Proc. SPIE 6396, 63960B (2006).
    [CrossRef]
  15. P. Terrier and V. De Vlaminck, “Robust and accurate estimate of the orientation of partially polarized light from a camera sensor,” Appl. Opt. 40, 5233-5239 (2001).
    [CrossRef]
  16. J. C. Ramella-Roman, K. Lee, S. A. Prahl, and S. L. Jacques, “Polarized light imaging with a handheld camera,” Proc. SPIE 5068, 284-293 (2003).
  17. A. L. Weijers, H. van Brug, and H. J. Frankena, “Polarization phase stepping with a Savart element,” Appl. Opt. 37, 5150-5155 (1998).
    [CrossRef]
  18. M. C. Simon, “Wollaston prism with large split angle,” Appl. Opt. 25, 369-376 (1986).
    [CrossRef] [PubMed]
  19. M. D. Perrin, J. R. Graham, and J. P. Lloyd, “The IRCAL polarimeter: design, calibration, and data reduction for an adaptive optics imaging polarimeter,” Publ. Astron. Soc. Pac. 120, 555-570 (2008).
    [CrossRef]
  20. A. R. Harvey, D. W. Fletcher-Holmes, A. Gorman, K. Altenbach, J. Arlt, and N. D. Read, “Spectral imaging in a snapshot,” Proc. SPIE 5694, 110-119 (2005).
  21. S. Huard, Polarization of Light (Wiley, 1997).
  22. K. S. Kawabata, A. Okazaki, H. Akitaya, N. Hirakata, R. Hirata, Y. Ikeda, M. Kondoh, S. Masuda, and M. Seki, “A new spectropolarimeter at the Dodaira Observatory,” Publ. Astron. Soc. Pac. 111, 898-908 (1999).
    [CrossRef]
  23. S. M. Kay, Fundamentals of Statistical Signal Processing--Volume I: Estimation Theory (Prentice-Hall, 1993).
  24. A. Bénière, F. Goudail, M. Alouini, and D. Dolfi, “Estimation precision of degree of polarization in the presence of signal-dependent and additive Poisson noises,” J. Eur. Opt. Soc. Rapid Publ. 3, 08002 (2008).
    [CrossRef]
  25. A. Bénière, F. Goudail, M. Alouini, and D. Dolfi, “Degree of polarization estimation in the presence of nonuniform illumination and additive Gaussian noise,” J. Opt. Soc. Am. A 25, 919-929 (2008).
    [CrossRef]
  26. A. Bénière, F. Goudail, M. Alouini, and D. Dolfi, “Minimization of the influence of passive-light contribution in active imaging of the degree of polarization,” Opt. Lett. 33, 2335-2337(2008).
    [CrossRef] [PubMed]
  27. M. Alouini, F. Goudail, A. Grisard, J. Bourderionnet, D. Dolfi, A. Bénière, I. Baarstad, T. Løke, P. Kaspersen, X. Normandin, and G. Berginc, “Near-infrared active polarimetric and multispectral laboratory demonstrator for target detection,” Appl. Opt. 48, 1610-1618 (2009).
    [CrossRef] [PubMed]
  28. L. Le Hors, P. Hartemann, D. Dolfi, and S. Breugnot, “Phenomenological model of paints for multispectral polarimetric imaging,” Proc. SPIE 4370, 94-105 (2001).
    [CrossRef]
  29. M. Alouini, F. Goudail, N. Roux, L. Le Hors, P. Hartemann, S. Breugnot, and D. Dolfi, “Active spectro-polarimetric imaging: signature modeling, imaging demonstrator and target detection,” Eur. Phys. J. Appl. Phys. 42, 129-139 (2008).
    [CrossRef]
  30. S. Sumrain and G. Giakos, “Sub pixel detection of polarimetric signatures of man-made targets,” in Instrumentation and Measurement Technology Conference 2006 (IEEE, 2006), pp. 163-167.
    [CrossRef]
  31. A. Bénière, F. Goudail, M. Alouini, and D. Dolfi, “Precision of degree of polarization estimation in the presence of additive Gaussian detector noise,” Opt. Commun. 278, 264-269(2007).
    [CrossRef]

2009 (1)

2008 (5)

A. Bénière, F. Goudail, M. Alouini, and D. Dolfi, “Estimation precision of degree of polarization in the presence of signal-dependent and additive Poisson noises,” J. Eur. Opt. Soc. Rapid Publ. 3, 08002 (2008).
[CrossRef]

A. Bénière, F. Goudail, M. Alouini, and D. Dolfi, “Degree of polarization estimation in the presence of nonuniform illumination and additive Gaussian noise,” J. Opt. Soc. Am. A 25, 919-929 (2008).
[CrossRef]

A. Bénière, F. Goudail, M. Alouini, and D. Dolfi, “Minimization of the influence of passive-light contribution in active imaging of the degree of polarization,” Opt. Lett. 33, 2335-2337(2008).
[CrossRef] [PubMed]

M. Alouini, F. Goudail, N. Roux, L. Le Hors, P. Hartemann, S. Breugnot, and D. Dolfi, “Active spectro-polarimetric imaging: signature modeling, imaging demonstrator and target detection,” Eur. Phys. J. Appl. Phys. 42, 129-139 (2008).
[CrossRef]

M. D. Perrin, J. R. Graham, and J. P. Lloyd, “The IRCAL polarimeter: design, calibration, and data reduction for an adaptive optics imaging polarimeter,” Publ. Astron. Soc. Pac. 120, 555-570 (2008).
[CrossRef]

