Abstract

A scanning near-field optical microscopy study is undertaken on photonic crystal tapers. These tapers are used to couple a 3μm wide multimode dielectric waveguide to a single-line defect monomode photonic crystal waveguide. Two kinds of taper, with or without a localized defect, are compared. Higher transmission efficiency is obtained when a defect is utilized. The near-field study at 1550nm shows experimentally that this defect prevents leaky resonant states to appear in the taper and thus permits a decrease in out-of-plane losses. These observations are supported by band diagram calculations.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  2. J. D. Joannopolous, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).
  3. A. Mekis and J. D. Joannopoulos, “Tapered couplers for efficient interfacing between dielectric and photonic crystal waveguides,” J. Lightwave Technol. 19, 861-865 (2001).
    [CrossRef]
  4. M. E. Potter and R. W. Ziolkowski, “Two compact structures for perpendicular coupling of optical signals between dielectric and photonic crystal waveguides,” Opt. Express 10, 691-698 (2002).
    [PubMed]
  5. Y. Xu, R. Lee, and A. Yariv, “Adiabatic coupling between conventional dielectric waveguides and waveguides with discrete translational symmetry,” Opt. Lett. 25, 755-757 (2000).
    [CrossRef]
  6. M. Dinu, R. L. Willett, K. Baldwin, L. N. Pfeiffer, and K. W. West, “ Waveguide tapers and waveguide bends in AlGaAs-based two-dimensional photonic crystals,” Appl. Phys. Lett. 83, 4471-4473 (2003).
    [CrossRef]
  7. P. Sanchis, J. Marti, W. Bogaerts, P. Dumon, and R. Baets, “Experimental results and 3D analysis of a high efficiency coupling technique for planar photonic crystals,” in Proceedings of the IEEE European Conference on Optical Communication (IEEE, 2005), Vol. 2, pp. 181-182.
  8. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401-412 (2005).
    [CrossRef]
  9. P. Hoffmann, B. Dutoit, and R. P. Salathé, “Comparison of mechanically drawn and protection layer chemically etched optical fiber tips,” Ultramicroscopy 61, 165-170 (1995).
    [CrossRef]
  10. D. R. Turner, “Etch procedure for optical fibers,” U.S. patent 4,469,554 (4 September 1984).
  11. M. J. Martin, T. Benyattou, R. Orobtchouk, A. Talneau, A. Berrier, M. Mulot, and S. Anand, “ Evidence of Bloch wave propagation within photonic crystal waveguides,” Appl. Phys. B 82, 9-12 (2006).
    [CrossRef]
  12. K. M. Leung and Y. F. Liu, “Photon band structures: the plane-wave method,” Phys. Rev. B 41, 10188-10190 (1990).
    [CrossRef]
  13. S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled mode theory for efficient taper transition in photonic crystal,” Phys. Rev. E 66, 066608 (2002).
    [CrossRef]

2006

M. J. Martin, T. Benyattou, R. Orobtchouk, A. Talneau, A. Berrier, M. Mulot, and S. Anand, “ Evidence of Bloch wave propagation within photonic crystal waveguides,” Appl. Phys. B 82, 9-12 (2006).
[CrossRef]

2005

2003

M. Dinu, R. L. Willett, K. Baldwin, L. N. Pfeiffer, and K. W. West, “ Waveguide tapers and waveguide bends in AlGaAs-based two-dimensional photonic crystals,” Appl. Phys. Lett. 83, 4471-4473 (2003).
[CrossRef]

2002

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled mode theory for efficient taper transition in photonic crystal,” Phys. Rev. E 66, 066608 (2002).
[CrossRef]

M. E. Potter and R. W. Ziolkowski, “Two compact structures for perpendicular coupling of optical signals between dielectric and photonic crystal waveguides,” Opt. Express 10, 691-698 (2002).
[PubMed]

2001

2000

1995

P. Hoffmann, B. Dutoit, and R. P. Salathé, “Comparison of mechanically drawn and protection layer chemically etched optical fiber tips,” Ultramicroscopy 61, 165-170 (1995).
[CrossRef]

1990

K. M. Leung and Y. F. Liu, “Photon band structures: the plane-wave method,” Phys. Rev. B 41, 10188-10190 (1990).
[CrossRef]

1987

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Anand, S.