2007 (2)

J. M. Bueno, J. Hunter, C. Cookson, M. Kisilak, and M. Campbell, “Improved scanning laser fundus imaging using polarimetry,” J. Opt. Soc. Am. A 24, 1337-1348 (2007).
[CrossRef]

A. Bénière, F. Goudail, M. Alouini, and D. Dolfi, “Precision of degree of polarization estimation in the presence of additive Gaussian detector noise,” Opt. Commun. 278, 264-269(2007).
[CrossRef]

2006 (2)

A. Jaulin, L. Bigue, and P. Ambs, “Implementation of a high-speed imaging polarimeter using a liquid crystal ferroelectric modulator,” Proc. SPIE 6189, 618912 (2006).
[CrossRef]

M. Alouini, F. Goudail, A. Grisard, J. Bourderionnet, D. Dolfi, I. Baarstad, T. Løke, P. Kaspersen, and X. Normandin, “Active polarimetric and multispectral laboratory demonstrator: contrast enhancement for target detection,” Proc. SPIE 6396, 63960B (2006).
[CrossRef]

2005 (1)

A. R. Harvey, D. W. Fletcher-Holmes, A. Gorman, K. Altenbach, J. Arlt, and N. D. Read, “Spectral imaging in a snapshot,” Proc. SPIE 5694, 110-119 (2005).

2004 (6)

O. Matoba and B. Javidi, “Three-dimensional polarimetric integral imaging,” Opt. Lett. 29, 2375-2377 (2004).
[CrossRef] [PubMed]

B. Laude-Boulesteix, A. De Martino, B. Drévillon, and L. Schwartz, “Mueller polarimetric imaging system with liquid crystals,” Appl. Opt. 43, 2824-2832 (2004).
[CrossRef] [PubMed]

F. Goudail, P. Terrier, Y. Takakura, L. Bigué, F. Galland, and V. Devlaminck, “Target detection with a liquid crystal-based passive Stokes polarimeter,” Appl. Opt. 43, 274-282 (2004).
[CrossRef] [PubMed]

M. Alouini, F. Goudail, P. Réfrégier, A. Grisard, E. Lallier, and D. Dolfi, “Multispectral polarimetric imaging with coherent illumination: towards higher image contrast,” Proc. SPIE 5432, 133-144 (2004).
[CrossRef]

B. Laude-Boulesteix, A. Nazac, G. L. Naour, C. Genestie, L. Schwartz, B. Drevillon, and A. D. Martino, “Polarized images of the cervix,” Proc. SPIE 5312, 243-246 (2004).
[CrossRef]

S. Mujumdar and H. Ramachandran, “Imaging through turbid media using polarization modulation: dependence on scattering anisotropy,” Opt. Commun. 241, 1-9 (2004).
[CrossRef]

2003 (1)

2001 (3)

2000 (1)

S. Breugnot and P. Clémenceau, “Modeling and performances of a polarization active imager at λ=806 nm,” Opt. Eng. 39, 2681-2688 (2000).
[CrossRef]

1999 (1)

K. S. Kawabata, A. Okazaki, H. Akitaya, N. Hirakata, R. Hirata, Y. Ikeda, M. Kondoh, S. Masuda, and M. Seki, “A new spectropolarimeter at the Dodaira Observatory,” Publ. Astron. Soc. Pac. 111, 898-908 (1999).
[CrossRef]

1998 (1)

1996 (2)

1986 (1)

Akitaya, H.

K. S. Kawabata, A. Okazaki, H. Akitaya, N. Hirakata, R. Hirata, Y. Ikeda, M. Kondoh, S. Masuda, and M. Seki, “A new spectropolarimeter at the Dodaira Observatory,” Publ. Astron. Soc. Pac. 111, 898-908 (1999).
[CrossRef]

Alouini, M.

M. Alouini, F. Goudail, A. Grisard, J. Bourderionnet, D. Dolfi, A. Bénière, I. Baarstad, T. Løke, P. Kaspersen, X. Normandin, and G. Berginc, “Near-infrared active polarimetric and multispectral laboratory demonstrator for target detection,” Appl. Opt. 48, 1610-1618 (2009).
[CrossRef] [PubMed]

A. Bénière, F. Goudail, M. Alouini, and D. Dolfi, “Degree of polarization estimation in the presence of nonuniform illumination and additive Gaussian noise,” J. Opt. Soc. Am. A 25, 919-929 (2008).
[CrossRef]

A. Bénière, F. Goudail, M. Alouini, and D. Dolfi, “Minimization of the influence of passive-light contribution in active imaging of the degree of polarization,” Opt. Lett. 33, 2335-2337(2008).
[CrossRef] [PubMed]

A. Bénière, F. Goudail, M. Alouini, and D. Dolfi, “Estimation precision of degree of polarization in the presence of signal-dependent and additive Poisson noises,” J. Eur. Opt. Soc. Rapid Publ. 3, 08002 (2008).
[CrossRef]

M. Alouini, F. Goudail, N. Roux, L. Le Hors, P. Hartemann, S. Breugnot, and D. Dolfi, “Active spectro-polarimetric imaging: signature modeling, imaging demonstrator and target detection,” Eur. Phys. J. Appl. Phys. 42, 129-139 (2008).
[CrossRef]

A. Bénière, F. Goudail, M. Alouini, and D. Dolfi, “Precision of degree of polarization estimation in the presence of additive Gaussian detector noise,” Opt. Commun. 278, 264-269(2007).
[CrossRef]

M. Alouini, F. Goudail, A. Grisard, J. Bourderionnet, D. Dolfi, I. Baarstad, T. Løke, P. Kaspersen, and X. Normandin, “Active polarimetric and multispectral laboratory demonstrator: contrast enhancement for target detection,” Proc. SPIE 6396, 63960B (2006).
[CrossRef]

M. Alouini, F. Goudail, P. Réfrégier, A. Grisard, E. Lallier, and D. Dolfi, “Multispectral polarimetric imaging with coherent illumination: towards higher image contrast,” Proc. SPIE 5432, 133-144 (2004).
[CrossRef]

Altenbach, K.

A. R. Harvey, D. W. Fletcher-Holmes, A. Gorman, K. Altenbach, J. Arlt, and N. D. Read, “Spectral imaging in a snapshot,” Proc. SPIE 5694, 110-119 (2005).

Ambs, P.

A. Jaulin, L. Bigue, and P. Ambs, “Implementation of a high-speed imaging polarimeter using a liquid crystal ferroelectric modulator,” Proc. SPIE 6189, 618912 (2006).
[CrossRef]

Arlt, J.

A. R. Harvey, D. W. Fletcher-Holmes, A. Gorman, K. Altenbach, J. Arlt, and N. D. Read, “Spectral imaging in a snapshot,” Proc. SPIE 5694, 110-119 (2005).

Baarstad, I.

M. Alouini, F. Goudail, A. Grisard, J. Bourderionnet, D. Dolfi, A. Bénière, I. Baarstad, T. Løke, P. Kaspersen, X. Normandin, and G. Berginc, “Near-infrared active polarimetric and multispectral laboratory demonstrator for target detection,” Appl. Opt. 48, 1610-1618 (2009).
[CrossRef] [PubMed]

M. Alouini, F. Goudail, A. Grisard, J. Bourderionnet, D. Dolfi, I. Baarstad, T. Løke, P. Kaspersen, and X. Normandin, “Active polarimetric and multispectral laboratory demonstrator: contrast enhancement for target detection,” Proc. SPIE 6396, 63960B (2006).
[CrossRef]

Bénière, A.

Berginc, G.

Bigue, L.

A. Jaulin, L. Bigue, and P. Ambs, “Implementation of a high-speed imaging polarimeter using a liquid crystal ferroelectric modulator,” Proc. SPIE 6189, 618912 (2006).
[CrossRef]

Bigué, L.

Bourderionnet, J.

M. Alouini, F. Goudail, A. Grisard, J. Bourderionnet, D. Dolfi, A. Bénière, I. Baarstad, T. Løke, P. Kaspersen, X. Normandin, and G. Berginc, “Near-infrared active polarimetric and multispectral laboratory demonstrator for target detection,” Appl. Opt. 48, 1610-1618 (2009).
[CrossRef] [PubMed]

M. Alouini, F. Goudail, A. Grisard, J. Bourderionnet, D. Dolfi, I. Baarstad, T. Løke, P. Kaspersen, and X. Normandin, “Active polarimetric and multispectral laboratory demonstrator: contrast enhancement for target detection,” Proc. SPIE 6396, 63960B (2006).
[CrossRef]

Bretenaker, F.

Breugnot, S.

M. Alouini, F. Goudail, N. Roux, L. Le Hors, P. Hartemann, S. Breugnot, and D. Dolfi, “Active spectro-polarimetric imaging: signature modeling, imaging demonstrator and target detection,” Eur. Phys. J. Appl. Phys. 42, 129-139 (2008).
[CrossRef]

L. Le Hors, P. Hartemann, D. Dolfi, and S. Breugnot, “Phenomenological model of paints for multispectral polarimetric imaging,” Proc. SPIE 4370, 94-105 (2001).
[CrossRef]

S. Breugnot and P. Clémenceau, “Modeling and performances of a polarization active imager at λ=806 nm,” Opt. Eng. 39, 2681-2688 (2000).
[CrossRef]

Bueno, J. M.

Campbell, M.

Clémenceau, P.

S. Breugnot and P. Clémenceau, “Modeling and performances of a polarization active imager at λ=806 nm,” Opt. Eng. 39, 2681-2688 (2000).
[CrossRef]

Cookson, C.

De Martino, A.

De Vlaminck, V.

Devlaminck, V.

Dolfi, D.

M. Alouini, F. Goudail, A. Grisard, J. Bourderionnet, D. Dolfi, A. Bénière, I. Baarstad, T. Løke, P. Kaspersen, X. Normandin, and G. Berginc, “Near-infrared active polarimetric and multispectral laboratory demonstrator for target detection,” Appl. Opt. 48, 1610-1618 (2009).
[CrossRef] [PubMed]

A. Bénière, F. Goudail, M. Alouini, and D. Dolfi, “Degree of polarization estimation in the presence of nonuniform illumination and additive Gaussian noise,” J. Opt. Soc. Am. A 25, 919-929 (2008).
[CrossRef]

A. Bénière, F. Goudail, M. Alouini, and D. Dolfi, “Minimization of the influence of passive-light contribution in active imaging of the degree of polarization,” Opt. Lett. 33, 2335-2337(2008).
[CrossRef] [PubMed]