M. J. Martin, T. Benyattou, R. Orobtchouk, A. Talneau, A. Berrier, M. Mulot, and S. Anand, “ Evidence of Bloch wave propagation within photonic crystal waveguides,” Appl. Phys. B 82, 9-12 (2006).
[CrossRef]

Baets, R.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401-412 (2005).
[CrossRef]

P. Sanchis, J. Marti, W. Bogaerts, P. Dumon, and R. Baets, “Experimental results and 3D analysis of a high efficiency coupling technique for planar photonic crystals,” in Proceedings of the IEEE European Conference on Optical Communication (IEEE, 2005), Vol. 2, pp. 181-182.

Baldwin, K.

M. Dinu, R. L. Willett, K. Baldwin, L. N. Pfeiffer, and K. W. West, “ Waveguide tapers and waveguide bends in AlGaAs-based two-dimensional photonic crystals,” Appl. Phys. Lett. 83, 4471-4473 (2003).
[CrossRef]

Beckx, S.

Benyattou, T.

M. J. Martin, T. Benyattou, R. Orobtchouk, A. Talneau, A. Berrier, M. Mulot, and S. Anand, “ Evidence of Bloch wave propagation within photonic crystal waveguides,” Appl. Phys. B 82, 9-12 (2006).
[CrossRef]

Berrier, A.

M. J. Martin, T. Benyattou, R. Orobtchouk, A. Talneau, A. Berrier, M. Mulot, and S. Anand, “ Evidence of Bloch wave propagation within photonic crystal waveguides,” Appl. Phys. B 82, 9-12 (2006).
[CrossRef]

Bienstman, P.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401-412 (2005).
[CrossRef]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled mode theory for efficient taper transition in photonic crystal,” Phys. Rev. E 66, 066608 (2002).
[CrossRef]

Bogaerts, W.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401-412 (2005).
[CrossRef]

P. Sanchis, J. Marti, W. Bogaerts, P. Dumon, and R. Baets, “Experimental results and 3D analysis of a high efficiency coupling technique for planar photonic crystals,” in Proceedings of the IEEE European Conference on Optical Communication (IEEE, 2005), Vol. 2, pp. 181-182.

Dinu, M.

M. Dinu, R. L. Willett, K. Baldwin, L. N. Pfeiffer, and K. W. West, “ Waveguide tapers and waveguide bends in AlGaAs-based two-dimensional photonic crystals,” Appl. Phys. Lett. 83, 4471-4473 (2003).
[CrossRef]

Dumon, P.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401-412 (2005).
[CrossRef]

P. Sanchis, J. Marti, W. Bogaerts, P. Dumon, and R. Baets, “Experimental results and 3D analysis of a high efficiency coupling technique for planar photonic crystals,” in Proceedings of the IEEE European Conference on Optical Communication (IEEE, 2005), Vol. 2, pp. 181-182.

Dutoit, B.

P. Hoffmann, B. Dutoit, and R. P. Salathé, “Comparison of mechanically drawn and protection layer chemically etched optical fiber tips,” Ultramicroscopy 61, 165-170 (1995).
[CrossRef]

Hoffmann, P.

P. Hoffmann, B. Dutoit, and R. P. Salathé, “Comparison of mechanically drawn and protection layer chemically etched optical fiber tips,” Ultramicroscopy 61, 165-170 (1995).
[CrossRef]

Ibanescu, M.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled mode theory for efficient taper transition in photonic crystal,” Phys. Rev. E 66, 066608 (2002).
[CrossRef]

Joannopolous, J. D.