A. Bénière, F. Goudail, M. Alouini, and D. Dolfi, “Estimation precision of degree of polarization in the presence of signal-dependent and additive Poisson noises,” J. Eur. Opt. Soc. Rapid Publ. 3, 08002 (2008).
[CrossRef]

M. Alouini, F. Goudail, N. Roux, L. Le Hors, P. Hartemann, S. Breugnot, and D. Dolfi, “Active spectro-polarimetric imaging: signature modeling, imaging demonstrator and target detection,” Eur. Phys. J. Appl. Phys. 42, 129-139 (2008).
[CrossRef]

A. Bénière, F. Goudail, M. Alouini, and D. Dolfi, “Precision of degree of polarization estimation in the presence of additive Gaussian detector noise,” Opt. Commun. 278, 264-269(2007).
[CrossRef]

M. Alouini, F. Goudail, A. Grisard, J. Bourderionnet, D. Dolfi, I. Baarstad, T. Løke, P. Kaspersen, and X. Normandin, “Active polarimetric and multispectral laboratory demonstrator: contrast enhancement for target detection,” Proc. SPIE 6396, 63960B (2006).
[CrossRef]

M. Alouini, F. Goudail, P. Réfrégier, A. Grisard, E. Lallier, and D. Dolfi, “Multispectral polarimetric imaging with coherent illumination: towards higher image contrast,” Proc. SPIE 5432, 133-144 (2004).
[CrossRef]

L. Le Hors, P. Hartemann, D. Dolfi, and S. Breugnot, “Phenomenological model of paints for multispectral polarimetric imaging,” Proc. SPIE 4370, 94-105 (2001).
[CrossRef]

Drevillon, B.

B. Laude-Boulesteix, A. Nazac, G. L. Naour, C. Genestie, L. Schwartz, B. Drevillon, and A. D. Martino, “Polarized images of the cervix,” Proc. SPIE 5312, 243-246 (2004).
[CrossRef]

Drévillon, B.

Emile, O.

Engheta, N.

Fletcher-Holmes, D. W.

A. R. Harvey, D. W. Fletcher-Holmes, A. Gorman, K. Altenbach, J. Arlt, and N. D. Read, “Spectral imaging in a snapshot,” Proc. SPIE 5694, 110-119 (2005).

Floch, A. L.

Frankena, H. J.

Galland, F.

Genestie, C.

B. Laude-Boulesteix, A. Nazac, G. L. Naour, C. Genestie, L. Schwartz, B. Drevillon, and A. D. Martino, “Polarized images of the cervix,” Proc. SPIE 5312, 243-246 (2004).
[CrossRef]

Giakos, G.

S. Sumrain and G. Giakos, “Sub pixel detection of polarimetric signatures of man-made targets,” in Instrumentation and Measurement Technology Conference 2006 (IEEE, 2006), pp. 163-167.
[CrossRef]

Gorman, A.

A. R. Harvey, D. W. Fletcher-Holmes, A. Gorman, K. Altenbach, J. Arlt, and N. D. Read, “Spectral imaging in a snapshot,” Proc. SPIE 5694, 110-119 (2005).

Goudail, F.

M. Alouini, F. Goudail, A. Grisard, J. Bourderionnet, D. Dolfi, A. Bénière, I. Baarstad, T. Løke, P. Kaspersen, X. Normandin, and G. Berginc, “Near-infrared active polarimetric and multispectral laboratory demonstrator for target detection,” Appl. Opt. 48, 1610-1618 (2009).
[CrossRef] [PubMed]

A. Bénière, F. Goudail, M. Alouini, and D. Dolfi, “Minimization of the influence of passive-light contribution in active imaging of the degree of polarization,” Opt. Lett. 33, 2335-2337(2008).
[CrossRef] [PubMed]

A. Bénière, F. Goudail, M. Alouini, and D. Dolfi, “Degree of polarization estimation in the presence of nonuniform illumination and additive Gaussian noise,” J. Opt. Soc. Am. A 25, 919-929 (2008).
[CrossRef]

A. Bénière, F. Goudail, M. Alouini, and D. Dolfi, “Estimation precision of degree of polarization in the presence of signal-dependent and additive Poisson noises,” J. Eur. Opt. Soc. Rapid Publ. 3, 08002 (2008).
[CrossRef]

M. Alouini, F. Goudail, N. Roux, L. Le Hors, P. Hartemann, S. Breugnot, and D. Dolfi, “Active spectro-polarimetric imaging: signature modeling, imaging demonstrator and target detection,” Eur. Phys. J. Appl. Phys. 42, 129-139 (2008).
[CrossRef]

A. Bénière, F. Goudail, M. Alouini, and D. Dolfi, “Precision of degree of polarization estimation in the presence of additive Gaussian detector noise,” Opt. Commun. 278, 264-269(2007).
[CrossRef]

M. Alouini, F. Goudail, A. Grisard, J. Bourderionnet, D. Dolfi, I. Baarstad, T. Løke, P. Kaspersen, and X. Normandin, “Active polarimetric and multispectral laboratory demonstrator: contrast enhancement for target detection,” Proc. SPIE 6396, 63960B (2006).
[CrossRef]

F. Goudail, P. Terrier, Y. Takakura, L. Bigué, F. Galland, and V. Devlaminck, “Target detection with a liquid crystal-based passive Stokes polarimeter,” Appl. Opt. 43, 274-282 (2004).
[CrossRef] [PubMed]

M. Alouini, F. Goudail, P. Réfrégier, A. Grisard, E. Lallier, and D. Dolfi, “Multispectral polarimetric imaging with coherent illumination: towards higher image contrast,” Proc. SPIE 5432, 133-144 (2004).
[CrossRef]

F. Goudail and P. Réfrégier, “Statistical techniques for target detection in polarization diversity images,” Opt. Lett. 26, 644-646 (2001).
[CrossRef]

Graham, J. R.

M. D. Perrin, J. R. Graham, and J. P. Lloyd, “The IRCAL polarimeter: design, calibration, and data reduction for an adaptive optics imaging polarimeter,” Publ. Astron. Soc. Pac. 120, 555-570 (2008).
[CrossRef]

Grisard, A.

M. Alouini, F. Goudail, A. Grisard, J. Bourderionnet, D. Dolfi, A. Bénière, I. Baarstad, T. Løke, P. Kaspersen, X. Normandin, and G. Berginc, “Near-infrared active polarimetric and multispectral laboratory demonstrator for target detection,” Appl. Opt. 48, 1610-1618 (2009).
[CrossRef] [PubMed]

M. Alouini, F. Goudail, A. Grisard, J. Bourderionnet, D. Dolfi, I. Baarstad, T. Løke, P. Kaspersen, and X. Normandin, “Active polarimetric and multispectral laboratory demonstrator: contrast enhancement for target detection,” Proc. SPIE 6396, 63960B (2006).
[CrossRef]

M. Alouini, F. Goudail, P. Réfrégier, A. Grisard, E. Lallier, and D. Dolfi, “Multispectral polarimetric imaging with coherent illumination: towards higher image contrast,” Proc. SPIE 5432, 133-144 (2004).
[CrossRef]

Hartemann, P.

M. Alouini, F. Goudail, N. Roux, L. Le Hors, P. Hartemann, S. Breugnot, and D. Dolfi, “Active spectro-polarimetric imaging: signature modeling, imaging demonstrator and target detection,” Eur. Phys. J. Appl. Phys. 42, 129-139 (2008).
[CrossRef]

L. Le Hors, P. Hartemann, D. Dolfi, and S. Breugnot, “Phenomenological model of paints for multispectral polarimetric imaging,” Proc. SPIE 4370, 94-105 (2001).
[CrossRef]

Harvey, A. R.

A. R. Harvey, D. W. Fletcher-Holmes, A. Gorman, K. Altenbach, J. Arlt, and N. D. Read, “Spectral imaging in a snapshot,” Proc. SPIE 5694, 110-119 (2005).

Hirakata, N.

K. S. Kawabata, A. Okazaki, H. Akitaya, N. Hirakata, R. Hirata, Y. Ikeda, M. Kondoh, S. Masuda, and M. Seki, “A new spectropolarimeter at the Dodaira Observatory,” Publ. Astron. Soc. Pac. 111, 898-908 (1999).
[CrossRef]

Hirata, R.

K. S. Kawabata, A. Okazaki, H. Akitaya, N. Hirakata, R. Hirata, Y. Ikeda, M. Kondoh, S. Masuda, and M. Seki, “A new spectropolarimeter at the Dodaira Observatory,” Publ. Astron. Soc. Pac. 111, 898-908 (1999).
[CrossRef]

Huard, S.

S. Huard, Polarization of Light (Wiley, 1997).

Hunter, J.

Ikeda, Y.

K. S. Kawabata, A. Okazaki, H. Akitaya, N. Hirakata, R. Hirata, Y. Ikeda, M. Kondoh, S. Masuda, and M. Seki, “A new spectropolarimeter at the Dodaira Observatory,” Publ. Astron. Soc. Pac. 111, 898-908 (1999).
[CrossRef]

Jacques, S. L.

J. C. Ramella-Roman, K. Lee, S. A. Prahl, and S. L. Jacques, “Polarized light imaging with a handheld camera,” Proc. SPIE 5068, 284-293 (2003).

Jaulin, A.

A. Jaulin, L. Bigue, and P. Ambs, “Implementation of a high-speed imaging polarimeter using a liquid crystal ferroelectric modulator,” Proc. SPIE 6189, 618912 (2006).
[CrossRef]

Javidi, B.

Kaspersen, P.

M. Alouini, F. Goudail, A. Grisard, J. Bourderionnet, D. Dolfi, A. Bénière, I. Baarstad, T. Løke, P. Kaspersen, X. Normandin, and G. Berginc, “Near-infrared active polarimetric and multispectral laboratory demonstrator for target detection,” Appl. Opt. 48, 1610-1618 (2009).
[CrossRef] [PubMed]

M. Alouini, F. Goudail, A. Grisard, J. Bourderionnet, D. Dolfi, I. Baarstad, T. Løke, P. Kaspersen, and X. Normandin, “Active polarimetric and multispectral laboratory demonstrator: contrast enhancement for target detection,” Proc. SPIE 6396, 63960B (2006).
[CrossRef]

Kawabata, K. S.

K. S. Kawabata, A. Okazaki, H. Akitaya, N. Hirakata, R. Hirata, Y. Ikeda, M. Kondoh, S. Masuda, and M. Seki, “A new spectropolarimeter at the Dodaira Observatory,” Publ. Astron. Soc. Pac. 111, 898-908 (1999).
[CrossRef]

Kay, S. M.