J. D. Joannopolous, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

Joannopoulos, J. D.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled mode theory for efficient taper transition in photonic crystal,” Phys. Rev. E 66, 066608 (2002).
[CrossRef]

A. Mekis and J. D. Joannopoulos, “Tapered couplers for efficient interfacing between dielectric and photonic crystal waveguides,” J. Lightwave Technol. 19, 861-865 (2001).
[CrossRef]

Johnson, S. G.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled mode theory for efficient taper transition in photonic crystal,” Phys. Rev. E 66, 066608 (2002).
[CrossRef]

Lee, R.

Leung, K. M.

K. M. Leung and Y. F. Liu, “Photon band structures: the plane-wave method,” Phys. Rev. B 41, 10188-10190 (1990).
[CrossRef]

Lidorikis, E.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled mode theory for efficient taper transition in photonic crystal,” Phys. Rev. E 66, 066608 (2002).
[CrossRef]

Liu, Y. F.

K. M. Leung and Y. F. Liu, “Photon band structures: the plane-wave method,” Phys. Rev. B 41, 10188-10190 (1990).
[CrossRef]

Luyssaert, B.

Marti, J.

P. Sanchis, J. Marti, W. Bogaerts, P. Dumon, and R. Baets, “Experimental results and 3D analysis of a high efficiency coupling technique for planar photonic crystals,” in Proceedings of the IEEE European Conference on Optical Communication (IEEE, 2005), Vol. 2, pp. 181-182.

Martin, M. J.

M. J. Martin, T. Benyattou, R. Orobtchouk, A. Talneau, A. Berrier, M. Mulot, and S. Anand, “ Evidence of Bloch wave propagation within photonic crystal waveguides,” Appl. Phys. B 82, 9-12 (2006).
[CrossRef]

Meade, R. D.

J. D. Joannopolous, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

Mekis, A.

Mulot, M.

M. J. Martin, T. Benyattou, R. Orobtchouk, A. Talneau, A. Berrier, M. Mulot, and S. Anand, “ Evidence of Bloch wave propagation within photonic crystal waveguides,” Appl. Phys. B 82, 9-12 (2006).
[CrossRef]

Orobtchouk, R.

M. J. Martin, T. Benyattou, R. Orobtchouk, A. Talneau, A. Berrier, M. Mulot, and S. Anand, “ Evidence of Bloch wave propagation within photonic crystal waveguides,” Appl. Phys. B 82, 9-12 (2006).
[CrossRef]

Pfeiffer, L. N.

M. Dinu, R. L. Willett, K. Baldwin, L. N. Pfeiffer, and K. W. West, “ Waveguide tapers and waveguide bends in AlGaAs-based two-dimensional photonic crystals,” Appl. Phys. Lett. 83, 4471-4473 (2003).
[CrossRef]

Potter, M. E.

Salathé, R. P.

P. Hoffmann, B. Dutoit, and R. P. Salathé, “Comparison of mechanically drawn and protection layer chemically etched optical fiber tips,” Ultramicroscopy 61, 165-170 (1995).
[CrossRef]

Sanchis, P.

P. Sanchis, J. Marti, W. Bogaerts, P. Dumon, and R. Baets, “Experimental results and 3D analysis of a high efficiency coupling technique for planar photonic crystals,” in Proceedings of the IEEE European Conference on Optical Communication (IEEE, 2005), Vol. 2, pp. 181-182.

Skorobogatiy, M. A.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled mode theory for efficient taper transition in photonic crystal,” Phys. Rev. E 66, 066608 (2002).
[CrossRef]

Taillaert, D.

Talneau, A.

M. J. Martin, T. Benyattou, R. Orobtchouk, A. Talneau, A. Berrier, M. Mulot, and S. Anand, “ Evidence of Bloch wave propagation within photonic crystal waveguides,” Appl. Phys. B 82, 9-12 (2006).
[CrossRef]

Turner, D. R.