S. M. Kay, Fundamentals of Statistical Signal Processing--Volume I: Estimation Theory (Prentice-Hall, 1993).

Kisilak, M.

Kondoh, M.

K. S. Kawabata, A. Okazaki, H. Akitaya, N. Hirakata, R. Hirata, Y. Ikeda, M. Kondoh, S. Masuda, and M. Seki, “A new spectropolarimeter at the Dodaira Observatory,” Publ. Astron. Soc. Pac. 111, 898-908 (1999).
[CrossRef]

Lallier, E.

M. Alouini, F. Goudail, P. Réfrégier, A. Grisard, E. Lallier, and D. Dolfi, “Multispectral polarimetric imaging with coherent illumination: towards higher image contrast,” Proc. SPIE 5432, 133-144 (2004).
[CrossRef]

Laude-Boulesteix, B.

B. Laude-Boulesteix, A. Nazac, G. L. Naour, C. Genestie, L. Schwartz, B. Drevillon, and A. D. Martino, “Polarized images of the cervix,” Proc. SPIE 5312, 243-246 (2004).
[CrossRef]

B. Laude-Boulesteix, A. De Martino, B. Drévillon, and L. Schwartz, “Mueller polarimetric imaging system with liquid crystals,” Appl. Opt. 43, 2824-2832 (2004).
[CrossRef] [PubMed]

Le Hors, L.

M. Alouini, F. Goudail, N. Roux, L. Le Hors, P. Hartemann, S. Breugnot, and D. Dolfi, “Active spectro-polarimetric imaging: signature modeling, imaging demonstrator and target detection,” Eur. Phys. J. Appl. Phys. 42, 129-139 (2008).
[CrossRef]

L. Le Hors, P. Hartemann, D. Dolfi, and S. Breugnot, “Phenomenological model of paints for multispectral polarimetric imaging,” Proc. SPIE 4370, 94-105 (2001).
[CrossRef]

Lee, K.

J. C. Ramella-Roman, K. Lee, S. A. Prahl, and S. L. Jacques, “Polarized light imaging with a handheld camera,” Proc. SPIE 5068, 284-293 (2003).

Lloyd, J. P.

M. D. Perrin, J. R. Graham, and J. P. Lloyd, “The IRCAL polarimeter: design, calibration, and data reduction for an adaptive optics imaging polarimeter,” Publ. Astron. Soc. Pac. 120, 555-570 (2008).
[CrossRef]

Løke, T.

M. Alouini, F. Goudail, A. Grisard, J. Bourderionnet, D. Dolfi, A. Bénière, I. Baarstad, T. Løke, P. Kaspersen, X. Normandin, and G. Berginc, “Near-infrared active polarimetric and multispectral laboratory demonstrator for target detection,” Appl. Opt. 48, 1610-1618 (2009).
[CrossRef] [PubMed]

M. Alouini, F. Goudail, A. Grisard, J. Bourderionnet, D. Dolfi, I. Baarstad, T. Løke, P. Kaspersen, and X. Normandin, “Active polarimetric and multispectral laboratory demonstrator: contrast enhancement for target detection,” Proc. SPIE 6396, 63960B (2006).
[CrossRef]

Martino, A. D.

B. Laude-Boulesteix, A. Nazac, G. L. Naour, C. Genestie, L. Schwartz, B. Drevillon, and A. D. Martino, “Polarized images of the cervix,” Proc. SPIE 5312, 243-246 (2004).
[CrossRef]

Masuda, S.

K. S. Kawabata, A. Okazaki, H. Akitaya, N. Hirakata, R. Hirata, Y. Ikeda, M. Kondoh, S. Masuda, and M. Seki, “A new spectropolarimeter at the Dodaira Observatory,” Publ. Astron. Soc. Pac. 111, 898-908 (1999).
[CrossRef]

Matoba, O.

Mujumdar, S.

S. Mujumdar and H. Ramachandran, “Imaging through turbid media using polarization modulation: dependence on scattering anisotropy,” Opt. Commun. 241, 1-9 (2004).
[CrossRef]

Naour, G. L.

B. Laude-Boulesteix, A. Nazac, G. L. Naour, C. Genestie, L. Schwartz, B. Drevillon, and A. D. Martino, “Polarized images of the cervix,” Proc. SPIE 5312, 243-246 (2004).
[CrossRef]

Narasimhan, S. G.

Nayar, S. K.

Nazac, A.

B. Laude-Boulesteix, A. Nazac, G. L. Naour, C. Genestie, L. Schwartz, B. Drevillon, and A. D. Martino, “Polarized images of the cervix,” Proc. SPIE 5312, 243-246 (2004).
[CrossRef]

Normandin, X.

M. Alouini, F. Goudail, A. Grisard, J. Bourderionnet, D. Dolfi, A. Bénière, I. Baarstad, T. Løke, P. Kaspersen, X. Normandin, and G. Berginc, “Near-infrared active polarimetric and multispectral laboratory demonstrator for target detection,” Appl. Opt. 48, 1610-1618 (2009).
[CrossRef] [PubMed]

M. Alouini, F. Goudail, A. Grisard, J. Bourderionnet, D. Dolfi, I. Baarstad, T. Løke, P. Kaspersen, and X. Normandin, “Active polarimetric and multispectral laboratory demonstrator: contrast enhancement for target detection,” Proc. SPIE 6396, 63960B (2006).
[CrossRef]

Okazaki, A.

K. S. Kawabata, A. Okazaki, H. Akitaya, N. Hirakata, R. Hirata, Y. Ikeda, M. Kondoh, S. Masuda, and M. Seki, “A new spectropolarimeter at the Dodaira Observatory,” Publ. Astron. Soc. Pac. 111, 898-908 (1999).
[CrossRef]

Perrin, M. D.

M. D. Perrin, J. R. Graham, and J. P. Lloyd, “The IRCAL polarimeter: design, calibration, and data reduction for an adaptive optics imaging polarimeter,” Publ. Astron. Soc. Pac. 120, 555-570 (2008).
[CrossRef]

Prahl, S. A.

J. C. Ramella-Roman, K. Lee, S. A. Prahl, and S. L. Jacques, “Polarized light imaging with a handheld camera,” Proc. SPIE 5068, 284-293 (2003).

Pugh, E. N.

Ramachandran, H.

S. Mujumdar and H. Ramachandran, “Imaging through turbid media using polarization modulation: dependence on scattering anisotropy,” Opt. Commun. 241, 1-9 (2004).
[CrossRef]

Ramella-Roman, J. C.

J. C. Ramella-Roman, K. Lee, S. A. Prahl, and S. L. Jacques, “Polarized light imaging with a handheld camera,” Proc. SPIE 5068, 284-293 (2003).

Read, N. D.

A. R. Harvey, D. W. Fletcher-Holmes, A. Gorman, K. Altenbach, J. Arlt, and N. D. Read, “Spectral imaging in a snapshot,” Proc. SPIE 5694, 110-119 (2005).

Réfrégier, P.

M. Alouini, F. Goudail, P. Réfrégier, A. Grisard, E. Lallier, and D. Dolfi, “Multispectral polarimetric imaging with coherent illumination: towards higher image contrast,” Proc. SPIE 5432, 133-144 (2004).
[CrossRef]

F. Goudail and P. Réfrégier, “Statistical techniques for target detection in polarization diversity images,” Opt. Lett. 26, 644-646 (2001).
[CrossRef]

Roux, N.

M. Alouini, F. Goudail, N. Roux, L. Le Hors, P. Hartemann, S. Breugnot, and D. Dolfi, “Active spectro-polarimetric imaging: signature modeling, imaging demonstrator and target detection,” Eur. Phys. J. Appl. Phys. 42, 129-139 (2008).
[CrossRef]

Rowe, M. P.

Schechner, Y. Y.

Schwartz, L.

B. Laude-Boulesteix, A. Nazac, G. L. Naour, C. Genestie, L. Schwartz, B. Drevillon, and A. D. Martino, “Polarized images of the cervix,” Proc. SPIE 5312, 243-246 (2004).
[CrossRef]

B. Laude-Boulesteix, A. De Martino, B. Drévillon, and L. Schwartz, “Mueller polarimetric imaging system with liquid crystals,” Appl. Opt. 43, 2824-2832 (2004).
[CrossRef] [PubMed]

Seki, M.

K. S. Kawabata, A. Okazaki, H. Akitaya, N. Hirakata, R. Hirata, Y. Ikeda, M. Kondoh, S. Masuda, and M. Seki, “A new spectropolarimeter at the Dodaira Observatory,” Publ. Astron. Soc. Pac. 111, 898-908 (1999).
[CrossRef]

Simon, M. C.

Sumrain, S.

S. Sumrain and G. Giakos, “Sub pixel detection of polarimetric signatures of man-made targets,” in Instrumentation and Measurement Technology Conference 2006 (IEEE, 2006), pp. 163-167.
[CrossRef]

Takakura, Y.

Terrier, P.

Tyo, J. S.

van Brug, H.

Weijers, A. L.

Appl. Opt. (8)

Eur. Phys. J. Appl. Phys. (1)

M. Alouini, F. Goudail, N. Roux, L. Le Hors, P. Hartemann, S. Breugnot, and D. Dolfi, “Active spectro-polarimetric imaging: signature modeling, imaging demonstrator and target detection,” Eur. Phys. J. Appl. Phys. 42, 129-139 (2008).
[CrossRef]

J. Eur. Opt. Soc. Rapid Publ. (1)

A. Bénière, F. Goudail, M. Alouini, and D. Dolfi, “Estimation precision of degree of polarization in the presence of signal-dependent and additive Poisson noises,” J. Eur. Opt. Soc. Rapid Publ. 3, 08002 (2008).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Commun. (2)

S. Mujumdar and H. Ramachandran, “Imaging through turbid media using polarization modulation: dependence on scattering anisotropy,” Opt. Commun. 241, 1-9 (2004).
[CrossRef]

A. Bénière, F. Goudail, M. Alouini, and D. Dolfi, “Precision of degree of polarization estimation in the presence of additive Gaussian detector noise,” Opt. Commun. 278, 264-269(2007).
[CrossRef]

Opt. Eng. (1)

S. Breugnot and P. Clémenceau, “Modeling and performances of a polarization active imager at λ=806 nm,” Opt. Eng. 39, 2681-2688 (2000).
[CrossRef]

Opt. Lett. (4)

Proc. SPIE (6)

L. Le Hors, P. Hartemann, D. Dolfi, and S. Breugnot, “Phenomenological model of paints for multispectral polarimetric imaging,” Proc. SPIE 4370, 94-105 (2001).
[CrossRef]

J. C. Ramella-Roman, K. Lee, S. A. Prahl, and S. L. Jacques, “Polarized light imaging with a handheld camera,” Proc. SPIE 5068, 284-293 (2003).