D. R. Turner, “Etch procedure for optical fibers,” U.S. patent 4,469,554 (4 September 1984).

Van Campenhout, J.

Van Thourhout, D.

West, K. W.

M. Dinu, R. L. Willett, K. Baldwin, L. N. Pfeiffer, and K. W. West, “ Waveguide tapers and waveguide bends in AlGaAs-based two-dimensional photonic crystals,” Appl. Phys. Lett. 83, 4471-4473 (2003).
[CrossRef]

Wiaux, V.

Willett, R. L.

M. Dinu, R. L. Willett, K. Baldwin, L. N. Pfeiffer, and K. W. West, “ Waveguide tapers and waveguide bends in AlGaAs-based two-dimensional photonic crystals,” Appl. Phys. Lett. 83, 4471-4473 (2003).
[CrossRef]

Winn, J. N.

J. D. Joannopolous, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

Xu, Y.

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Yariv, A.

Ziolkowski, R. W.

Appl. Phys. B

M. J. Martin, T. Benyattou, R. Orobtchouk, A. Talneau, A. Berrier, M. Mulot, and S. Anand, “ Evidence of Bloch wave propagation within photonic crystal waveguides,” Appl. Phys. B 82, 9-12 (2006).
[CrossRef]

Appl. Phys. Lett.

M. Dinu, R. L. Willett, K. Baldwin, L. N. Pfeiffer, and K. W. West, “ Waveguide tapers and waveguide bends in AlGaAs-based two-dimensional photonic crystals,” Appl. Phys. Lett. 83, 4471-4473 (2003).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Phys. Rev. B

K. M. Leung and Y. F. Liu, “Photon band structures: the plane-wave method,” Phys. Rev. B 41, 10188-10190 (1990).
[CrossRef]

Phys. Rev. E

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled mode theory for efficient taper transition in photonic crystal,” Phys. Rev. E 66, 066608 (2002).
[CrossRef]

Phys. Rev. Lett.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Ultramicroscopy

P. Hoffmann, B. Dutoit, and R. P. Salathé, “Comparison of mechanically drawn and protection layer chemically etched optical fiber tips,” Ultramicroscopy 61, 165-170 (1995).
[CrossRef]

Other

D. R. Turner, “Etch procedure for optical fibers,” U.S. patent 4,469,554 (4 September 1984).

P. Sanchis, J. Marti, W. Bogaerts, P. Dumon, and R. Baets, “Experimental results and 3D analysis of a high efficiency coupling technique for planar photonic crystals,” in Proceedings of the IEEE European Conference on Optical Communication (IEEE, 2005), Vol. 2, pp. 181-182.

J. D. Joannopolous, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

SEM image of the structure with W as the width of a W 1 waveguide and a as the lattice period. The inset shows a detailed view of the taper (a) with a defect and (b) without a defect.

Fig. 2
Fig. 2

SNOM images recorded at 1550 nm : (a) without localized defects and (b) with localized defects. The position of the holes deduced from the topographic images is reported on the optical images. The unit of the signal intensity is arbitrary. The size of each image is 9 μm × 12 μm . Light moves from bottom to top.

Fig. 3
Fig. 3

Zoom on SNOM images of the input taper in Fig. 2: (a) without a localized defect and (b) with a localized defect. The position of the holes deduced from the topographic images is reported on the optical images. The unit of the signal intensity is arbitrary. Light moves from bottom to top.

Fig. 4
Fig. 4

Evolution of the signal intensity depending on the tip–surface distance: squares, experimental points; continuous curve, theoretical curve.

Fig. 5
Fig. 5

Two-dimensional band diagram of the 2.6 W waveguide: (a) without a defect and (b) with defects. Only the even modes are represented. The fundamental mode of the 0.6 W waveguide is represented by dashed curves; the circles correspond to the optimal coupling regions.

Metrics