B. Laude-Boulesteix, A. Nazac, G. L. Naour, C. Genestie, L. Schwartz, B. Drevillon, and A. D. Martino, “Polarized images of the cervix,” Proc. SPIE 5312, 243-246 (2004).
[CrossRef]

M. Alouini, F. Goudail, P. Réfrégier, A. Grisard, E. Lallier, and D. Dolfi, “Multispectral polarimetric imaging with coherent illumination: towards higher image contrast,” Proc. SPIE 5432, 133-144 (2004).
[CrossRef]

A. Jaulin, L. Bigue, and P. Ambs, “Implementation of a high-speed imaging polarimeter using a liquid crystal ferroelectric modulator,” Proc. SPIE 6189, 618912 (2006).
[CrossRef]

M. Alouini, F. Goudail, A. Grisard, J. Bourderionnet, D. Dolfi, I. Baarstad, T. Løke, P. Kaspersen, and X. Normandin, “Active polarimetric and multispectral laboratory demonstrator: contrast enhancement for target detection,” Proc. SPIE 6396, 63960B (2006).
[CrossRef]

Publ. Astron. Soc. Pac. (2)

M. D. Perrin, J. R. Graham, and J. P. Lloyd, “The IRCAL polarimeter: design, calibration, and data reduction for an adaptive optics imaging polarimeter,” Publ. Astron. Soc. Pac. 120, 555-570 (2008).
[CrossRef]

K. S. Kawabata, A. Okazaki, H. Akitaya, N. Hirakata, R. Hirata, Y. Ikeda, M. Kondoh, S. Masuda, and M. Seki, “A new spectropolarimeter at the Dodaira Observatory,” Publ. Astron. Soc. Pac. 111, 898-908 (1999).
[CrossRef]

Other (4)

S. M. Kay, Fundamentals of Statistical Signal Processing--Volume I: Estimation Theory (Prentice-Hall, 1993).

S. Sumrain and G. Giakos, “Sub pixel detection of polarimetric signatures of man-made targets,” in Instrumentation and Measurement Technology Conference 2006 (IEEE, 2006), pp. 163-167.
[CrossRef]

A. R. Harvey, D. W. Fletcher-Holmes, A. Gorman, K. Altenbach, J. Arlt, and N. D. Read, “Spectral imaging in a snapshot,” Proc. SPIE 5694, 110-119 (2005).

S. Huard, Polarization of Light (Wiley, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schemes of (a), (b) spatial separation with a Savart polariscope and (c), (d) angular separation with a Wollaston prism associated with respectively convergent or collimated light.

Fig. 2
Fig. 2

(a) Experimental setup composed of a Wollaston prism (W), three lenses (L1, L2, L3), a rectangular mask (M), and a CCD detector with a height of h d . (b) Deviations in the Wollaston prism: an incident ray falls on the Wollaston prism with an angle i and generates an ordinary ray and an extraordinary ray separated by the angle of divergence β. (c) Photograph of the experimental setup.

Fig. 3
Fig. 3

Raw image of a scene composed of a model scale car on a white diffusive background. The upper part is the ordinary image, which corresponds to the parallel state of polarization channel. The lower part is the extraordinary image, which corresponds to the orthogonal state of the polarization channel. A voluntarily exaggerated diagram of distortion introduced by L3 is superposed in dotted lines on the raw image.

Fig. 4
Fig. 4

Ordinary ( D o ) and extraordinary ( D e ) deviations of a 5 ° separation Wollaston prism as a function of the angle of incidence i for λ = 632 nm . All angles are in degrees.

Fig. 5
Fig. 5

(a) Intensity image of the chart composed of black and white rings. OSC images, if images X and Y are registered using (b), (d) a translation only or (c), (e) a polynomial transformation . (f), (g) Corresponding histogram in log scale.

Fig. 6
Fig. 6

(a) Mean and (b) variance of the intensity image estimated on a 50 × 50 pixels region when observing a totally depolarized light source. (c) Mean and (d) variance of the OSC.

Fig. 7
Fig. 7

(a) Mean and (b) variance of the intensity image estimated on a 50 × 50 pixels region when observing a linearly polarized light source. (c) Mean and (d) variance of the OSC.

Fig. 8
Fig. 8

100 × 100 pixel image of a piece of bare metal on a diffusive camouflage pattern. (a) Intensity image and (b) sequential and (c) simultaneous OSCI with turbulences.

Fig. 9
Fig. 9

Estimated OSC as a function of the parameter α t , for different true value of the OSC.

Fig. 10
Fig. 10

OSC images obtained with (a) sequential acquisition and (b) simultaneous acquisition with a pulsed light source. (c) For each acquisition the spatial mean of the OSC estimated on the black plastic delimited by dotted rectangle is compared for both acquisition modes. (d) Pulse to pulse fluctuations. The case α t = 0 corresponds to the estimation of the true value of the OSC.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P = { P i , [ 1 , N ] } with     P i = X i Y i X i + Y i .
CRLB P ( g ) = ( 1 P 2 ) q I + 2 g ( 1 + P 2 ) ( q I ) 2 ,
P ^ i t = F t X i t F t + 1 Y i t + 1 F t X i t + F t + 1 Y i t + 1 = P i + α t α t P i + 1 ,

Metrics